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ABSTRACT 

We often use datasets that reflect samples, but many 

visualization tools treat data as full populations. Uncertain 

visualizations are good at representing data distributions 

emerging from samples, but are more limited in allowing 

users to carry out decision tasks. This is because tasks that 

are simple on a traditional chart (e.g. “compare two bars”) 

become a complex probabilistic task on a chart with 

uncertainty. We present guidelines for creating visual 

annotations for solving tasks with uncertainty, and an 

implementation that addresses five core tasks on a bar chart. 

A preliminary user study shows promising results: that users 

have a justified confidence in their answers with our system.  
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INTRODUCTION 

The goal of data analysis is, in general, to describe attributes 

of a population based on quantifiable properties. Yet we 

often interact with samples of data, rather than the full 

population. Sometimes, samples are employed because 

processing the entire data set places unacceptable overhead 

on storage or computing [8, 11]. More often, only a subset of 

a much larger real-life distribution is available: because the 

data is a sample by its very nature, such as the results from a 

survey, or because the instrumentation to obtain the data can 

only capture a small subset of the data universe [17], such as 

when only a subset of nodes in a data center run potentially 

expensive telemetry instrumentation. Despite the ubiquity of 

samples in data analysis, far too many visualization tools 

neglect the fact that the data is a sample.  

We suspect there to be several reasons for this neglect. Many 

users are unaware of the importance of seeing their data as a 

sample. While it is common to generate boxplots to show 

error bars, and to run statistical tests, these usually are 

prepared only at the end of an analysis process. Many 

analysts simply explore their data based on the sample 

available, looking at averages or sums without taking into 

account uncertainty. Including statistics and uncertainty in an 

analysis can add a great deal of complexity to the process and 

slow it down, but data analysts prioritize rapid iteration for 

exploration. 

Even for knowledgeable users, reasoning in the presence of 

probabilities and uncertainty can be very challenging [3]. In 

order to think about samples properly, users need to interpret 

all questions and conclusions about the data in a probabilistic 

manner: “is A greater than B?” changes to “what are the 

chances that A is greater than B?” Even with the aid of 

specialized visualizations, this task can still be very hard, as 

Micallef et al showed in their work on visualizing Bayesian 

probability [15].  

Part of the challenge is that showing an uncertain value does 

not necessarily help reason about uncertain values. Many 

visualizations have been adapted for showing uncertainty, 

ranging from error bars to more exotic tools [21]. These 

visualizations often focus on specifically showing 

uncertainty ranges [18]. However, there are many tasks that 

we understand how to accomplish on non-uncertain charts 

[1, 2], such as comparing bars to each other, or finding the 

largest and smallest values; these uncertain visualizations do 

not directly support them. While it is easy to compare the 

heights of two bars, it can be difficult to compute the 

probability of a nearly-overlapping set of uncertainty 

regions. Previous work has shown that even experts trained 

in statistics make mistakes when interpreting confidence 

intervals [6, 7]. All of this suggests the need for a better 

integration of statistical techniques and interactive visual 

interfaces to enable data analysts to understand the meaning 

of sampled data. 

In this paper, we take a first step in this direction: we 

investigate how to adapt the data analysis process to respect 

samples. In order to do so, we modify analysis tools to allow 

users to carry out tasks based on quantified uncertainty.  
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More precisely, we design visual encodings and interactions 

with the goal of allowing data analysts not only to identify 

the presence and magnitude of uncertainty, but to carry out 

common data exploration tasks. We discuss the design space 

for such visualizations and describe our approach.  

We focus on two common visualizations used in exploratory 

data analysis, bar charts and ranked lists. For each of these, 

we identify common tasks that are performed on these charts 

in exploratory data analysis. Users can interact with these 

charts with task-specific queries; these are shown as 

annotations and overlays [13] that allow users to carry out 

these tasks easily and rapidly. Finally, we perform a 

preliminary user study to assess how our visualizations 

compare to standard approaches, and to establish whether 

users are better able to carry out these tasks with uncertain 

data. We find that our annotations help users to be more 

confident in their analyses. 

BACKGROUND AND RELATED LITERATURE 

We discuss common visual analysis tools, including those 

that do not currently handle uncertainty. Various tools have 

been suggested that visualize uncertainty; we compare these 

tools to our approach. Last, we discuss the idea of ‘task-

driven’ visualization. 

Visual Data Analysis Ignores Uncertainty 

Major exploratory visualization tools available today—such 

as Tableau, Spotfire, and Microsoft Excel—do not have a 

built in concept of samples or uncertainty. Rather, they treat 

the data presented within the system as the whole population, 

and so present any numbers computed from the data—

sample sums and averages, for example—as precise. 

However, as Kandel et al note [12], data analysts often deal 

with samples or selections of data. 

Statistical software, such as SPSS and SAS, do have a more 

sophisticated concept that the data introduced is a sample, 

and draw their visualizations with error bars and confidence 

intervals as appropriate. However, these visualizations are 

usually produced in the process of running an explicit 

statistical test; by the time this test has been run, the user 

usually knows what questions they wish to investigate. This 

is highly effective for hypothesis-testing, but less useful 

when the user wishes to explore their data. 

There is an opportunity, then, to provide lightweight data 

exploration techniques combined with statistical sampling. 

Visualization Techniques that Handle Uncertainty 

It can be difficult for users to reason in the presence of 

probabilistic data: Tversky and Kahanen [21] show that 

people make incorrect decisions when presented with 

probabilistic choices. It is possible to make more accurate 

decisions about data analysis when provided with confidence 

intervals and sample size information [6]. Unfortunately, the 

classic visual representations of uncertainty—such as 

drawing confidence intervals or error bars—do not directly 

map to statistical precision.  

Even experts have difficulty using confidence intervals for 

tasks beyond reading confidence levels. For example, a 

common rule of thumb suggests that two distributions are 

distinct if their 95% confidence intervals just barely overlap. 

Yet, as Belia et al [3] point out, this corresponds to a t-test 

value of a p < 0.006—the correct interval allows much more 

overlap. Cummings and Finch [7] further note that most 

researchers misuse confidence intervals; they discuss “rules 

of eye” for reading and comparing confidence intervals on 

printed bar charts. While their suggestions are effective, they 

require training, and are limited to comparing pairs of 

independent bars. 

While it may be complex, representing uncertainty can help 

users understand the risk and value of making decisions with 

data [14]. For example, long-running computations on 

modern “big data” systems can be expensive; Fisher et al [8] 

show that analysts can use uncertainty ranges, in the form of 

confidence intervals on bar charts, to help decide when to 

terminate an incremental computation.  

The idea of visualization techniques that can handle 

uncertainty is a popular one in the visualization field. Skeels 

et al [16] provide a taxonomy of sources of uncertainty; in 

this paper, we refer specifically to quantitative uncertainty 

derived from examining samples of a population. Olston and 

Mackinlay [18] suggest a number of different visualizations 

for quantitative uncertainty, but do not carry out a user study. 

Three recent user studies [5, 19, 23] examined ways that 

users understand uncertainty representations. All three 

studies examine only the tasks of identifying the most certain 

(or uncertain) values, and do not ask about the underlying 

data.  

Annotating Visualizations to Address Tasks 

Beyond identifying the existence of uncertainty, we also 

want users to be able to carry out basic tasks with charts. To 

identify what those tasks should be, we turn to Amar et al [1, 

2], who identify ten different tasks that can be carried out 

with basic charts. Their tasks include comparing values to 

other, discovering the minimum value of a set of data points, 

and even adding several points together. All of these tasks 

are very quick operations on a standard bar chart without 

uncertainty: comparing two bars, for example, is as easy as 

deciding which one is higher. 

To make chart-reading tasks easier, Kong and Agrawala [13] 

suggest using overlays to help users accomplish specific 

tasks on pie charts, bar charts, and line charts. Their overlays 

are optimized for presentation; they are useful to highlight a 

specific data point in a chart. In contrast, our approach allows 

users to read information that would have been very difficult 

to extract. 

UNCERTAIN VISUALIZATIONS FROM SAMPLED DATA 

Quantitatively uncertain data can come from many different 

sources [16]. In this paper, we focus on computations based 



 

on samples; however, many of these techniques could be 

applied more broadly. We use aggregates because they are 

common in exploratory data analysis: a core operation in 

understanding a dataset is examining the filtered and grouped 

average, sum, and count of a column. Indeed, visualization 

tools like Tableau are based largely around carrying out these 

aggregate operations against different groupings. 

In sample-based analyses, we carry out approximate versions 

of these queries: we estimate the expected average, sum, or 

count of a dataset based on the sample, and infer a 

distribution on this expected value. Hellerstein et al provide 

a simple overview of how to use the Central Limit Theorem 

[11] to estimate error bounds based on these estimators. 

As a result, the aggregate value and confidence interval 

represent a distribution of possible values. One use for this 

is in incremental analysis [8, 11], in which the system sees 

cumulative samples from a large dataset, and generates 

converging estimates of the final value. The distribution for 

each value represents the possible values once all of the data 

has been seen. For example, consider the bar chart shown in 

Figure 1. This chart is based on a sample from a large dataset 

of sales by year. The 95% confidence intervals mean that we 

expect—with probability 0.95—the mean value for sales in 

1992 to be somewhere between 27,000 and 39,000. 

In this scenario, the analyst’s task is to extract information 

from the probability distributions modeled from the sample. 

Amar et al [1, 2] collect a series of different tasks that are 

commonly performed during the exploratory data analysis 

process. Their list includes low-level tasks like retrieve 

value, find extrema (minimum and maximum), sort values, 

and compare values. In a representation without uncertainty, 

such as an ordinary bar chart, these tasks have direct 

interpretations: to find the minimum value in the bar chart, 

for example, the users simply finds the shortest (or most 

negative) bar.  

However, when comparing representations of probability 

distributions, it may not be so simple to extract this 

information. Instead of comparing fixed values, the user 

needs to perform statistical inferences based on the given 

distributions [7]. Furthermore, a change in mindset is 

required: instead of asking whether or not a particular fact is 

true, the analysts can only estimate the likelihood of a fact 

being true or not.  

For example, for the extreme value tasks, the question 

changes to be “what aggregates are likely to be the maximum 

or minimum?” These cannot be read directly off of a set of 

bars with uncertain ranges: a user would need to estimate 

how much uncertainty is represented by error bars, and how 

likely that makes a maximum or minimum measure. In 

Figure 1, we can be quite confident that 1995 represents the 

highest aggregate value; but while it is likely that 1992 is the 

lowest, there are several other possibilities, too. Several 

different bars might have overlapping confidence intervals, 

and so the correct answer might not be a single value, but a 

distribution. 

The visualizations that we discuss in upcoming sections (and 

shown in Figures 2 and 3) are designed to allow users to 

answer these questions directly and visually, rather than by 

making mathematical inferences.  

THE VISUAL ANALYSIS ENVIRONMENT  

To begin our design, we selected two core data 

visualizations: the bar chart and the ranked list. Bar charts, 

of course, are ubiquitous; they are a core of every 

visualization toolkit, and are used to represent many sorts of 

data. Ranked lists are used to represent sorted elements, and 

often show just the top few bars of a broad histogram. For 

example, when exploring search logs with millions of 

entries, a researcher might wish to see the top 10 most-

frequent queries. These lists, truncated to the top values, are 

particularly relevant when the number of distinct results is 

too high to be shown on a single chart. 

Ranked lists are particularly interesting because they can be 

unstable in an incremental analysis environment. As an 

incremental system processes increasing amounts of data, its 

estimate for the top few items can change, sometimes 

radically. As more data arrives, the top few items gradually 

stabilize; one at a time, additional items would also stay in 

place. Gratzl et al [10] present a visual treatment for showing 

how a ranked list changes across different attributes; their 

mechanism does not address uncertain rankings. 

Uncertain ranked lists can be seen as having a partial order: 

we are certain that some items will be greater than others, but 

may be uncertain about other pairwise relationships. Soliman 

and Ilyas [20] provide a mathematical basis for rapidly 

evaluating rankings as a partial order; they do not present a 

user interface for interacting with rankings.  

Other visualizations, such as line charts, scatterplots, and 

parallel coordinates, might also be interesting to examine; we 

leave those for future work. 

Figure 1: A bar chart with 95% confidence intervals 

representing the mean value over a dataset. Note the 

overlapping regions in 1992-1994. 



 

Tasks for Visual Analysis 

Our goal was to design a visual data analysis environment 

containing summaries for bar charts and ranked lists that 

supported sample based analysis. We selected some 

particularly relevant tasks from Amar et al [1, 2]. For the bar 

chart, we support compare pair of bars; find extrema; 

compare values to a constant; and compare to a range. Amar 

et al also suggest the task sort values. For the ranked list, 

we selected two tasks based on sorting a list: identify which 

item is likely to fall at a given rank, and identify which items 

are likely to fall between a given pair of rankings. This latter 

task includes identifying all objects that fall in the top 3, but 

also every item ranked between 10 and 20. 

Computational Framework 

It can be challenging to compute the statistical tests required 

to compare distributions. If we assume independent normal 

distributions, the simplest operations—such as comparing a 

distribution with a constant, or comparing two 

distributions—can be computed using standard techniques 

such as t-tests. However, there is no simple closed form for 

many other distributions and tasks. 

To address this problem, we have constructed a two-phase 

computational framework that applies to all of the 

visualizations. The first phase is an uncertainty 

quantification phase, in which we estimate the probability 

distribution from the aggregate we are interested in. As a 

heuristic, we use the Central Limit Theorem to estimate 

confidence intervals based on the count, standard deviation, 

and running average of items we have seen so far. We create 

one distribution for each aggregate on the chart; we will later 

interpret these distributions as bars with confidence intervals. 

In the second phase, we use these distributions to compute 

probabilities using a Monte-Carlo approach. (This method is 

adapted from a technique in the statistical simulation 

community [9]). We represent each task by a corresponding 

non-probabilistic predicate (that is, an expression that has a 

true or false value) that refers to samples. For example, the 

task ‘is the value of the distribution D1 likely to be greater 

than D2’ corresponds to the predicate ‘a sample from D1 is 

greater than a sample from D2.’ 

From each distribution, we repeatedly draw samples and 

evaluate the predicate against the samples. We repeat this 

process a large number of times—in this paper, 10,000 times. 

We approximate the probability of an event as the fraction of 

those iterations in which the predicate is true. Table 1 shows 

an example of this process for two normal distributions D1 

and D2 and the predicate D1 > D2. In the simplified example, 

we take six samples; the predicate is evaluated on each. 

Although this approach computes only approximate 

probabilities, it is able to compute general predicates for any 

probability distributions, with the only requirements that we 

can draw samples from the distributions and can assume the 

distributions are independent. While many iterations are 

needed for precision, given the speed of computing systems, 

we find in practice that this computation can be done 

interactively. 

Table 1: Evaluating the probability of D1 > D2, where 

D1~𝓝(𝟓, 𝟗) and D2~𝓝(𝟒, 𝟏𝟔), from on random samples 

(S1..S6). The resulting approximation is p (D1>D2) ≈ 4/6.  

 𝑺𝟏 𝑺𝟐 S3 S4 S5 S6 

D1 2.92 7.92 4.38 4.16 12.1 5.15 

D2 5.16 2.26 0.69 3.77 3.43 7.23 

D1>D2 FALSE TRUE TRUE TRUE TRUE FALSE 

THE DESIGN OF SAMPLE-BASED VISUALIZATIONS 

Our goal is to assist data analysts in making decisions about 

uncertain data. We expect those analysts to be at least 

familiar with bar charts with confidence intervals, and so our 

design extends existing familiar visual representations. Our 

system should allow them to carry out the tasks listed above. 

Design Goals 

After reviewing literature in visualization and interface 

design, we settled on these design goals: 

Easy to Interpret: Uncertainty is already a complex concept 

for users to interpret; our visualizations should add minimal 

additional complexity. One useful test is whether the 

visualization converges to a simple form when all the data 

has arrived. 

Consistency across Task: One elegant aspect of the classic 

bar chart is that users can carry out multiple tasks with it. 

While we may not be able to maintain precisely the same 

visualization for different uncertain tasks, we would like a 

user to be able to change between tasks without losing 

context on the dataset. 

Spatial Stability across Sample Size: In the case of 

incremental analysis [8, 11], where samples grow larger over 

time, the visualizations should be change as little as possible. 

In particular, it should be possible to smoothly animate 

between the data at two successive time intervals: changes in 

the visualization should be proportionate to the size of the 

change in the data. This reduces display changes that would 

distract the user for only minor data updates. 

Minimize Visual Noise: We would like to ensure that the 

visualization is not confusing. If the base data is displayed as 

a bar chart, showing a second bar chart of probabilities is 

likely to be more confusing than a different visual 

representation.  

To fulfill these criteria, we apply interactive annotations [13] 

to the base visualizations. The annotations will show the 

results of task-based queries against the dataset. We select 

particular annotations that we believe will minimize 

confusion.  



 

Visual Annotations 

In this section, we outline the five different task-based 

annotations that we have created. Each annotation 

corresponds to a task or group of closely-related tasks. In our 

prototype interface, a user can select from these annotations; 

the display adapts appropriately.  

Compare Bars to Each Other 

The Compare Bars tool is used to directly compare the 

distributions in the plot. The user selects one of the 

distributions; the system compares all the distributions 

against the selected one. Each bar is colored by the 

probability that its distribution is larger than the selected bar. 

A divergent color scale ranges from 0% likely—that is, “is 

definitely smaller”—to 100%, “definitely larger.” At the 

center, we use white coloring to represent “unknown”. This 

tool is illustrated in Figure 2(a).  

Identify Minimum and Maximum 

The Extrema tool is used to quantify the probability that any 

bar would be either the maximum or minimum among all the 

distributions. We compute the probability that each bar 

represents the minimum; separately, we compute the 

probability it represents the maximum. The total probability 

across all bars must equal 100%, and so we map the data to 

a pair of pie charts. Pie charts avoid the confusion of 

presenting a second, different bar chart.  

A qualitative color mapping is used to identify bars and the 

regions in the pie charts. We note that this color map would 

not scale to large numbers of bars. In those cases, we could 

consider coloring only bars that are candidates for the top 

position. When even that is infeasible, the ranked list 

visualization, below, is a better choice. This tool is illustrated 

in Figure 2(b). 

  

(a) Comparing bars to each other. We compare the white 

bar to the others; dark blue means “certainly below”, while 

dark red means “certainly above.” 

(b) Identify minimum and maximum: the pie charts show the 

probability that any given bar could be the maximum or minimum 

value. 

  

(c) Compare each bar to a fixed value. The user can move 

the line.  

(d) Compare each bar to a range. Dark colors mean “likely to be 

inside the range”, light ones mean “outside the range.” 

Figure 2. Four of the tasks and their visual representations. All data is the same as in Figure 1. 



 

Compare to Constant  

This annotation enables users to compare a given value to the 

probability distributions represented by the error bars. Users 

drag a horizontal line representing a constant value; the 

probability that the distribution is larger than this constant 

value is mapped as a color to the corresponding bar. As with 

the bin comparison, a divergent color scale is used to 

represent the full space from “definitely lower” to “definitely 

higher”. The tool is illustrated in Figure 2(c). 

Compare to Range  

The Range tool is similar to comparing to a constant. It is 

used to evaluate the probability of a distribution’s value 

falling within a range. Users can drag and scale a horizontal 

strip. The probability that the distribution represented by the 

error bar is contained in the region is mapped as a color to 

the corresponding bar. Unlike the comparison tools, which 

map to a divergent color scheme, this uses a single-ended 

palette; it only tests whether the value is likely to be inside 

or outside the range. This tool is illustrated in Figure 2(d).  

Find Items at Given Rank 

The Ranked List tool is used for ranking probability 

distributions. Without uncertainty, a ranked list has a 

straightforward presentation. Therefore, to maintain the 

visual analogy, the visual representation resembles a list. 

Each line of the list is a single rank; the line is populated by 

the set of items that have some probability of having that 

rank. The height, width, and color of each rectangle are 

mapped to the probability of that ranking. Very unlikely 

results, therefore, shrink to nothing; likely results take up 

almost all the space. The bars are sorted in a stable order, and 

so are easier to find between levels. We use the single-ended 

color scale to highlight regions of certainty (see Figure 3(d)).  

Unlike the other annotations discussed here, this view can 

also be used in a standalone setting, without being displayed 

next to a bar chart. This is particularly useful when the 

number of distributions being ranked is large. This tool is 

illustrated in Figure 3(b).  

Find Items within Ranks 

The Ranked List tool is also used to find what items fall 

within a range of ranks. This would allow a user to learn the 

set of items that are likely to fall in the top five—without 

regard for individual rank. That set might be very large when 

sample sizes are small and uncertainty ranges are high.  A 

user can select the rows to be merged and click the “merge” 

button. At that point, the system displays the probability that 

the bars will fall within the range (Figure 3(c)). 

Design Discussion 

These visual representations share a number of design 

concepts and themes. In a standard bar chart, these tasks can 

 
  

(a) Standard confidence interval bars 

for a dataset.  

(b) The Ranked List visualization 

corresponding to the bar chart in (a) 

(c) Ranked List tool after using the 

merge operation to compute top-3 

probabilities. 

 

 (d) Ranked List tool row schematic. Height, width, and color are proportional to the probability that this item will fall in 

this bin. It is nearly certain that 1992 and 1993 will fall in the first three items; 1994 and 1995 divide the rest. 

Figure 3: The Ranked List tool shows the probability of rank orders. 

 



 

largely be addressed at a glance; in a probabilistic scenario, 

it requires more work.  

All the interactions are lightweight: users need only select 

the tool, and choose the relevant value. With these simple 

mechanisms, users can interactively perform complex 

queries in the data. While “compare bar to bar” and “compare 

bar to bin” can be visually approximated [7], the other tasks 

simply cannot be done visually.  

Our design process considered several alternative 

visualizations for these tasks. For example, we considered 

having matrix-like visualizations to compare each bin 

against the others. While this would reduce the amount of 

interaction needed, it would massively increase the 

complexity of the visualization.  

The Sort tool has a more complex design compared to the 

others, although it is conceptually still very simple. It is 

basically a list, in which every row represents all the possible 

values of that row. The redundant mapping—probability 

maps to height, width, and color—is meant to address three 

distinct problems. By mapping to width, very small bars fall 

off the chart. By mapping to height, a user can easily read 

across to find high bars: comparing lengths is much harder. 

Finally, colors help to highlight regions of the list where the 

rank is certain. 

All the color scales were obtained from ColorBrewer [4].   

EVALUATION 

We conducted an initial user study in order to evaluate the 

effectiveness of our design. In particular, we wanted to 

confirm that our techniques were learnable, interpretable, 

and potentially valuable. Both qualitative and quantitative 

feedback would help assess whether these annotations would 

enable users to make better decisions with greater confidence 

under uncertainty. Because current charting techniques often 

neglect confidence intervals, it would be important to allow 

users to compare our annotations to both plain bar charts, and 

to charts that had traditional confidence intervals.  

Our working hypotheses are that users with our system will 

be (H1) more accurate in their answers to these questions, 

and be (H2) more confident in their answers. We do not 

expect them to be faster to respond, as our method requires 

additional interaction. 

Study Design 

Our study was designed to explore a broad space of 

possibilities in order to understand the use of each of our 

annotations. We ask about five different question types: 

compare-to-constant, compare-to-bar, find-minimum, find-

maximum, and top-k.  

Our study design compares three visual conditions. In the 

first condition, the user can see only a basic bar chart with 

neither error bars nor annotations. In the second, we present 

a bar chart with confidence intervals. In the third, users begin 

with confidence intervals, but may also turn on the 

annotations using a menu. The study apparatus is shown in 

Figure 5. In all conditions, users can see the amount of data 

that this question represents. 

We wished to select a scenario that would be closely 

resemble the ways that users might really deal with this 

system. Thus, we wanted queries that a user might 

realistically run, at a reasonable scale, and based on realistic 

 

Figure 5: The study apparatus. This user is being asked a question in the error bar condition. The bar at top right shows that 

this question is based on 20% of the data. 



 

data. We selected TPC-H1, a standard decision support 

benchmark designed to test performance of very large 

databases with realistic characteristics. To generate realistic 

data, we generated skewed data (with a Zipfian skew factor 

of z=1, using a standard tool2). Part of TPC-H is a series of 

testing queries with many sample parameters. Different 

parameters to the query produce different results. We 

selected one query, Q13, which produces a bar chart of four 

or five bars. The raw Q13 data table carries 13 million rows.  

To simulate an analysis scenario, we randomly sampled the 

TPC-H tables at five different fractions, from 10% of the data 

through 50% of the data. Because the Q13 query is very 

restrictive, each bar only represented a couple of dozen or 

hundred (and not several million) data points. 

A single question, then, is a combination of a question type 

(see Figure 6), a visual condition (PLAIN, ERROR BARS, 

or ENHANCED), a sample size, and a parameter to the 

question.  

Our study uses a repeated-measures design. Each user 

answered 75 questions in random order. We balanced within 

users by question type, and randomly assigned the other 

values. Questions were roughly balanced: no user answered 

fewer than 19 questions in any condition, nor more than 30.  

We also wanted to understand how certain users were about 

their answers: we expected the system to make more of a 

difference in marginal cases where confidence intervals were 

broad; when confidence intervals are narrow, certainty is less 

interesting. Users rated confidence on a five-point Likert 

scale from “completely uncertain” to “completely certain.” 

For each question, user selected an answer, self-rated their 

certainty in that answer, and then pressed “next question.” 

We logged the answer, their confidence in the answer, and 

the time it took to answer. After the experiment users were 

presented with a questionnaire that to assess their overall 

user experience.  

Participants 

As described earlier, our techniques are designed to enhance 

traditional confidence intervals for data analysts with at least 

basic training in statistics. While our annotations might also 

                                                           

1 http://www.tpc.org/tpch 

be valuable to non-experts, we wanted to understand the 

value they provided over confidence intervals. 

For this preliminary study, we recruited seven participants. 

All were male graduate students in computer science; all 

were generally familiar with reading charts and interacting 

with data. All had at least basic statistical training, have some 

familiarity with confidence intervals and error bars, and had 

used analytics systems. 

RESULTS 

Comments and Feedback from Users 

During the training before the study, all of our subjects 

learned the system and visualizations quickly and reported 

that they felt comfortable using them. Users had no difficulty 

understanding the purpose for the enhancements. 

After the study, we debriefed the users. Our users understood 

all of the annotations. User 2, for example, had avoided 

dealing with confidence intervals before, as he found them 

difficult; using our system, he said, “It is good that I 

don't need to do much thinking.” Users were least happy with 

the sort tool; several complained that it was too complex to 

use easily. While it was designed to be a variant on a 

traditional list, it may have added too much material. 

We wanted to better understand how users made decisions 

about their confidence in a visualization. In the baseline 

PLAIN condition, users had very few cues to guess how 

broad the confidence intervals were; several reported that 

they eyeballed their confidence by looking at the progress 

bar in the top right: they felt more confident with larger 

dataset sizes, and less confident with smaller ones.  

In the annotated condition, in contrast, users had several 

different cues to judge confidence. Indeed, user 4 

complained that in the annotated condition, he had “too many 

things to consider:” sample size, error bars and annotations. 

Another user said he did not feel confident in any answer 

when the sample size was small. This is an interesting 

misperception: in theory, the sample size should not matter 

at all to the analysis. Confidence intervals should provide at 

least as much information as the progress bar would have; 

our annotations should override confidence intervals. Users 

still attempted to juggle all three. 

Quantitative Results 

Because accuracy and confidence are on ordered, categorical 

data, we carried out non-parametric Kruskal-Wallis chi-

squared test to compare accuracy and confidence across 

conditions.  

Overall, our users were very accurate, getting 84% of all 

questions right. There was no difference in overall accuracy 

between the three conditions, and so H1 was not supported 

(χ2 = 2.2968, df = 2, p = 0.3171). We see, however, that users 

2 Program for TPC-H Generation with Skew: 

 ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew 

 Is the bin 1995 larger than 47000?   (True/False) 

 Is the bin 1994 greater than the bin 1995?  (True/False) 

 Which bar is most likely to be the minimum? (Choice of four) 

 What are the most probable top 3 items? (Choice of four) 

Figure 6: Sample questions from the user study illustrate the 

tasks: compare to value, compare bars, find extrema, and 

ranked list. 



 

made fewer mistakes with larger samples—virtually no one 

got questions wrong with the larger sample set, but many did 

get them wrong with small samples. Figure 7 looks at 

accuracy by sample size across the three conditions. 

Figure 7: Average accuracy by sample size. Across all 

conditions, users are more accurate with access to more data. 

We now turn to confidence. As Figure 8 suggests, users in 

the ENHANCED condition largely felt more confident in 

their results than the other users. H2 was supported (χ2 = 

32.9335, df = 2, p << 0.001).  

 

Figure 8: Confidence by condition, across all sample sizes and 

tasks. Users in the ENHANCED condition were more 

confident in their answers. 

We wanted to understand the interaction between confidence 

and accuracy—we wanted to ensure we did not deliver 

confidence without accuracy. However, we do not expect our 

system to deliver accuracy at all levels: we expect our system 

to provide justified confidence. That is, a user using our 

system should be confident when they are right, and 

conversely feel unsure when they do not have sufficient 

information. 

To explore this idea, in Figure 9, we bucket confidence into 

three categories. In the PLAIN condition, users maintain 

approximately the same level of confidence: in other words, 

being right and being confident are unrelated. In contrast, in 

the ENHANCED condition, the highly-confident users were 

very likely to be right; the less-confident users were 

comparatively more likely to be wrong. Not only that, but 

from the test for H2, we know that users are more likely to 

be confident with our system. We believe this is good 

preliminary evidence that our visualization helps encourage 

justified confidence. 

DISCUSSION & FUTURE WORK 

Our annotations did not increase raw accuracy. Instead, we 

have suggested that they increase what we call “justified 

confidence.”  To pursue this further, though, we would need 

more ambiguous questions: as is reflected by the high 

accuracy rates, a number of the questions were too easy for 

users. In future tests of user interaction with uncertainty, it 

may be worth looking at techniques that would generate 

questions with more ambiguity. 

We have shown how these annotations could be applied to a 

bar chart with error bars; however, our design principles are 

very general: almost any aggregate chart type could 

presumably be adapted to show task annotations. Indeed, we 

suspect that more complex charts would benefit even more 

from our techniques. 

Similarly, the Monte-Carlo framework that we outline is 

highly adaptable to other tasks. It could be incorporated into 

a variety of tasks beyond those in this paper. For example, 

multiple range tools could be combined to test the likelihood 

of being within a disjoint union of ranges. 

We are currently incorporating the system discussed in this 

paper within a progressive data processing framework; we 

hope to make interacting with uncertainty and samples an 

everyday part of its users’ experiences. 

CONCLUSION 

Many data systems use sampled data, either for progressive 

computation or because sample data is the available or 

affordable subset. Drawing confidence intervals can help as 

a static view, but cannot help users handle more sophisticated 

queries against their visualizations data. 

Tasks involving probability and confidence intervals have 

been shown to be difficult, even for experts. Past work has 

looked mainly at interpreting whether a given point was 

uncertain, and how uncertain it is. In this work, we have 

expanded that to look at techniques that will allow users to 

make use of that uncertainty—to predict when one value is 

likely to be higher than another, or to look at the ranked 

sequence of values. These techniques allow users to directly 

read the answers to these tasks off of the chart, analogously 

to the way that non-probabilistic data can be read directly off 

a bar chart without confidence intervals. 

 

Figure 9: In the three conditions, tallies of confidence against 

accuracy. Trials in the ‘Enhanced’ condition with high confidence 

were more likely to be correct than in the ‘Plain’ condition. 



 

Our experiment suggests that enhancing bar charts with task-

specific annotations may indeed help users make decisions 

about samples. While we did not show in this context that 

users would be more accurate, we did show that they would 

be more confident in their accurate responses (and, 

conversely, would know when not to be confident.) This 

seems a desirable trait in a system based on partial data: we 

would like analysts to be able to make decisions about when 

to terminate expensive and slow queries.  

The current reliance on variations of the box plot is 

insufficient for real data fluency—we need to broaden our 

tools for visualizing uncertainty, not only of individual 

levels, but of complex operations on data.  

ACKNOWLEDGEMENTS 

Our thanks to the MSR Big Sky team, who are applying these 

concepts, and the participants of our study. The first author 

was partially supported by the National Science Foundation 

grant MRI-1229185.  

REFERENCES 

1. R. Amar and J. Stasko. A knowledge task-based 

framework for design and evaluation of information 

visualizations. IEEE Symp. on Information 

Visualization, 2004. INFOVIS 2004. (pp. 143-150). 

2.  R. Amar, J. Eagan, J. Stasko. Low-level components of 

analytic activity in information visualization. IEEE 

Symp. on Information Visualization, 2005. INFOVIS 

2005. (pp. 111-117). 

3.  S. Belia, F. Fidler, J. Williams, G. Cumming. 

Researchers misunderstand confidence intervals and 

standard error bars. Psychological methods, 10(4), 389-

396, 2005. 

4. C. Bewer., G. W. Hatchard and Mark A. Harrower, 

2003, ColorBrewer in Print: A Catalog of Color 

Schemes for Maps, Cartography and Geographic 

Information Science 30(1): 5-32. 

5.  N. Boukhelifa, A. Bezerianos, T. Isenberg, J. D. Fekete. 

Evaluating Sketchiness as a Visual Variable for the 

Depiction of Qualitative Uncertainty. IEEE Trans. on 

Vis. and Comp. Graphics, 18(12), 2769–2778, 2012. 

6.  G. Cumming. Understanding the new statistics: Effect 

sizes, confidence intervals, and meta-analysis. New 

York, Routledge, 2012. 

7. G. Cumming, S. Finch. Inference by eye: Confidence 

intervals and how to read pictures of data. American 

Psychologist, 60(2), 170–18, 2005. 

8.  D. Fisher, I. Popov, S. M. Drucker, and mc schraefel. 

Trust Me, I'm Partially Right: Incremental Visualization 

Lets Analysts Explore Large Datasets Faster. ACM 

Conf.  on Human Factors in Comp. Systems. CHI 2012. 

(pp. 1673-1682). 

9. D. Goldsman, B. Nelson, and  B. Schmeiser. Methods 

for Selecting the Best System. Proceedings of the 1991 

Winter Simulation Conf. 177-186. 

10.  S. Gratzl, A. Lex, N. Gehlenborg. LineUp: Visual 

Analysis of Multi-Attribute Rankings. IEEE Trans. on 

Vis. and Comp. Graphics 2013 

11.  J. Hellerstein, R. Avnur, A. Chou, C. Olston, V. 

Raman, T. Roth, C. Hidber, P. Haas. Interactive Data 

Analysis with CONTROL. IEEE Computer, 32(8), 51-

59, 1999. 

12.  S. Kandel, A. Paepcke, J. M. Hellerstein, J. Heer.  

Enterprise data analysis and visualization: An interview 

study. IEEE Trans. on Vis. and Comp. Graphics, 18(12), 

2917-2926. 

13.  N. Kong, M. Agrawala. Graphical Overlays: Using 

Layered Elements to Aid Chart Reading. IEEE Trans. 

on Vis. and Comp. Graphics, 18(12), 2631-2638. 

14.  A. M. MacEachren, A. Robinson, S. Hopper, S. 

Gardner, R. Murray, M. Gahegan, E. Hetzler. 

Visualizing geospatial information uncertainty: What we 

know and what we need to know. Cartography and 

Geographic Information Science, 32(3), 139-160. 

15.  L. Micallef, P. Dragicevic, J. D. Fekete. Assessing the 

Effect of Visualizations on Bayesian Reasoning through 

Crowdsourcing. IEEE Trans. on Vis. and Comp. 

Graphics, 18.12 (2012): 2536-2545. 

16.  M. Skeels, B. Lee, G. Smith, and G. Robertson. 

Revealing Uncertainty for Information Visualization. In 

Proc. of the Working Conf. on Advanced Visual 

Interfaces. ACM, New York, NY, USA. 2008, 376-379. 

17.  F. Olken, D. Rotem. Random sampling from database 

files: a survey. In Proc. of the 5th Int’l Conf.  on 

Statistical and Scientific Database Management 

(SSDBM'1990), Zbigniew Michalewicz (Ed.). Springer-

Verlag, London, UK, 92-111. 1990. 

18.  C. Olston, J. Mackinlay. Visualizing data with bounded 

uncertainty. IEEE Symp. on Information Visualization, 

2002. INFOVIS 2002. (pp. 37-40). 

19.  J. Sanyal, S. Zhang, G. Bhattacharya, P. Amburn, and 

R. Moorhead. A User Study to Compare Four 

Uncertainty Visualization Methods for 1D and 2D 

Datasets. IEEE Trans. on Vis. and Comp. Graphics 

15(6), 1209-1218. 

20.  M. A. Soliman, I. F. Ilyas. Ranking with uncertain 

scores. Data Engineering, 2009. ICDE'09. IEEE 25th 

International Conference on. IEEE, 2009. 

21.  A. Tversky, D. Kahneman. Judgment under 

Uncertainty: Heuristics and Biases. Science, 185 (1974). 

1124-1131. 

22.  H. Wickham, L. Stryjewski. 40 Years of Boxplots. 

Technical Report from http://vita.had.co.nz/. 2012. 

23. T. Zuk, S. Carpendale. Visualization of Uncertainty and 

Reasoning. In Proceedings of the 8th Int’l Symp. on 

Smart Graphics (SG '07). Springer-Verlag, Berlin, 

Heidelberg. 2007


	Sample-Oriented Task-Driven Visualizations: Allowing Users to Make Better, More Confident Decisions
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Background AND Related Literature
	Visual Data Analysis Ignores Uncertainty
	Visualization Techniques that Handle Uncertainty
	Annotating Visualizations to Address Tasks

	Uncertain visualizations From Sampled data
	The Visual ANalYsIs Environment
	Tasks for Visual Analysis
	Computational Framework

	The Design of Sample-based Visualizations
	Design Goals
	Visual Annotations
	Compare Bars to Each Other
	Identify Minimum and Maximum
	Compare to Constant
	Compare to Range
	Find Items at Given Rank
	Find Items within Ranks

	Design Discussion

	Evaluation
	Study Design
	Participants

	Results
	Comments and Feedback from Users
	Quantitative Results

	Discussion & Future work
	CONCLUSION
	Acknowledgements
	REFERENCES

