
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Vector Field k-Means:
Clustering Trajectories by Fitting Multiple Vector Fields

Nivan Ferreira1, James T. Klosowski2, Carlos E. Scheidegger2, Cláudio T. Silva1

1Polytechnic Institute of New York University, New York, USA
2AT&T Labs Research, New Jersey, USA

Abstract
Scientists study trajectory data to understand trends in movement patterns, such as human mobility for traffic
analysis and urban planning. In this paper, we introduce a novel trajectory clustering technique whose central idea
is to use vector fields to induce a notion of similarity between trajectories, letting the vector fields themselves define
and represent each cluster. We present an efficient algorithm to find a locally optimal clustering of trajectories into
vector fields, and demonstrate how vector-field k-means can find patterns missed by previous methods. We present
experimental evidence of its effectiveness and efficiency using several datasets, including historical hurricane data,
GPS tracks of people and vehicles, and anonymous cellular radio handoffs from a large service provider.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering—Algorithms

1. Introduction

For many years, scientists have gathered and studied trajec-
tory data to understand trends in movement patterns. Ecol-
ogists study animal movements to learn about population
growth, social interactions, feeding and migratory patterns,
etc. [BPAK04, GJL∗09]. Meteorologists use trajectory data
to help predict storm paths [Els03, CRG∗07], and researchers
from a wide variety of fields study human mobility to perform
targeted advertising, predict traffic and commuting patterns,
as well as data-driven urban planning [BDE09].

The recent ubiquity of GPS and RFID devices has caused
a rapid increase in the amount of available trajectory data.
These devices have been used to determine locations of an-
imals, shipping containers, and vehicles. Even in the ab-
sence of explicit tracking devices, crowdsourcing can be
used as an alternative to gather similar data [FLF∗11]. An-
other option involves cellular phone handoffs: the traces of
calls as they are handed from one cellphone tower to an-
other [BCH∗11,PXQ∗11,BDE09]. This approach can greatly
simplify and automate the data acquisition while still pro-
viding complete anonymity for individuals. In all such cases,
due to the vast amount of data being collected, there is a great
need for scalable and efficient techniques [GLW12].

The analysis of this kind of data is challenging not only
because of its size, but also due to its complexity [RPN∗08].

Trajectories are spatiotemporal in nature, involving geometric
positions, directions, velocities, durations, and other charac-
teristics specific to the entities being tracked. Hurricane tracks
may include overall storm strength, wind speeds, or season-
ality. Animal tracks may be influenced by their size, age, or
gender. Incorporating these characteristics, when available,
can help direct the trajectory analysis, but adds complexity.

Clustering techniques are general tools for data analysis
that are also valuable for visualizing trajectory data by build-
ing summaries that reduce overplotting [TSAA12,WYCM11]
and for visual analytics by revealing hidden patterns to be
further investigated and visualized [RPN∗08]. There are two
main classes of algorithms for trajectory clustering. The first
class corresponds to methods that embed the data in a metric
space or define similarity notions and use ordinary point-
based clustering techniques. The major drawback of these
approaches is the difficulty in defining a similarity between
trajectories, which results in undesired features [LHW07] or
ignoring important components of the trajectory [GLW12].
The second class includes model-based approaches in which
a generative model of the data is assumed and a clustering is
indirectly obtained by estimating the model parameters. An
example of this class is the work by Wei et al. [WYCM11], in
which trajectories are approximated by fitting polynomials.

In this work, we present a model-based trajectory cluster-
ing approach that is based on vector field fitting. Intuitively,
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Figure 1: The GeoLife Trajectories dataset clustered using vector field k-means. The original trajectories were cropped to a 10
block area in downtown Beijing. The orientation of each trajectory is represented by linearly interpolating from blue (start) to
orange (end). This color scheme is used throughout the paper. We partition the data into four clusters (k = 4), and then subdivide
each cluster resulting in 16 subclusters. Images (a) and (b) show two clusters from the first-level subdivision, and images (c) and
(d) show two clusters from the second level. The first two vector fields show trajectories in patterns of faster vehicular traffic,
while the latter appears to show pedestrian traffic moving to and from a lunch spot near the Microsoft Research Asia campus.

the idea behind the method we call vector field k-means is
to induce a similarity notion on the dataset by considering
two trajectories similar if they can be approximated well by
streamlines of a single vector field. This model solves the
two main drawbacks of previous methods, namely that we
can define a similarity that naturally encodes features of the
trajectories together with their geometries. An example of
our method used on a GPS track dataset is shown in Fig. 1.

One important consequence of our modeling approach that
is not present in previous work is the ability to capture global
patterns in the data that are not evident when considering
only local information. For example, consider the synthetic
trajectories in Fig. 2, which consists of two circular patterns
each with 1000 trajectories. None of the trajectories actually
form a complete circle, but vector field k-means is still able to
recover the two separate circular patterns. Previous methods
fail on this task tending to group both centers together, see
Section 5.5. Furthermore, the obtained vector fields are a good
summary of the clustered data and can be easily visualized.

Although the algorithm we provide for model fitting is
reminiscent of k-means clustering, vector field k-means is an
entirely novel formulation for trajectory clustering. It lever-
ages techniques developed in the Computer Graphics and
Visualization communities that have not been considered as
tools for clustering in other communities. The most critical
consequence of this is the ability to use partial data, such as
the example in Fig. 2. Throughout the paper, the trajectories
are colormapped to indicate orientation from blue (start) to
orange (end). The vector field plots are colormapped such
that darker arrows denote relatively larger magnitudes.

Vector field k-means is easy to state (Section 3) and imple-
ment (Section 4); it is efficient and scales well (Section 5).

For implementations that are available, we provide direct
experimental comparisons (Section 5.5). Lastly, when im-
plementations are not available for direct comparison, we
provide extensive discussion (Sections 2 and 6).

2. Related Work

Due to the growing rate at which mobility data is being col-
lected, computational movement analysis is a very active re-
search field, combining techniques and expertise from many
fields, including GIS, information visualization, computa-
tional geometry, databases, and data mining [GLW12]. In
this work, we focus on just one of the problems in movement
analysis, that of extracting arbitrary movement patterns from
trajectory data. In other words, given a large number of tra-
jectories of moving objects, e.g. animals, people, or vehicles,
we want to quickly identify underlying patterns that exist and
that shed light on the global movement trends of the moving
objects. Our approach for identifying these patterns is to per-
form trajectory clustering. As Kisilevich et al. [KMNR10]
provide a thorough examination of many trajectory clustering
techniques, we briefly review the most relevant methods here.

Rinzivillo et al. [RPN∗08] designed a density-based pro-
gressive clustering technique that can utilize different dis-
tance functions at each step of their clustering. This allows
analysis of objects with heterogeneous properties to be han-
dled differently during the cluster refinement stages. Lee
et al. [LHW07] also use density-based clustering, but be-
lieve that clustering whole trajectories may miss common
sub-trajectories. They partition the trajectories into line seg-
ments based on a simplification algorithm and cluster these
segments using the notions of neighborhood and density. The
techniques of both Rinzivillo and Lee rely on the definition of
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Figure 2: An illustration of vector field k-means as it par-
titions 2000 synthetic trajectories into two clusters. The al-
gorithm alternates between fitting the best possible vector
fields from the current assignment (“optimize”) and matching
trajectories to the vector field which fits them best (“assign”).
Although no trajectories form a complete circle, vector field
k-means still recovers the two separate circular patterns.

a distance measure between trajectories. This is known to be a
difficult problem, in the sense that no proposed distance mea-
sure captures well all the attributes of trajectories [GLW12].
For example, both of these methods only use the geometry
of the trajectory and therefore they cannot encode speed in-
formation, which might be relevant in cases like storm track
analysis. Pelekis et al. [PKK∗09] exploit local similarities of
subtrajectories too, but they also study the effect of uncer-
tainty (in measurement) in the original trajectory data.

Like Rinzivillo et al., our overall approach falls within the
broader category of visual and exploratory movement anal-
ysis, which exploits humans’ ability to visually detect pat-
terns, and then steer the visualization and analysis to those re-
gions of greatest interest. The research of Andrienko and An-
drienko [AAW07, RPN∗08, AAR∗09] has focused on human-
in-the-loop analysis systems, but has also included more gen-
eral aggregation and visualization of movement data [AA08],
and more recently the identification of important locations
and events by analyzing movement data [AAH∗11, AA11]
and the visualization of trajectory attributes [TSAA12]. All
these works could benefit from more efficient clustering meth-
ods since they rely on clustering for display purposes.

An important problem related to trajectory clustering is
how to ultimately visualize trajectory data. Traditionally flow
maps [PXY∗05,VBS11,AA11] have been used to convey the
amount of people and goods that moved between locations but
without necessarily reporting the exact routes that were taken.
More recently, there have been several compelling techniques
based on density maps [WvdWvW09, SWvdW∗11], kernel
density estimation [DLH11], and 3D based visualizations
[TSAA12]. Vector fields have been widely used in scientific
visualization and even by some researchers doing trajectory
clustering analysis to show speed and direction of animal
movements [BPAK04] and wind [CRG∗07]. In these cases,
they have only been used to visualize the results, rather than
as an integral part of the underlying clustering technique.

The related problem of deriving vector fields from trajec-
tory datasets has been studied in different contexts. Jänicke
et al. [JWC∗11] defined a measure to evaluate vector field
visualizations based on how well a computer vision algorithm
could derive a vector field from an image containing visual
representations (e.g., streamlines) of the vector field. This
problem was independently investigated in the image process-
ing community by Nascimento et al. [NFM09]. Although the
model proposed by Nascimento et al. has some similarities
with ours, we point out that it is not a clustering algorithm,
but a way to model movement as vector fields. Furthermore,
their model has a set of complex parameters to be estimated
which brings higher computational costs, and more impor-
tantly increases the complexity for the human analyst. Thus
their method is not suitable for our purposes. We propose
a different (and simpler) modeling approach which has a
smaller number of variables and outputs not only the vector
fields (that in our case do represent distinct mobility patterns)
but also a meaningful clustering of the input dataset, which
makes our algorithm suitable for visual data analysis.

3. Vector Field K-Means Overview

Trajectories are modeled as paths of the form α : [t0, t1]→
R2. We assume we are given a set of n trajectories T =
{α1, ...,αn}. Each trajectory is given as a sample, i.e., for
each i = 1, ...,n, we are given a sequence of space-time points
α̂i = {(αi(t i

1), t
i
1),(αi(t i

2), t
i
2), . . . ,(αi(t i

pi
), t i

pi
)}. We approxi-

mate each trajectory αi with piecewise linear curves (constant
velocity between two consecutive samples). This results in a
polygonal line representation for each trajectory. For each αi
we denote the interval [t i

1, t
i
pi
] by Ii and by |Ii| the time span

for αi, i.e., |Ii|= t i
pi
− t i

1. We call each portion of a trajectory
between two samples a segment of the trajectory αi. For each
segment s j = [αi(t j),αi(t j+1)] of αi we define ωs j =

t j+1−t j
T ,

where T = ∑
αi∈T

|Ii| is the total time span in the dataset.

In this paper, we consider vector fields as functions defined
over a domain Ω⊂ R2 with values in R2. We discretize Ω as
a regular triangle grid G with resolution R (R2 vertices) and
assume linear interpolation within each face of the grid for the
reconstruction of the vector field. We assume all trajectories
are contained in this grid and are tessellated so that each
trajectory is comprised of segments that do not cross the
boundaries of the domain triangles as in Fig. 3.

For the optimization problems described in this paper,
the components of the vector field can be treated separately.
Therefore, the presented formulas are written as if X were a
scalar field. For each segment s j of a trajectory αi we denote
by Cs j the 2×R2 matrix that contains in the first and second
rows respectively the barycentric coordinates of the first and
second vertices of segment s j (with 0 entries everywhere
else); Fig. 3 illustrates the setting. We also define the vector
bs j as the vector whose entries equal the value of the velocity

vector of the segment s j, i.e., bs j =
αi(t j+1)−αi(t j)

|Is| .
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Figure 3: Illustration of the trajectory tessellation and Lapla-
cian matrix computation. The trajectories are tessellated so
each segment is contained on a face of the grid. Each segment
s j determines a constraint in the form of a matrix Cs j . The
Laplacian matrix enforces our smoothness penalty.

As briefly described before, our approach consists of cap-
turing movement patterns by defining a vector field for which
the trajectories are approximately integral lines, i.e., we at-
tempt to separate the trajectories into a small number of
clusters according to the best vector field that approximates
them. Our assumption is that for every set of trajectories T ,
there exists a set of smooth vector fields X j ∈ F, |F |= k that
explains most of the mobility in the data, in the sense that
each trajectory would be approximately tangent to one of
the X j. More formally, we define this as the problem of find-
ing the vector fields X j and the cluster assignment function
Φ : T →{1, . . . ,k} such that for each j = 1, . . . ,k{

∆X j = 0
α ′i (t) = X j(αi(t)),∀αi ∈Φ−1( j) and ∀t ∈ Ii

where ∆ denotes the vector Laplace operator. The first equa-
tion directs the solution towards smooth vector fields; the
second equation ensures that vector fields represent the trajec-
tories well. It is clear that with this formulation the problem
may have no solution. We propose instead to solve it in the
least squares sense, by minimizing the following energy

E(X1, . . . ,Xk,Φ) =
k

∑
j=1

λL
∣∣∣∣∆X j

∣∣∣∣2+
(1−λL)

T ∑
αi∈Φ−1( j)

∫ t i
pi

t i
1

∣∣∣∣X j(αi(t))−α
′
i (t)
∣∣∣∣2 dt,

(1)

where T is the normalization factor (defined previously) and
λL > 0 plays the role of a weighting factor: for small values of
λL less weight is given to the smoothness of vector fields and
therefore we get vector fields that match the given trajectories
but are less smooth. For large values of λL we are giving
relatively high priority to the smoothness of the vector field.

Algorithm 1 Vector Field K-Means Outline
Input: k: # of clusters, T = {α1, . . . ,αn}: Array of curves
Output: V = {X1, . . . ,Xk}, Φ : T →{1, . . . ,k}

Φ← Initialize(T ,k)
repeat

for i = 1 to k do
Xi← fitVectorField(Φ−1(i))

end for
for i = 1 to n do

j0← argmin
j∈{1,2,...,k}

E ′′(X j,αi)

Φ(αi)← j0
end for

until converge

4. Vector Field K-Means Fitting Process

As described previously, our model has two main elements:
the vector fields and the assignment of trajectories to clusters.
Therefore the model fitting problem consists of defining the
vector fields (X1, ...,Xk) and assigning each trajectory to a
vector field (Φ), guided by Eq. 1. We propose a 2-level alter-
nate optimization algorithm as the vector field k-means fitting
process. It consists basically of the following steps:

(*) Given a candidate assignment of trajectories Φ, for each
set Φ−1(i), i= 1, . . . ,k, we find the best-fitting vector fields
over those particular trajectories, and

(**)Given a set of vector fields Ṽ = {X1, . . . ,Xk}, we compute
the best assignment function for those particular vector
fields by picking, for each trajectory, the vector field that
best approximates it.

Algorithm 1 contains the outline of vector field k-means.
In this pseudo-code, the step (∗) corresponds to the fitVector-
Field routine. As we show below, we can formulate this step
as a sparse linear system (in the general form of [SCOIT05])
whose solution can be computed essentially in linear time,
and which gives us the smoothest, best-fitting vector field
for a set of trajectories. The step (∗∗) corresponds to finding
the vector field with smallest error with respect to a given
trajectory. We further describe these components below.

4.1. Fitting Vector Fields

The fitVectorField routine is the central step of vector field
k-means. It consists of an optimization problem with two
types of constraints: value and smoothness, defined below.
As depicted in Algorithm 1, in this step we are given as input
a fixed subset T ′ of T and we want to minimize

E ′(X ,T ′) = λL ||∆X ||2+

(1−λL)

T ∑
αi∈T ′

∫ t i
pi

t i
1

∣∣∣∣X(αi(t))−α
′
i (t)
∣∣∣∣2 dt

(2)
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We now use the grid G to write E ′ in matrix form. First,
we use the well-known Laplacian matrix cotangent weights
[VL08], denoted by L, to get a finite representation of the
Laplace-Beltrami operator. In general, if we let p,q be a pair
of adjacent vertices of the grid (see Fig. 3), then the entries
of the cotangent Laplacian matrix L are given by

L̄pq =
1
2
(cotθpq + cotηpq),

L̄p =− ∑
t∈Neighborhood(p)

∆pt .

This formula allows us to compute the Laplacian of scalar
functions defined over the grid by simply representing the
values of the function on the vertices of the grid as a vec-
tor and multiplying the vector field by the Laplacian matrix.
More concretely, by using the Laplacian matrix of G we can
represent the first term of Eq. 2 in matrix form as ||

√
λLLX ||2,

where X is the finite-dimensional representation of the vec-
tor field. Before representing the second term of E ′ in ma-
trix form we define for each segment s j the matrix C̃s j =√

(1−λL)ωs j ΛCs j and the vector b̃s j =
√
(1−λL)ωs j Λbs j ,

where Λ is a 2 by 2 matrix given by

Λ =
1

2
√

6

( √
3+1

√
3−1√

3−1
√

3+1

)
.

We denote by C̃ the matrix that consists of stacking Cs j for all
segments s j and denote by b̃s j the vector obtained by stacking
all the b̃s j again for all s j . A simple calculation shows that the
second summand in Eq. 2 is given by ||C̃X− b̃||2. Therefore

E ′(X ,T ′) = ||LX ||2 +
∣∣∣∣∣∣C̃X− b̃

∣∣∣∣∣∣2
The minimization of this energy is a least-squares problem

and can be solved by solving the corresponding system of
normal equations: (LT L+C̃T C̃)X = C̃T b̃.

4.2. Assigning trajectories to vector fields

In the second phase of Algorithm 1, we assume we have the
vector fields V = {X1, . . . ,Xk} fixed. The goal is to build the
next function Φ that assigns each trajectory to one of the k
cluster centers, i.e. the vector fields X1, . . . ,Xk. The assign-
ment algorithm is trivial: for each trajectory αi, we simply

evaluate E ′′(X j,αi) =
∫ t i

pi
t i
1

∣∣∣∣X j(αi(t))−α ′i (t)
∣∣∣∣2 dt, for each

vector field X j , and define the new assignment to be the mini-
mizer for all the k possible choices.

4.3. Algorithm Initialization

We implemented a simple method to choose the initial vector
fields and trajectory partitions that was effective in our ex-
periments. The main idea is to try to have as diverse initial
clusters as possible. The algorithm takes as inputs an array
of curves and a number k of clusters to be created, and starts

by choosing a trajectory α at random to be part of the first
cluster. It uses the fitVectorField routine previously described
to fit a single trajectory to the first vector field. The algorithm
proceeds by fitting to the i-th vector field the trajectory that
has the worst error among all previously fit vector fields. Af-
ter computing k vector fields, we compute the assignment Φ

by picking the best vector fields for each trajectory.

4.4. Computational Complexity and Convergence

As discussed in Section 4.2, the assignment step consists of
a linear pass over the trajectory data, and for each of these,
we need to find the vector field that minimizes the error.
This can be implemented in O(k|S(T )|), where S(T ) de-
notes the set of line segments that compose the trajectories
in T . For the fitting step, we have used a simple Uncon-
strained Conjugate Gradient algorithm as a linear system
solver [NW99]. Therefore, the complexity of this step is
given by O(kN(R2 + |S(T )|)), where N denotes the maxi-
mum number of iterations of the Conjugate Gradient Method,
R denotes the grid resolution corresponding to the multipli-
cation by the Laplacian matrix, and |S(T )| corresponds to
the multiplication by the constraint matrix C. As we see in
the experiments, good results can be obtained with relatively
low values of R and hence the complexity is dominated by
kN|S(T )|. The choice of the Conjugate Gradients solver was
convenience; we could further optimize our implementation
by using more sophisticated methods to solve systems of lin-
ear equations [NW99]. We note that each iteration of the main
loop in Alg. 1 is guaranteed to decrease the energy E and
thus no assignment can be repeated, from which we conclude
that our algorithm converges in a finite number of steps.

5. Experiments and Evaluation

We now report the results of running vector field k-means. In
our experiments, the algorithm was able to efficiently extract
significant movement patterns across diverse datasets. We
start with a small synthetic dataset and progressively increase
the input sizes until we reach an example with over 370,000
very noisy trajectories. All running times (see Fig. 5) are
from our prototype implementation: a single-threaded, single-
process C++ application running on an Intel Core i7-960
desktop with 6GB of RAM. The total memory required by

Dataset Trajectories Resolution k Optimize Assign
Synthetic 2000 3 2 1.730s 0.074s
Atlantic 1415 5 7 8.076s 0.335s

Beijing Wide 45563 5 4 110.99s 4.265s
Beijing Campus 12883 10 16 124.35s 2.195s

CDR 37435 4 4 201.24s 7.597s
CDR Large 372601 4 4 2497s 75.24s

Figure 5: Experimental results: For each dataset, we report
the number of trajectories, the grid resolution, the number of
clusters (k), and the total running times (in seconds) for the
vector field fitting (optimize) and trajectory assignments.

c© 2013 The Author(s)
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Figure 4: Left: 1415 Atlantic tropical storms (from the HURDAT dataset) used as input. Right: four trajectory clusters and their
corresponding vector fields showing relative speed. Clusters (b) and (c) contain the Cape Verde-type cyclones, and separate them
according to whether they dissipate in North America (b) or turn back to the Atlantic Ocean (c). Clusters (a) and (d) show storms
developing in the Gulf of Mexico. We observed faster-moving storms to be in cluster (a), and slower-moving ones in (d).

our application remained under 1GB for all reported experi-
ments. We ran the algorithm until convergence, although the
optimization could be stopped earlier when the number of
trajectories that change from one cluster to another is small.

5.1. Synthetic Data

In this dataset there exists two overlapping circulatory move-
ment patterns. Each trajectory covers a partial, randomly
selected section of the circle at a random distance from the
center. We sampled 1000 trajectories from each overlapping
pattern. As we show in Fig. 2, vector field k-means recov-
ers the two overlapping patterns perfectly, which illustrates
that our method does not create clusters by selecting repre-
sentative trajectories at all: its vector fields fit all circular
trajectories equally well. Our implementation converged in
30 iterations, in less than 2 seconds, using a 3x3 grid.

5.2. Atlantic Hurricanes

HURDAT is a hurricane tracking dataset maintained by the
National Hurricane Center (NHC) [hur12]. The dataset con-
tains trajectories of the 1415 Atlantic tropical storms between
1861 and 2011. It contains not only position and time infor-
mation, but also sustained surface wind speeds and sea-level
pressure. The data are recorded with a resolution of 6 hours.

In Fig. 4, vector field k-means separates what looks like a
fairly uniform set of trajectories. One of the clusters neatly
captures Cape Verde hurricanes which tend to make landfall
in North America, while two other clusters show storms that
originate in the Caribbean and Gulf of Mexico. Upon closer
inspection, this separation of two similar looking clusters is
due to the more chaotic trajectories of one of the clusters,
which result in a generally lower-velocity vector field.

5.3. GeoLife GPS Trajectory Dataset

The GeoLife GPS dataset consists of 17,621 trajectories
recorded by Microsoft Research at Beijing. The trajectories
are GPS tracks of 178 users from April 2007 to October
2011 [ZXM10]. Although the dataset encompasses trajecto-
ries across the globe, we focus on two regions around Beijing.
As the raw trajectories are unsegmented, some lasting for
days, we split trajectories whenever the time between two
samples is larger than 2.5 times the median time between
samples. We then reduced the sampling rate by only keeping
measurements at least 2 minutes apart.

Fig. 6 shows a first run of vector field k-means on the Geo-
Life dataset in which the algorithm was able to find general
movement trends within the trajectories. Three of these are
clear directional patterns heading west, north, and south. We
speculate these to be mainly commuting patterns, since the
remaining cluster (subfigure c) consists essentially of trajecto-
ries inside the city’s road network. Although we believe that
with the chosen grid resolution (5x5) vector field k-means
cannot reliably resolve the patterns in that cluster (and hence
the vector field is not very informative), the large density
of trajectories around a relatively small area in the cluster
suggested further analysis centered in that region.

Fig. 1 shows an exploration we performed on that narrower
region of Beijing. In this case we used a grid of resolution 15.
By looking at the darkness of the arrows in Fig. 1 we see that
regions of different speeds are found. For example, traffic
over the streets (Fig. 1 (a) and (b)) is much faster than the
speed of people going to and from the speculative lunch spot
location (Fig. 1 (c) and (d)), which suggests that people walk
to that destination.

c© 2013 The Author(s)
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Figure 6: Large-scale movement patterns around Beijing, from the GeoLife Trajectories dataset. Clusters (a), (b) and (d) appear
to depict travel in and out of the city through the surrounding highways. Cluster (c) has much slower speeds and its trajectories
are tightly packed around a small region. Upon inspection, we found this to area to contain the Microsoft Research Asia campus.

5.4. Call Detail Record Dataset

We collected anonymized Call Detail Records (CDR) from
the cellular network of a large U.S. communications service
provider. For each phone call, CDRs provide us with the se-
quence of cellular antenna locations, known as handoffs, used
during that call. We collected over 370,000 calls during one
week in 2011 for approximately 300 antenna located near a
suburban city with 20,000 residents. Our goal was to capture
handoffs related to vehicular traffic.Given the sensitivity of
CDRs, we took several steps to ensure privacy. The data was
collected and anonymized by a third party not involved in
the data analysis. Unlike other studies [BCH∗11] our dataset
cannot associate multiple calls made by the same individ-
uals: each call is independent. As a result, all of our input
trajectories (i.e.handoff patterns), are only partial trajectories
for any individual. As we show in Figs. 9 and 10, although
the handoffs are quite noisy, we can still recover movement
patterns clearly related to the highway traffic around the city.

5.5. Comparison

We compare our algorithm with TraClus, by Lee et al.
[LHW07], a density-based algorithm that is one of the main
references in trajectory clustering. Roughly speaking, the al-
gorithm consists of two steps: trajectory simplification into
line segments and segment clustering. The algorithm also has
two main parameters: a distance threshold ε used to define
neighborhoods for each segment, and a density lower bound
MinLns that is used to find neighborhoods that define clusters.
Unlike vector field k-means, TraClus does not incorporate the
time information, thus trajectory speed information is lost.

We used the C++ implementation of their algorithm that

is available on the author’s webpage (http://dm.kaist.
ac.kr/jaegil/#Publications). In the following ex-
periments, we use the heuristic proposed in their paper (and
also part of the author’s implementation) to select the pa-
rameter values. Whenever this heuristic fails to provide the
parameter estimates, we adjusted the parameters by manually
searching over a range of values. We reiterate that as vector
field k-means and TraClus mine different patterns, it is dif-
ficult to say that one method is always better than the other,
but we do investigate what kind of patterns TraClus is not
able to find that vector field k-means is, and vice versa.

We first present the performance of TraClus on the syn-
thetic discussed in Sec. 5.1. The results are shown in Fig. 7.
Note that because TraClus utilizes local features while clus-
tering, it is unable to capture the overall global structure of
this dataset. More specifically, when the neighborhood size
ε is very small, TraClus considers each segment as its own
cluster, while making ε larger groups the segments of the two
centers of the circular patterns together, as shown in Fig. 7.

Our results of running TraClus on the HURDAT dataset,
shown in Fig. 8, are very similar to the ones obtained by
the authors [LHW07] though not exact because our input
contained more trajectories. In this case, TraClus detects nine
clusters in four seconds. The representative trajectory for
each of these clusters is highlighted in black, but are not as
informative as the vector fields of Fig. 4. In addition, their
partitioning step precludes TraClus from generating clusters
of Atlantic crossing storms that then proceed up the U.S. east
coast. That information has been lost by their approach.

We also performed experiments using the TraClus algo-
rithm and the GeoLife dataset (used in Fig. 1), In this case,
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(a) (b) (c)

Figure 7: TraClus experiments using the synthetic dataset.
In (a) 268 clusters are found with ε = 0.03 and MinLns = 2.
In (b), with ε = 0.23 and MinLns = 140 TraClus detects two
clusters (drawn here separated for clarity), but clearly merges
portions of the two circular patterns. Slight variations on the
parameters (ε = 0.25 and MinLns = 160) causes TraClus to
merge the two cluster into one as seen in (c). These results
were obtained in 0.8, 1.6, and 6.5 seconds respectively.

TraClus failed to produce any meaningful clusters. Using the
parameters reported by the TraClus heuristics (ε = 20 and
MinLns = 12454), the algorithm finds no clusters, after 54
seconds of computation. Changing the parameters to ε = 20
and MinLns = 1000, the algorithm reports a single cluster
which does not represent any meaningful pattern, after a little
more than 3.6 hours of computation.

6. Discussion

In this section, we discuss issues related to parameter selec-
tion, advantages and limitations of vector field k-means, as
well as possible extensions of our algorithm.

6.1. Parameter selection

Although we can select both grid resolution R and the weight
given to the Laplacian regularization λL, the two parameters
are not independent. The eigenvectors of the Laplacian are
naturally interpreted as equivalent to the fundamental fre-
quencies on the mesh, exactly like sines and cosines are the
fundamental frequencies on a circle [VL08]. The correspond-
ing eigenvalues are the squares of the frequencies themselves,
which means that as we increase λL, we give larger weights to
the eigenvectors corresponding to high-frequency signals, and
the system tends towards lower-frequency results. A similar
effect is achieved by reducing R, which directly band-limits
the signal on the vector field. Using this dependency between
these parameters, we can virtually eliminate one of them. As
a result, we fix λL to be 0.05 and interactively select R in our
experiments. The resolution parameter R thus controls the
amount of detail in the derived vector fields: by increasing R
more complex behavior can be modeled and smaller features
have more influence in the clustering. Decreasing R enables
the algorithm to filter smaller, possibly insignificant, features
and capture global trends. As with most parameters, a clear
trade-off exists.

Figure 8: TraClus computed nine clusters for the HURDAT
dataset. Cluster representative trajectories are in black. No-
tice that because TraClus starts by subdividing trajectories,
no cluster from TraClus captures the pattern of trajectories
found by vector field k-means in Figure 4 (c).

Picking an appropriate number of clusters remains an open
problem even in the case of traditional k-means, and we offer
no substantive contributions on that matter. Many proposed
methods try to attack this problem (see [FW12] and refer-
ences therein), however no definitive algorithm solves this
problem optimally for all applications in general settings.
Still, we stress that as far as performance is concerned, vector
field k-means compares quite favorably to results reported
in the literature, and thus it is much easier to keep a human
analyst in the loop and make cluster count an interactive pro-
cedure with vector field k-means than with previous methods.

6.2. Advantages

Our model aims at a balance between richness and expressiv-
ity of features, and simplicity of implementation and analysis.
We believe this is a significant advantage over the current
methods for trajectory clustering. As mentioned earlier, by
representing the cluster centers as vector fields and using
those as a means to define similarity between trajectories,
we can eliminate expensive computations of metrics for tra-
jectories and the computations of the centroid trajectory as
well [GLW12]. Another advantage is our ability to capture
global patterns that are not apparent at the local level in highly
noisy trajectories or even partial trajectories.

Vector field k-means is also highly parallelizable. Our pro-
totype does not take advantage of this and includes no signifi-
cant optimizations, but it is obvious that separate components
of vector fields can be computed in parallel, and that many of
the intermediate matrices in the linear solvers can be reused
from one iteration to the next. We expect these to further
increase the performance, and allow vector field k-means to
handle even larger datasets.

c© 2013 The Author(s)
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Figure 9: The anonymized call detail records for over
370,000 cell phone calls produced noisy trajectories around
a suburban city. Two of the four clusters computed are shown.

6.3. Limitations

The choice of the initial clusters impact the results achieved
by vector field k-means, as it converges to a local minimum
and we currently do not offer any guarantees that our result
is close to the global optimum. Many techniques have been
proposed to choose good initial centers for the clusters in the
regular k-means case, one of the most important being the
k-means++ approach by Arthur et al. [AV07], which proves
a logk approximation factor. However it is not yet obvious
how to extend this technique to vector field k-means results.

Although vector field k-means is able to naturally encode
some attributes such as direction and speed, which are not
well handled by previous methods, the notion of spatial dis-
tance is not directly represented, which may result in clusters
with different behaviors in different spatial regions.

The vector fields derived by our method are steady, and
in general, trajectories with self-intersections can lead to
artifacts in steady vector fields near these areas. However,
our results show that vector field k-means is able to mine
interesting patterns even in the presence of self-intersections.

6.4. Future Work

For clarity and simplicity, we described the vector field k-
means algorithm in Section 3 in 2D, but one could extend it
to higher dimensions. One would need to involve the region
of interest in a simplicial grid of dimension d, in which we
assume linear interpolation inside each simplex of the grid.
This extension could be used to derive time dependent vector
fields, by creating a 3D grid and setting the constraints on the

Figure 10: Despite the noisy trajectories, we recovered clear
movement patterns related to highway (bold black lines) traf-
fic. The two vector fields correspond to the clusters in Fig. 9.

interior of the tetrahedral decomposition. This would allow
for better treatment of self-intersecting trajectories. Most of
the steps would be straightforward to carry through; although
we know of no good 3D equivalent to the cotangent weight of
the 2D Laplacian. It is also unknown if our algorithm’s per-
formance characteristics will remain in a higher-dimensional
extension.

Another interesting research direction is to apply vector
field k-means using user input. Conceptually, a user could
visually define the vector field using vector field design tech-
niques [CKW∗12] or even some sample trajectories. The
algorithm would then retrieve all trajectories in the database
that follow those patterns and whose errors are small enough.

7. Conclusions

We have introduced a novel trajectory clustering technique
that brings together ideas from visualization, data clustering,
and scalar field design. Vector field k-means can find global
patterns, handle partial trajectories, scale to large datasets,
and is simple to implement. The algorithm opens many possi-
bilities for modeling and user interfaces design, notably for
querying and exploring trajectory datasets.
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