Designing Software to Reduce Cost of Testing

Neelam Gupta Len Bass

Department of Computer Science Software Engineering Institute

University of Arizona Carnegie Mellon University
Tucson, AZ 85721 Pittsburgh, PA 15213
nguptaQcs.arizona.edu ljb@sei.cmu.edu
Abstract

Software testing is an important and expensive component of the software develoment life cycle.
The testing community has always treated the design of the software to be tested as an input
over which they have no control. In this paper, we propose a new approach to reduce the cost of
integration testing by influencing the design of the system to be tested. We consider the simple
pipe and filter architecture style and analyse its testability for integration testing. Our analysis
shows that the size of test suite required for integration testing is a linear function of the number
of modules in pipe and filter architecture style. In contrast, the size of test suite required for a
general design, with arbitrary communication among its modules, is an exponential function of
the number the modules in the design. This illustrates that the cost of the testing stage can be
significantly reduced by appropriate selection of the architecture style during the design stage.

Keywords Software Architecture Style, Software Testing, Pipe and Filter



1 Introduction

Software testing is a critical element of software quality assurance. It is an expensive and time
consuming component. It is not unusual for a software development organization to expend 40%
of the total project effort on testing. In the extreme, the testing of safety-critical software such
as flight control, nuclear reactor monitoring etc. can cost three to five times as much as all other
software engineering steps combined [?]. Reducing the cost of testing clearly has large benefits. We
propose to reduce the cost of testing by influencing the design of the system being tested.

The testing community has traditionally accepted a system design as a given over which they
have no control. This has led to a number of test case generation techniques [?, 7, 7, 7, 7, 7] to deal
with the potential complexity of systems. Detection of infeasible test cases and exponential growth
in the number of test cases have been problems that have been left for the testing community to
handle during test data generation stage without giving any consideration during design stage of
software development. Other communities, however, have been concerned with affecting the design
of systems in order to improve the system with respect to some attribute of interest. The growth
of object oriented design and the use of encapsulation have been attempts to decrease the life
cycle cost of systems by changing the design of systems. The reliability, security and performance
communities have a number of techniques [?, 7, 7, 7, 7, 7 ?] for changing the design of a system
in order to improve the respective quality attributes.

In this paper, we address the problem of designing software with the goal of reducing the number
of coverage requirements for integration testing of the software. Our approach is to relate the
testability of a system to its design. That is, we advocate choosing a design that simplifies the
integration testing of a system by requiring a smaller test suite. In reality, of course, design is a
more complicated problem than just optimizing for a particular attribute. Design is the process of
making trade-offs among attributes and the designer needs to know the cost of making particular
choices. So our approach is to develop techniques for determining the testing cost when particular
design styles are considered. We measure the cost of testing in terms of the number of test cases
that have to be covered for integration testing of a given design. This will enable the designer to
determine the testing cost of making particular design choices and consider this cost as well as the
cost of achieving certain levels of modifiability, performance, reliability, and security when making
design decisions. The work we present here is the merger of ongoing work in both testing and
software architecture analysis. We begin by reviewing the relevant work in each of these areas.

2 Software Architecture

A software architecture of a program is a structure comprising of software components, their exter-
nally visible properties, and the relationships among them [?]. The process of designing a particular
system is the process of defining the software architecture that gets elaborated into an actual system.
A key element to the study of software architecture is the discovery and analysis of architectural
styles [?]. A software architecture style is a system level construct that has been observed many
times in successful systems. It can also be thought of as a system level design pattern.
Architectural styles are important since they differentiate classes of designs by offering experi-
mental evidence of how each class has been used along with qualitative reasoning to explain why
each class has certain properties. A software architect can choose a style based on an understanding
of the desired quality goals of the system under construction. Adoption of a software style for the
design of a system acts as a set of constraints on the actions of the designer. This, in turn, enables



the creation of techniques that are style specific, to analyze how suitable the style is for the achieve-
ment of particular attributes. A collection of Attribute Specific Architectural Styles (ABASs) for
a variety of attributes is documented in [?, ?]. We now discuss some attributes important for the
testing phase of software development.

3 Software Testing

The testing process consists of selecting a test adequacy criteria, generating test requirements
for the selected criteria, generating test data that exercise the test requirements, monitoring the
execution of the program on the test data and verifying the output produced by the program.
The most commonly used strategy for software testing consists of unit testing that concentrates on
each unit of software as implemented in the source code, integration testing that focusses on the
design and the construction of software architecture, validation testing that validates the software
requirements against the developed software and finally system testing that tests the developed
software and other system elements as a whole [?]. In this paper, we focus on the testability of the
system for integration testing.

We define the testability of a system in terms of cost of testing the system. The cost of
testing a system is directly proportional to the size of the test suite which, in turn, is governed
by the number of coverage requirements that must be exercised by the test data. The number
of coverage requirements increase with the increase in number of interacting modules as well as
the number of interactions among them. Besides, if the set of test requirements is large, there
is higher likelyhood of having some requirements for which it is infeasible to generate test data.
Since detecting infeasible test requirements is an undecidable problem in general, it would save
significant effort if the software is designed in such a way that the allowed interaction between
various components is kept to minimum. To reduce the cost of testing a system, we propose
selecting a suitable design for the system that requires a smaller number of test cases to be covered.
Our goal is to develop a collection of testability analyses related to specific architectural styles. We
begin by analysing the testability of the pipe and filter style.

4 Pipe and Filter Style

Figure 1: Pipe and Filter architecture style.

As shown in Figure 77, in a pipe and filter style, data enters a filter from a single source, is
transformed, and sent out through a single exit into a pipe. The pipe carries the data to the next
filter in the design. The pipe and filter style supports system organization based on asynchronous
computations connected by dataflow. Pipes and filters occur in a variety of systems. Systems
based on signal processing such as image processing systems are pipe and filter systems. The case
studies in [?] are all pipe and filter systems. Old fashioned compilers (lexical analysis, followed
by syntactic analysis, followed by semantic analysis) were pipe and filters although more modern
compilers utilize different styles. The computational elements scheduled by a cyclic executive can
be thought of as a pipe and filter system where the output of the final filter is fed into the input of
the initial filter. Pipes and filters are not a basis for all systems, but they are used in a substantial



number of systems. Our goal in this paper is to provide a basis for analysis of testing cost for the
systems describable by pipe and filter style. In our our future work, we will consider other styles
for analysis of their testability. Thus, we exploit the restrictions imposed by the pipe and filter
style (in particular, the limited interactions between filters) to carry out our analysis.

4.1 Modelling and Analysis

We use the number of coverage requirements for a given testing criteria (such exercising all interac-
tions between every pair of modules) as a measure of the testability of an application for integration
testing. A smaller number of the coverage requirements will result in a smaller test suite and hence
will reduces the cost of the testing process.

In pipe and filter architecture style, each module in the design of the software is represented
by a filter and the communication mechanism between a pair of modules is represented by a pipe.
The pipe and filter architecture style enforces a simple communication protocol in which filter;
can receive data only from filter; ; and send data to only filter;;;. The communication between
adjacent filters can be either using shared memory, message passing or procedure invocation. We
assume that the pipe; simply provides a mechanism to transport data from filter; to filter;y;.

We assume that the pipes and filters are correct i.e., each of the modules and their communi-
cation mechanisms have been unit tested with 100% reliability. We focus on the kinds of problems
that can arise as a result of integration of all the modules and their communication mechanisms.
We consider the total number of interactions (shared memory, messages or procedure invocations)
to be tested between the filters as a measure of the testing cost of the style. In order to compare
the testing cost of a design based on pipe and filter style and a design that allows arbitrary commu-
nication among the modules, we consider the example of four communicating processes in general
shown in Figure 2. Let us assume there are at the most k£ interactions allowed in each direction
between a pair of adjacent nodes.

Figure 2: Communication paths among four communicating process in general.

e Cl e G €3

Figure 3: Communication paths among four filters in pipe and filter style.

There are four paths for communication between any pair of nodes in Figure 2. For example,
there is one path (P1, P4) of length one, two paths (P1, P2, P4) and (P1, P3, P4) of length two
and one path (P1, P2, P3, P4) of length three between the nodes P1 and P4. Therefore, to test



the communication between P1 and P4, we need to generate test cases that exercise each possible
interaction along all the four paths between P1 and P4. For the path (P1, P4), 2 % k interactions
between the two nodes P1 and P4 need to be tested because there can be at the most k interactions
in each direction. For the path (P1, P2, P4), 2 x 2 x k interactions need to be tested because at the
most 2k interactions need to be tested between the nodes P1 and P2 and another 2%k interactions
need to be tested between the nodes P2 and P4. Similarly, 2 x 2 % k interactions need to be tested
along the path (P1, P3, P4) and 3 * 2 % k interactions need to be tested along the path (P1, P2,
P3, P4). Therefore, the total number of test cases needed to test the communication between P1
and P4 is at the most 2 % (k + 2k + 2k + 3k) = 16k. In order to test communication between every
pair of processes in Figure 2, we would need 6 * 16 x & = 96k test cases since there are 6 pairs of
nodes possible.

Now let us consider the four nodes communicating using pipe and filter style as shown in

Figure 3. In this design style, only adjacent nodes can communicate with each other and the
communication is allowed only in one direction. If there are at the most k interactions between a
pair of adjacent filters, only 3% interactions need to be exercised to test the communication between
the nodes in pipe and filter style when all the four modules are integrated together.
In general, if there are n nodes communicating with each other in any arbitrary fashion and there
are at the most k interactions allowed in each direction between two adjacent nodes, then the
number of test cases needed to exercise each interaction between adjacent nodes on all the paths
between a pair of nodes in the worst case is given by

25 (3) # [("0) kb + (") 25 b+ (") # 3k k4 + (123) (0 — 1) < K] eq. 1
where,
1. the multiplier 2 accounts for the interaction in both the directions,
2. the multiplier (3) is the number of ways to choose a pair of nodes from n nodes, and

3. (”;2) is the number of ways k nodes can be selected from the remaining n — 2 nodes, which
is equal to the number of paths of length k& + 1.

Writing the Binomial expansion of (z +1)" 2, multiplying thoughout by z, differentiating through-
out with respect to z, substituting = by 1 in the result obtained after differentiation, and using it
to simply the equation 1, we obtain

Number of Test Cases (general design) = (k)(n?)(n — 1)(2"73)

Therefore, in a general design with n modules, the number of test cases required for integration
testing of communication between the modules is an exponential function of the number of modules.

However, the number of test cases required to exercise every interaction between adjacent filters, in
an application designed with n filters with at the most k interactions between the adjacent filters,
is given by:

Number of Test Cases (pipe and filter) = k * (n — 1)
Therefore, the number of test cases required to test the interactions among the filters, during

integration testing of a software designed using pipe and filter style, is a linear function of the
number of filters.



Thus, if we define the testability of a design by the measure of the coverage required for integra-
tion testing, it is clear from the above discussion that a pipe and filter style is much more suitable
for testability than a general design of communicating processes. Therefore, if a given application
can be designed using pipe and filter style, then it will reduce the coverage requirements for integra-
tion testing of the application by a significant amount. Our analysis shows that it is worthwhile to
consider the cost of testing while making tradeoffs with the design requirements of other attributes
such as modifiability, reusability and security of software while choosing a particular architectural
style in the design stage of the software.

5 Conclusions and Future Work

In this paper, we have proposed that the cost of testing a software application can be reduced by
inluencing the selection of a suitable architectural style during the design stage of the sofware. We
analysed the cost of testing an application with pipe and filter style and compared it with the cost
of testing an application with arbitrary communication among its components. We showed that
the cost of testing increases exponentially with the number of interacting components in a general
design, whereas it increases only linearly with the number of components in the pipe and filter style.
This makes pipe and filter style particularly suited for testability. In our future work, we plan to
extend this work to additional architectural styles. Each architectural style can be considered as a
set of constraints imposed on the patterns of communication among the components of the style.
Exploiting these constraints in the analysis of coverage requirements means that we should be able
to calculate reduced costs of testing for systems not explainable by the pipe and filter style.

References

[1] Bass Len, Clements Paul, Kazman Rick “Software Architecture in Practice” SEI Series in Software
Engineering, Addison Wesley, 1998

[2] L.A. Clarke, “A System to Generate Test Data and Symbolically Execute Programs,” IEEE Transactions
on Software Engineering, Vol. SE-2, No. 3, pages 215-222, September 1976.

[3] M.J. Gallagher and V.L. Narsimhan, “ADTEST: A Test Data Generation Suite for Ada Software Sys-
tems,” IEEE Transactions on Software Engineering, Vol. 23, No. 8, pages 473-484, August 1997.

[4] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch ”Design Patterns: Elements
of Reusable Object-Oriented Software Addison Wesley, 1995.

[5] A. Gotlieb, B. Botella, and M. Rueher, “Automatic Test Data Generation using Constraint Solving
Techniques,” International Symposium on Software Testing and Analysis, 1998.

[6] C. Hofmeister, R.Nord, P.Soni “Applied Software Architecture” Reading MA, Addison Wesley, 1999.

[7] Mark Klein, Rick Kazman, ” Attribute Based Architectural Styles”, CMU/SEI-99-TR-~022, Technical
Report, Software Engineering Institute, Pittsburgh, Pa

[8] M. Klein, R. Kazman, L. Bass, J. Carriere, M. Barbacci, H. Lipson , ” Attribute Based Architectural
Styles”, Proceedings of the First Working IFIP Conference on Software Architecture, San Antonio, Tx,
Feb 1999, pp 225-243 Kluwer Publishing

[9] B. Korel, “Automated Software Test Data Generation,” IEEE Transactions on Software Engineering,
Vol. 16, No. 8, pages 870-879, August 1990.

[10] Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa, “Automated Test Data Generation using An
Tterative Relaxation Method” ACM SIGSOFT Sizth International Symposium on Foundations of Software
Engine ering(FSE-6), pages 231-244, Orlando, Florida, November 1998.



[11] R.A. DeMillo and A.J. Offutt, “Constraint-based Automatic Test Data Generation,” IEEE Transactions
on Software Engineering, Vol. 17, No. 9, pages 900-910, September 1991.

[12] R.S. Pressman, “Software Engineering: A Practitioner’s Approach.” Fifth Edition, 1998, page 595.

[13] M.Shaw, P.Clements, “A Field Guide to Boxology: Preliminary Classification of Architectural Styles
for Software Systems” Proceedings of COMPSAC, Washington, D.C, August 1997.

[14] L. Sha, R. Rajkumar, M. Gagliardi, “A Software Architecture for Dependable and Evolvable Industrial
Computing Systems” CMU/SEI-95-TR-005, Pittsburgh, PA, Software Engineering Institute, 1996.

[15] C.U. Smith, “Performance Engineering of Software Systems,” The SEI Series in Software Engineering,
Reading, MA, Addison-Wesley, 1990.

[16] C.U. Smith and L.G. Williams, “Software Performance Engineering: A Case Study Including Perfor-
mance Comparison with Design Alternatives,” IEEE Transactions on Software Engineering, 19(7), pages
720-741, 1993.

[17] U.S.Deparment of Defense, “Technical Architecture Framework for Information Management
(TAFIM),” Vols. 1-8, Version 2.0. DISA Center for Architecture (10701 Parkridge Blvd., Reston, VA
22091-4398), June 30, 1994.



