
A Fuzzy Visual Query Language for a

Domain-Speci�c Web Search Engine

Christian S. Collberg

Department of Computer Science

University of Arizona

Tucson, AZ

collberg@cs.arizona.edu

Abstract

A�goVista is a web-based search engine that assists

programmers to �nd algorithms and implementations

that solve speci�c problems.

A�goVista is not keyword based but rather requires

users to provide | in a very simple textual language

| input)output samples that describe the behavior of

their needed algorithm. Unfortunately, even this simple

language has proven too challenging for casual users.

To overcome this problem and make A�goVista more

accessible to novice programmers, we are designing and

prototyping a visual language for creating A�goVista

queries. Since web users do not have the patience to

learn fancy query languages (be they textual or visual),

our goal is to make this language and its implementa-

tion natural enough to require virtually no explanation

or user training.

A�goVista operates at http://algovista.com.

1 Background

Frequently, working software developers encounter a

problem with which they are unfamiliar, but which|

they suspect| has probably been previously studied.

Just as frequently, algorithm developers work on prob-

lems that they suspect have practical applications.

A�goVista1 is a web-based, interactive, searchable,

and extensible database of problems and algorithms

designed to bring together applied and theoretical com-

puter scientists. Programmers can query A�goVista

to look for relevant theoretical results, and theoretical

computer scientists can extend A�goVista with prob-

lem solutions.

1Pronounced /algovista/.

Unlike most other search engines, A�goVista is not

keyword-based. Keyword-based searching fails exactly

in those situations when we are in the most need for

accurate search results, namely when we are search-

ing in a new and unfamiliar domain. For example, a

programmer looking for an algorithm that solves a par-

ticular problem on graphs will not get any help from

a keyword-based search engine if she does not know

what the problem is called. A Google keyword search

for pgraph algorithmsq, for example, returns 300,000

hits that the user has to browse manually.

Instead, A�goVista requires users to provide one or

more input)output examples that give a (usually fuzzy

and incomplete) description of the problem they are

looking for. This technique turns out to be remarkably

successful: when looking for links to particular graph

algorithms, for example, A�goVista often returns the

requested results in a few seconds.

In the current version of A�goVista such

input)output examples are given in a simple text-

based query language. Although this language should

only take a few minutes to master, most users are too

impatient to read the ample on-line documentation or

even learn by trying out the canned example queries

available at the site.

Rather, immediately after the A�goVista web-page

has been loaded, typical users will enter a few keywords

and then hit the submit button. This will not yield

any interesting results since, as we have already noted,

A�goVista's query language is not keyword-based. As

a result, the user will get discouraged and leave to look

for a di�erent search engine.

The web, fueled by the MTV generation, has per-

manently ushered in the era of instant grati�cation and

the sub-second attention-span.

1

Figure 1. The A�goVista user interface.

Cycle through
all possible
semantic
interpretations
of the drawing

Cycle through
visual query
examples

Textual query
generated from
drawing

Recursive
edit canvas

Template canvas Drawing canvas

generated from
textual query

Prose query

indicates
semantic
grouping

Convex hulls

1.1 A�goVista’s Visual Interface

In this paper we will describe the design and im-

plementation of a visual query language for A�goVista.

Our hopes are that this visual language will prove more

intuitive and faster to learn than its textual counter-

part.

The visual language and its accompanying user in-

terface have been designed to be as self-explanatory as

possible. A web user who is unwilling to learn a textual

query language will be unwilling to learn a visual one as

well, if it means reading more than a short paragraph

of documentation. Our main language design strategy

is summarized by these three points:

1. Give the user complete freedom in drawing his

query, because no web user will take the time to

learn complex visual grammars or semantic con-

2

straints.

2. Let the user choose herself between di�erent pos-

sible semantic interpretations of the visual query,

because no web user will take the time to under-

stand why certain parses are valid and others are

not.

3. Make each visual query a learning experience.

More speci�cally: we let the user draw something, we

show her the possible interpretations of this drawing,

and we allow her to select the most appropriate inter-

pretation. At the same time, we show her the textual

query corresponding to the visual one, in the hope that,

in time, she will subliminally acquire this language.

This may come in handy if, at some later date, she

needs to submit a more complex query best described

textually.

The textual and visual languages will be described

in detail later on in the paper. For now, consider

A�goVista's visual user interface in Figure 1. We note

that the interface has a main drawing window in which

the user can enter her query by dragging elements from

the template window on the left. When a query has

been entered the user clicks the parse button, the

drawing is analyzed, and a textual query is produced

in the query window.

At the same time, two things happen to help the

user understand the query she just entered:

1. the query is translated into English prose which is

shown at the bottom of the screen;

2. convex hulls are drawn around those elements of

the drawing that the parser has decided belong

together.

If the user is happy about the interpretation of her

drawing she clicks the submit button, and the textual

query is sent to the A�goVista server for processing and

search results are returned to the user. If she does not

believe the interpretation to be the correct one, she can

continue to hit the parse button to cycle through all

possible interpretations until the desired one is found.

2 A�goVista | A Search Engine for

Programmers

Before we continue our description of A�goVista's

textual and visual query languages, we will briey mo-

tivate the need for specialized search engines for com-

puter scientists. We will also give some examples of

how A�goVista can help a working programmer clas-

sify problems and search for algorithms that solve these

problems. As we will see, A�goVista is particularly

helpful when you are attempting to classify a problem

outside your area of expertise and you have no knowl-

edge of the terminology in this area.

2.1 Interacting with A�goVista

A programmer will typically interact with A�goVista

by providing input)output samples that describe the

problem they are looking to classify. A�goVista will

then search its database of problem descriptions look-

ing for problems that map input to output.

We will next consider four concrete examples.

Example 1: Consider a programmer, Bob, who is

working on the design of a spreadsheet program. He's

got most everything working, except for a few minor

problems: re-evaluation of the expressions seems to

take a long time, and sometimes the program seems

to enter an in�nite loop. Bob realizes that, if he could

�nd an optimal evaluation order each expression would

only have to be evaluated once. This might also help

with the in�nite loop problem which seems to happen

when expressions are de�ned in terms of themselves.

Searching for an algorithm for his problem is very

diÆcult if, as is increasingly the case, Bob is a program-

mer without any formal training in Computer Science.

But, even if he has no knowledge of Computer Science

nomenclature, he could still go to A�goVista and enter

a query describing the desired behavior of the algo-

rithm he is looking for:

[a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c]

Here, a, b, c and d represent elements of expres-

sions in the spreadsheet, and a->c represents the fact

that c depends on the value of a. This query asks:

\Suppose that from the linked structure on

the left of the) I compute the list of nodes

to the right. What function f am I then com-

puting?"

Visually, the query could be expressed as:

f

a

c

b

d

!
=) [, , ,a d b c] :

The A�goVista search engine might respond with:

\This looks like a topological sort of

a directed acyclic graph. You can

read more about topological sorting at

http://hissa.ncsl.nist.gov/~black/

CRCDict/HTML/topologcsort.html. A Java

3

implementation can be found at http://

www.math.grin.edu/~rebelsky/Courses/

152/97F/Outlines/outline.49.html".

Example 2: Suppose Bob is trying to write a pro-

gram that identi�es the locations for a new franchise

service. Given a set of potential locations, he wants

the program to compute the largest subset of those lo-

cations such that no two locations are close enough to

compete with each other. It is trivial for him to com-

pute which pairs of locations would compete, but he

does not know how to compute the feasible subset. He

starts by trying to come up with an example of how

his program should work:

� If there are three locations a; b; c and a competes

with b and c, then the best franchise locations are

b and c.

If Bob is unable to come up with his own algorithm

for this problem he might turn to one of the search-

engines on the web. But, which keywords should he

use? Or, Bob could consult one of the algorithm repos-

itories on the web, such as http://www.cs.sunysb.

edu/~algorith/, which is organized hierarchically by

category. But, in which category does this problem

fall? Or, he could enter the example he has come up

with into A�goVista at algovista.com:

[a--b,a--c]==>[c,b]

This query expresses:

\If the input to my program is two relation-

ships, one between a and b and one between

a and c, then the output is the collection

[b,c]."

Another way of thinking about this query is that the

input is a graph of three nodes a, b, and c, and

edges a-b and a-c, but it is not necessary for Bob to

know about graphs. A�goVista returns to Bob a link

directly to http://www.cs.sunysb.edu/~algorith/

files/independent-set.shtml which contains a de-

scription of the Maximal Independent Set problem.

From this site there are links to implementations of

this problem.

Example 3: Suppose instead that Bob is writing a

simple DNA sequence pattern matcher. He knows that

given two sequences ha; a; t; g; g; g; c; ti and hc; a; t; g; gi,

the matcher should return the match ha; t; g; gi, so he

enters the query

([a,a,t,g,g,g,c,t],[c,a,t,g,g])==>[a,t,g,g]

into A�goVista which (within seconds) re-

turns the link http://evo.apm.tuwien.ac.

at/AlgDesignManual/BOOK/BOOK5/NODE208.

HTM#SECTION03178000000000000000 to a description

of the longest common subsequence problem.

Finally, A�goVista is also able to classify some sim-

ple combinatorial structures. Given the following query

[a--c,a--d,a--f,b--c,b--d,b--e]

or, visually:

c d e f

a b

A�goVista might respond with:

\This looks like a complete bipartite graph.

You can read more about this struc-

ture at http://www.treasure-troves.com/

math/CompleteBipartiteGraph.html."

2.2 Program Checking

A�goVista can be seen as a novel application of pro-

gram checking, an idea popularized by Manuel Blum [1]

and his students. The idea is that rather than testing a

procedure or attempting to prove it correct, we check,

at runtime, that the procedure indeed produces the

right output for each given input. The A�goVista prob-

lem description database contains such program check-

ers, and the eÆciency and accuracy of these checkers

is what makes A�goVista so successful.

[4] contains an indepth description of the design of

the A�goVista search engine and the search algorithms

it employs.

A�goVista currently contains some ninety problem

descriptions, some of which are listed in Table 1.

3 The Query Language

The A�goVista query language was designed to be as

simple as possible, while still allowing users to describe

complex algorithmic problems.

The language primitives include integers, oats,

booleans, lists, tuples, atoms, and links. Links are (di-

rected and undirected) edges between atoms that are

used to build up linked structures such as graphs and

trees. Special syntax was provided for these structures

since we anticipate that many A�goVista users will be

wanting to classify graph structures and problems on

graphs.

The following grammar shows the concrete syntax

of the query language:

4

Table 1. Partial list of problem and graph descriptions found in A�goVista.
Eulerian graph Maximal independent set Transitive closure

Longest common subsequence Matching Clique problem

Independent set Proper edge coloring Permutation

Perfect matching Euler cycle Spanning Tree

AVL Tree Biconnected Graph Undirected Graph

Complete graph Connected graph Single destination shortest path

All pairs shortest path Single pair shortest path Strongly connected Graph

Single source shortest path Bipartite Graph Combination

Maximum bipartite matching Clique Least common multiple

Directed Acyclic Graph Maximum consecutive subsequence Hamiltonian cycle

Articulation points

S ! int j float j bool j

S �==>� S j

atom [�/�S] j

atom �->� [�/�S] atom j

atom �--� [�/�S] atom j

�[�[S f �,�S g] �]� j

�(� S �,� S �)�

bool ! �true� j �false�

atom ! �a� : : : �z�

int ! �0� : : : �9� f �0� : : : �9� g

float ! int �.�int

pS ==> Sq maps inputs to outputs, p(S , S)q rep-

resents a pair of elements, and p[S f ,S g]q rep-

resents a list of elements. Atoms, patom [/S]q, are

one-letter identi�ers that are used to represent nodes

of linked structures such as graphs and trees. They

can carry optional node data. Links between nodes

can be directed patom -> [/S] atomq, or undirected

patom -- [/S] atomq, and can also carry edge data.

These simple primitives can be combined to produce

complex queries. For example, the query

[a->b,b->c]==>[a->a,a->b,a->c,b->b,b->c,c->c]

asks which function maps

a

b c to

a

b c

(Transitive closure). The query

([3,7],[5,1,6]) ==> [5,1,6,3,7]

asks what function maps the lists [3,7] and

[5,1,6] to the list [5,1,6,3,7] (List append).

The recursive structure of the grammar allows

queries to be deeply nested, although this is fairly un-

common. For example, the query

[a->/[1]b,a->/[3,4]c] ==> [1,3,4]

looks for an algorithm that maps a tree to a list of

integers, where each tree edge is labeled with a set of

integers.

4 The Visual Query Language

A�goVista's visual query language is closely modeled

on its textual counterpart. A user constructs a query

by dragging primitive elements from a template region

on the user interface (Figure 1) onto the drawing can-

vas. Atoms are modeled by named circles, links by the

obvious lines and arrows, booleans and the ==>-arrow

by themselves, and numbers are entered by clicking and

typing. There are, however, no obvious visual counter-

parts to the pairs and element-lists of the textual lan-

guage. These are instead inferred from the positioning

of the visual elements.

For example, instead of entering a topological sort-

ing query textually:

[a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c]

it could instead be drawn like this:

The textual query is inferred from the drawing, and the

English prose query is derived from the textual query.

5

Recursive queries could be handled in a variety of

ways. Many graph editors parse node and edge labels

by proximity; that is, a graphical element is inferred to

be the label of a node a if it is \close enough" to a.

This puts a heavy burden on the parser as well as on

the casual user who needs to have some understanding

of the principles under which the parser operates.

We have instead opted for a much more lightweight

solution: if the user double-clicks on an atom or link

a new, simpler, drawing window (bottom right in Fig-

ure 1) opens up, allowing the user to enter the sub-

drawing. This strategy has the advantage of both

being simple to implement and trivial to explain to

the user. It is now easy to create arbitrarily complex

queries, where, for example, the nodes of a graph could

be labeled with lists of trees, whose edges are labeled

with. . . , etc:

4.1 Parsing Visual Queries

Because of the limited set of graphical elements that

A�goVista supports, parsing visual queries is relatively

straight-forward. The ==>-arrow separates inputs from

outputs, which means that anything to the left of the

arrow is an element of the input, anything to the right

belongs to the output.

As we have seen, recursive queries are created by the

user explicitly opening up atoms and links (by double-

clicking on them) and drawing the label in a sub-editor

pane. This limited amount of structure editing greatly

simpli�es parsing, since it is always clear if an element

is the label of an atom or link, rather than a free-

standing element.

The main challenge in parsing visual queries is that

grouping of elements is not always evident from the

drawing. Consider the following query:

There are four connected components to the left of the

==>-arrow, and it is not clear which of those, if any,

form sub-groups. For example, the nodes a, b, and c

could form a (dis-connected) graph, or a and b could

form one graph and c another.

Many visual parsers use proximity to infer element

grouping. In a web-situation where many casual users

will visit a site for only a minute or two, there simply is

no time to explain what heuristics the parser employs.

So, again, we prefer a lightweight and user-centric so-

lution. We will simply guess the user's intentions, and

then report back what that guess was. In this case,

the parser's �rst guess was that each connected com-

ponent is a unique argument in the query. It indicates

this by drawing a convex hull (dashed lines) around

each component.

If, however, the user's intentions were di�erent, she

can simply ask the parser to produce a di�erent parse,

by clicking the parse-button one or more times. This

will cycle through all the di�erent possible parses of the

query, each described visually (using a convex hull),

formally (using an A�goVista query), and informally

(using English prose). For example, it could be that

the user had planned for the node c to belong to a

three-node graph:

or for the two integer elements to be part of a pair:

6

or for the input part of the query to consist of two

elements, a graph and a pair of integers:

In most cases there are few possible parses and it

is immediately clear to the user which is the one she

is looking for. To cut down the number of possible

parses we can exploit the fact that A�goVista queries

are typed. The type system corresponds almost one-

to-one to the concrete syntax given in Section 3. The

following type assignments map concrete syntax into

types:

T [int] = Int

T [float] = Float

T [true] = Bool

T [false] = Bool

T [S1 �==>� S2] = Map(T [S1]; T [S2])
T [�(� S1 �,� S2 �)�] = Pair(T [S1]; T [S2])
T [�[�[S1 f �,�S2 g] �]�] = if T [S1] = T [S2]

then Vector(T [S1])
else ?

T [atom=S] = Node(T [S])
T [atom �->�=S atom] = DEdge(T [S])
T [atom �--�=S atom] = UEdge(T [S])

For example, the query p([1,2],[3,4])==>[4,6]q has

the type

Map(Pair(Vector(Int),Vector(Int)),Vector(Int)).

During parsing we may �nd that certain groupings

of elements do not typecheck, in which case we never

present them to the user.

The above discussion is summarized by the following

algorithm:

procedure parse(elements)

sort elements by hx; yi coordinates

left elements left of '==>'

right elements right of '==>'

input connected components(left)

output connected components(right)

for all i merge(input) & o merge(output) do

query construct query(i, o)

if type check(query) then

prose query2english(query)

yield (query,prose)

parse generates a sequence of possible interpretations

of the graphical elements on the canvas. We �rst sepa-

rate the input from the output elements, and then con-

struct a set of connected components for each. We then

generate all possible type-correct queries by merging

adjacent connected components. Finally, each query is

translated to English and presented to the user, along

with the textual query and a convex hull around each

component.

5 Related Work

Rekers [7] provides a nice overview of graphical

parsing algorithms They note that most graph pars-

ing algorithms are worst-case exponential. The paper

also presents a new multi-stage graph parsing method

with separate phases for determining object locations

and spatial relationships, and a �nal grammar-based

rewrite phase.

In a web-based visual interface such complex, and

potentially slow, parsing methods are unacceptable.

In [6], Liu presents a visual interface to a CASE

tool, where boolean queries are constructed in a syntax-

directed fashion. Users proceed top-down from a

\root" query, iteratively expanding non-terminal nodes

until the query is complete.

Novice (as well as expert!) users typically �nd

syntax-directed iterative re�nement cumbersome to

use. There is a reason why programmers prefer free-

form editors like emacs over syntax-directed ones, even

though the latter ensures that only correct programs

can be constructed. For this reason, A�goVista is

a mostly free-form graph editor, and syntax-directed

editing is reserved for recursive edits.

7

The web ought to present many opportunities for

introducing more people to direct-manipulation in-

terfaces. However, we have found few such exam-

ples. Marmotta [2], a graphical front-end to online

databases, is an exception.

6 Summary

A�goVista provides a unique resource to computer

scientists to enable them to discover descriptions and

implementations of algorithms without knowing the-

oretical nomenclature. However, by monitoring the

queries submitted to the web-site we have determined

that the textual query language that A�goVista em-

ploys is an impediment to many casual users. It is our

belief that the visual language presented here will prove

easier to use and faster to learn.

To motivate why this will be the case, consider the

following two episodes that provided the original inspi-

ration for A�goVista's principal designers:

Working on the design of graph-coloring register

allocation algorithms, Todd Proebsting showed his

theoretician colleague Sampath Kannan the following

graphs:

t

s

t

s

t

s

t

s

t

s

t

ss

t

\Do these graphs mean anything to you?" Todd

asked.

\Sure," Prof. Kannan replied, \they're series-

parallel graphs."

This was the beginning of a collaboration which re-

sulted in a paper in the Journal of Algorithms [5].

In a similar episode, the present author showed his

theoretician colleague Clark Thomborson the following

graph-transformation:

)

\Do you know what I am doing here?" Christian

asked.

\Sure," Prof. Thomborson soon replied, \you're

shrinking the biconnected components of the under-

lying graph."

This result became an important part of a joint pa-

per on software watermarking [3].

It's important to note that in both these episodes

the queries were visual in nature, and, in fact, took

place while drawing on a white-board. It is our hope

that A�goVista will prove to be a useful \virtual theo-

retician" that working programmers can turn to with a

problem, quickly sketch it out | visually or textually

depending on the nature of the problem | and quickly

receive a useful answer.

We have stressed throughout this paper that web

users are a �ckle lot and that speed and simplicity is the

key to success for any web-based interface: any code

must be small enough to download instantaneously

(or the user will go elsewhere), and no user training

must be required (or the user will go elsewhere). The

A�goVista visual interface was designed with this in

mind: it employs no fancy graph parsing algorithms

and any ambiguities are resolved by the user simply

cycling through all possible parses.

A fully functioning prototype of the A�goVista

visual interface has been implemented and can

be downloaded from http://www.cs.arizona.edu/

~collberg/Research/AlgoVista. It currently func-

tions as a stand-alone application but we expect to

launch it as an applet on the A�goVista web-page (at

http://AlgoVista.com) shortly.

References

[1] M. Blum. Program checking. In S. Biswas and K. V.

Nori, editors, Proceedings of Foundations of Software

Technology and Theoretical Computer Science, volume

560 of LNCS, pages 1{9, Berlin, Germany, Dec. 1991.

Springer.
[2] F. Capobianco, M. Mosconi, and L. Pagnin. Progres-

sive http-based querying of remote databases within the

Marmotta iconic VQS. In VL'95, 1995.
[3] C. Collberg and C. Thomborson. Software wa-

termarking: Models and dynamic embeddings.

In POPL'99, San Antonio, TX, Jan. 1999.

http://www.cs.arizona.edu/~collberg/Research/

Publications/CollbergThomb%orson99a.
[4] C. S. Collberg and T. A. Proebsting. A�goVista

| A search engine for computer scien-

tists. Technical Report 2000-01, 2000.

http://www.cs.arizona.edu/~collberg/Research/

Publications/CollbergProeb%sting2000a.
[5] S. Kannan and T. A. Proebsting. Register allocation in

structured programs. Journal of Algorithms, 29(2):223{

237, Nov. 1998.
[6] H. Liu. A visual interface for querying a CASE reposi-

tory. In VL'95, 1995.
[7] J. Rekers and A. Sch�ur. A graph grammar approach to

graphical parsing. In VL'95, 1995.

8

