Activating Storage Systems with Agents

John H. Hartman Scott Baker lan Murdock

TR 02-01

Abstract

Swarm is a scalable, modular storage system that allows high-level services to influence low-level storage
functions such as data layout, metadata management, and crash recoaggni&An agent is a program

that is attached to data in the storage system and invoked when particular events occur during the data’s
lifetime. For example, when Swarm needs to write data to disk, agents attached to the data are invoked to
determine a layout policy. Agents can be persistent, so that they remain attached to the data they manage
until the data are deleted; this allows agents to continue to affect how the data are handled long after the
application or storage service that created the data has terminated. Swarm and its agent mechanism are
implemented as a Linux kernel module. In this paper, we present Swarm’s agent architecture, describe
the types of agents that Swarm supports and the infrastructure used to support them, and discuss their
performance overhead and security implications. We describe how several storage services and applications
use agents, and the benefits they derive from doing so.

June 18, 2002

Department of Computer Science
The University of Arizona
Tucson, AZ 85721

1This research was supported in part by DARPA Contract F30602-00-2-0560 and NSF grant EIA-0080123.

1 Introduction pages and their embedded images in the log, and a read-
ordered layout agent that organizes file blocks according
to previous read access patterns. The different agents

Traditional storage systems are inflexible, providing €MPloyed by these services and the resulting perfor-

fixed storage abstractions, access protocols, and daf§a"Ce improvements demonstrate the usefulness of the
management policies. In contrast, the Swarm storagé‘gem infrastructure. The.overhead of mvolgng an agent
system [5] may be configured to support multiple stor- IS Iesls trllar:c lus, and a S'mpllf_ agehnt requires akrj]out 4us
age services simultaneously, each implementing its owrPe" k;)lc 0 cor?putalnon, ma 'nI?_ thel angt Tec danl_sm
abstractions, access protocols, and data managemefitV/aP!e way of implementing high-level policy deci-
policies. Swarm accomplishes this by decoupling high-S1OnS In low-level storage functions.

level abstractions and functionality from low-level data hi q i , hani dh
storage. Rather than providing high-level abstractions,T,'S paper describes Swarm's agent mec anismand how
directly, Swarm provides an extensible, layered infras-'t IS Used to improve the performance and flexibility of
tructure that allows high-level storage functionality to be @PPlications and storage services that run on Swarm.
composed in a modular fashion, with each layer aug_We first provide an overview of Swarm, then describe
menting, extending, or hiding the functionality of the Swarm's ggent mechanism _and the _mfrastructur(_a that
layers below it. supports it. The agent section also includes a discus-
sion of the performance overhead incurred, and security
considerations. Finally, we describe the Swarm-based

Swarm employsagentsto allow applications, file sys- X X
ervices we developed that use agents, and the benefits

tems, and other storage services to influence and co) _
trol key storage functions such as data layout, metadat{1eY derive from doing so.
management, and crash recovery. An agent is a program
that is attached to data in the storage system and invoked
when particular events occur during the data’s lifetime.
For example, when Swarm needs to write data to disk2 Swarm Overview
agents attached to the data are invoked to determine a
layout policy. Agents are stored alongside the data they
manage and are persistent, allowing the agents to corSwarm [5] is a storage system that provides scalable,
tinue managing the data even after the applications oreliable, and cost-effective data storage. At its low-
file systems that created them exit or are unmounted. est level, Swarm provides a log-structured interface to
a cluster of storage devices that act as repositories for
Agents add a new dimension of flexibility, extensibility, fixed-sized pieces of the log callé@gments The stor-
and power to storage systems. Agents allow applicationgge devices have relatively simple functionality, so they
and storage services to extend Swarm in applicationare easily implemented using inexpensive commaodity
specific ways, without requiring Swarm to have any im- hardware or network-attached disks [4]. Individual stor-
plicit knowledge about how the application or storage age devices are optimized for cost-performance and ag-
service works. For example, agents allow Swarm to up-gregated to provide the desired absolute performance.
date metadata without knowledge of the metadata struc-
tures, and to implement application-specific data layoutSwarm clients use atriped logabstraction [6] to store
policies without knowledge of or assumptions about fu- data on the storage devices. This abstraction simplifies
ture access patterns. Furthermore, because agents atrage allocation, improves file access performance,
programs, they are inherently more powerful than staticbalances server loads, provides fault-tolerance through
policies: agents can take advantage of current systemomputed redundancy, and simplifies crash recovery.
state to determine a policy that is optimized for a partic-Each Swarm client creates its own log, appending new
ular situation. data to the log and forming the log into fragments that
are striped across the storage devices; RAID-style parity
Swarm is implemented as a loadable module for theallows missing portions of the log to be reconstructed
Linux 2.2 kernel. We have developed and experimentedvhen a storage device fails. Clients cache blocks in
with several Swarm-based services that use agents, ilfnemory and write them to the log in batches, allowing
cluding a local file system called Sting that stores filesblocks within the batch to be ordered to improve read
and directories in Swarm, a cleaner service that reclaimperformance, and also improving write performance by
unused portions of Swarm’s log, a simple logical disk writing multiple blocks to the log in a single operation.
that presents a virtual disk abstraction on top of Swarm’sEach client maintains its own log and parity, and there-
log abstraction, a web layout agent that clusters welfore does not need to coordinate with other clients to

Application ,//
Cleaner Figure 2:Log Format. The light objects are blocks, and
the dark objects are records. EatReATE record indi-
Agent cates the creation of a block, and eantL ETE record
indicates a deletion; the arrows show which block is af-
RawLog fected by each record and represent references visible to
the log layer. Note that the contents of the blocks them-
oai selves are uninterpreted by the log layer.
aity
Striper 2.1 Log Layer
D Ne The striped log is the central abstraction in Swarm. The

striped log abstraction and corresponding interface are

implemented in thdog layer. The log layer is respon-

of Swarm is constructed by layering Swarm modules toSlble for forming data V\./n'tten by higher levels into an
append-only log and striping the log across the underly-

obtain the desired functionality for the storage system.; ,
Each layer augments, extends, and/or hides the functiond storage devices. The layers above the log are called

ality of the layers below it. The agent layer is responsi_storageservices(servicesfor short) and are responsi-

ble for implementing the agent infrastructure describedble fqr |mplement|ng hlgh—It?veI sForage gbst'ractlons qnd
in this paper functionality. The log layer’s main function is to multi-

plex the underlying storage devices among multiple ser-
vices, allowing storage system resources to be shared
easily and efficiently.

Figure 1: Swarm Architecture. A particular instance

perform these functions; this results in improved scala-
bility, reliability, and performance over centralized file 21.1 Log Format
servers.

Swarm is a storage system, not a file system, becausthe log itself is an ordered streamtdbcksandrecords

it can be configured to support a variety of storage ab{Figure 2). It is append-only: blocks and records are
stractions and access protocols. For example, a Swarmritten to the end of the log and are immutable.

cluster could simultaneously support Sun’s Network File

System (NFS) [14], HTTP, a parallel file system, and Block contents are service-defined and are not inter-
a specialized database interface. Swarm accomplishgwreted by the log layer. Once written, blocks persist
this by decoupling high-level abstractions and function- until explicitly deleted, though their physical locations
ality from low-level storage. Rather than providing these in the log may change as a result of cleaning or other
abstractions directly, Swarm provides an infrastructurereorganization. New blocks are always appended to the
that allows high-level functionality to be implemented end of the log, allowing the log layer to batch together
above the underlying log abstraction easily and effi-small writes into fragments that may be efficiently writ-
ciently. This infrastructure is based on layered modulesten to the storage devices. Once written, a block may
that can be combined together to implement the desiredbe accessed using itsg address which consists of a
functionality (Figure 1). Each layer can augment, ex- unique fragment identifier and an offset within the frag-
tend, or hide the functionality of the layers below it. ment. Given a block’s log address and length, the log
For example, an atomicity service can layer above thdayer retrieves the block from the appropriate storage de-
log, providing atomicity across multiple block writes. In vice and returns it to the calling service. When a service
turn, a logical disk service can layer above this extendedstores a block in the log, the log layer responds with its
log abstraction, providing a disk-like interface to the log log address so that the service may update its metadata
and hiding its append-only nature. appropriately.

Swam Rexxd J—M tents of the blocks that it stores, so without help from
baa o the services that created the blocks, it does not know
how to organize them in the log. To address this prob-
M e Setors (}H Seen H s H s W lem, the log layer provides aordered setsabstraction
that allows services to express block layout preferences.
Each set contains a list of blocks that should be clustered
together in-order in the log. The services that are using
the log create the sets and assign blocks to them. A ser-
vice can create as many sets as it likes, and assign an
arbitrary number of blocks to each set.

Agents O—

To store blocks in the log, the service submits the sets
containing the blocks to the log layer. The log layer
Figure 3: Record Format Each record contains a packs the sets into log fragments so that no set spans a
pointer to an associated data block (if any), a variablefragment boundary. If a set is too large to fit into a frag-
number of sections in which each service stores servicement it must obviously span a boundary; the log layer
specific recovery information, and references to eachsimply splits an oversized set arbitrarily into sets that fit
agent that has been attached to the record. into fragments. A service that wishes to avoid this can
do so by ensuring that every set fits into a fragment.

Reccr)]rds are ut;::,]edI to trecovder ;romﬂC“entt Cr?sne?l’- An some cases, a service may want to express layout poli-
cras cau_se§ € 10g to end abruptly, potentially 1eav-yaq 14t require blocks to appear in multiple sets. For
ing a service’s data structures in the log inconsistent. A

d tains inf i " ¢ example, a file system might use a set to specify that the
record contains information necessary 1o recover oMy, ,.\.¢ of 4 file should be laid out consecutively and con-
the crash, enabling services to repair inconsistencies b,

: L }fguously, and use another set to specify that all files in
re-applying the state changes indicated by the record§ne same directory should be clustered together. In this
(Figure 3). For example, a file system might append

ds to the | it verf high-level i situation, blocks will be members of a file set and a di-
records 1o the log as 1t performs high-level opera Ionsrectory set. Swarm attempts to pack all sets with blocks

that involve changing several data structures (e.g., % common into the same log fragment, thus ensuring

happens during file creation apd deletion). Dur.|n9 "€ that blocks are clustered properly. If the sets do not all fit
play, these rec_ords allow the T'Ie system to easﬂy re.dolnto a fragment, then Swarm is forced to split the blocks

_(or undo) the hlgh—leve! operatu_Jns. Records are |mpI|c-0f some sets across fragment boundaries. In this case,
itly deleted bycheckpointsspecial records that denote oihe set priorities are used to decide which set a block is

consistent states. The log layer guarantees atomicity lustered with, and which sets are split. For example,

Irecord mrlies aqd preserves thte oadter of Irecct);ds n ttr;%iving a file set higher priority than a directory set indi-
09, so Ihat sefvices are guaranteed to repiay them In eates that it is more important to cluster the blocks of a

correct order. file than it is to cluster files in the same directory. If all
the files in a directory cannot fit in the same fragment,
then the directory set is split so that some of the files are
2.1.2 Log Layout stored in different fragments.

As applications and storage services write data to! "€ 109 layer uses the following algorithm for placing
Swarm, the log layer caches the blocks in memory an _Iocks in tht_a !og based on set members.h|p and priori-
writes them to the log in batches. As the log layer cre-ties, and splitting sets \.Nh.en necessary. First, the sets are
ates the log from the blocks in the cache, it must makerdered from lowest priorityl(to highest (V). The sets
decisions about how the blocks are organized in the log*ith Priority V are packed into log fragments so that two
Proper data layout is important, since it affects the per_sets are placed in tht_e same fragment if there is a pnc_)nty
formance of subsequent log accesses. Blocks that ard — 1 Set that contains blocks from both of the priority
accessed together but distributed throughout the log ard’ SEts- Once the blocks in the priorily sets have been
much slower to access than if they were clustered toP2cked, the blocks in the priority’ — 1 sets are packed
gether, due to the high cost of disk seeks and lost oppor?Y considering common membership in prioriy — 2
tunities to perform large data transfers. sets, and so on. For example, if each priofifyset con-
tains blocks from the same file, and each priofity- 1

The log layer has no implicit knowledge about the con- set contains blocks from files in the same directory, then

the algorithm packs file sets into the same fragment iftypedef Status (égentFur)c) (In_terf*ace “iPtr,
they have blocks belonging to the same directory set. RecordRef *recordList, void *agentData);

Packing sets into fragments according to priorty ensured” "€gister an agent */

that the log layer favors splitting lower-priority sets over Status

higher-priority. If the same block appears in multiple RegisterAgent(Agent_Interface *agentPtr,
sets with the same priority, then one of the sets is ar-- ¢har *name, AgentFunc *func,
bitrarily chosen and the others ignored. Intuitively, this int agentType, int flags,
indicates that it is equally important that the block be void *agentData, Agentld *id);
clustered with the other blocks in the different sets, so

the log layer is free to choose any set that it wants. If/* attach an agent to a record */

the service has a preference, it should use the set priorit§tatus
mechanism to express it. AttachAgent(Agent_Interface *agentPtr,

Record *record, int level, Agentld id,
int flags, void *recordData);

/* invoke all agents of a given type */

Status

InvokeAgents(Agent_Interface *agentPtr,
Record *record, int agentType);

3 Agent Infrastructure

Swarm provides an infrastructure for building storage

services on top of the striped log, allowing applications

to tailor the storage system to their exact needs. Swarnfrigure 4: Agent Routines The agentData is an

is implemented as a collection of modules that are lay-opaque data field that is specifiedRegisterAgent

ered to build storage systems in much the same wayhen the agent is created, and passed to the agent when

that protocols may be layered to build network commu- it is subsequently invoked. ThecordData is speci-

nications subsystems [7]. Each module in Swarm im-fied when the agent is attached to a record, and is avail-

plements a storage service that communicates with thable to the agent when it processes the record. The

lower levels of the storage system through a well-definedevel parameter specifies the service’s level in the

interface, and exports its own well-defined interface to Swarm stack.

higher levels. Storage systems are constructed by layer-

ing the appropriate modules such that all interfaces be-

tween modules are compatible. and contiguously. It does not tell the log layer why they
should be stored that way, so the log layer has no idea

To provide a clean separation between layers, Swarm alunder what conditions the set memberships remain valid.

lows storage services to attaahentsto the records that Instead of augmenting the set abstraction with attributes

move up and down the service stack. Agents are prothat communicate these sort of policies to the log layer,

grams that are invoked at various points in the record’sSwarm uses agents that codify the policies for placing

lifetime to influence or control how the record and its as- blocks into sets.

sociated data block are managed in the storage system.

Agents allow services to inject service-specific function- Agents implement policies, and express them by creat-

ality into the lower levels of the storage system, and toing sets. Sets are only used to place the block in the log

do so in a way that does not require the lower levelsonce, after which they are discarded. If a block needs

to have any knowledge about how the storage servicgo be rewritten to the log (e.g. because it was modi-

works. For example, agents allow Swarm to implementfied), its agents are again invoked to assign the block

application-specific data layout policies without knowl- to sets. Agents not only provide a convenient decou-

edge of application access patterns, and to update applpling of mechanism and policy, but also provide a much

cation metadata without knowledge of application meta-more powerful mechanism for specifying policy than the

data structures. ordered sets themselves, since an agent can take into ac-
count the current state of the system each time a block is

Agents allow mechanism to be effectively and efficiently written.

decoupled from policy in the implementation of storage

services. The mechanism for organizing blocks in theThe agent infrastructure is implemented in thgent

log is the ordered sets abstraction. A set tells the logayer. The agent layer is responsible for flushing the

that the blocks it contains should be stored consecutivelycache and invoking service-provided agents to assign the

blocks and records in the cache to ordered sets. Theusly and in-order. The layout agent can use whatever
agent layer provides an interface for services to createnethod it chooses to allocate blocks to sets. For exam-
agents and attach them to records (Figure 4). Althougtple, a layout agent for a file system may assign blocks
each record could have its own unique agents, typicallyfrom each file to a different set, in the order in which
a single agent will be attached to multiple records thatthey appear in the file. This ensures that file blocks are
should be handled similarly. laid out contiguously and in-order.

Agents introduce a potential security hole, since they runTo simplify the implementation of higher-level services
inside the Swarm environment and affect Swarm’s func-that do not care about layout, the agent layer provides
tionality. Without proper precautions, a buggy or ma- a default layout agent. This agent simply assigns all
licious agent could corrupt data structures belonging torecords to the same set, creating a new set when the cur-
other services or Swarm itself. Swarm must be able tarent one reaches the size of a fragment.

protect itself from agents, and agents must be able to

protect themselves from each other. Swarm must also

ensure that agents do not consume an undue amount &1 2 Commit Agents

resources. These concerns are addressed in Section 3.5.

The commit agent for a record is invoked once the raw
3.1 Agent Types log layer has placed a record’s set in the log, and has

therefore committed to writing the record’s block at a

particular log address. When it is invoked, the agent

The agent layer implements four native types of agents:'s provided with the block’s record and the log address

layout commit store andreplay. Layout agents are in- where it will be written. The commit agent typically uses

voked when the agent layer flushes the cache, allowingg:l)scll? fogfgigrfplf:d:tgoa,:mZtgsrit?;?Zt ;ﬁ;eg;?et:qe

services to specify a layout policy for the records and X . -

: : . would update the file’s inode and indirect block meta-
blocks being flushed. Commit agents are invoked afterOI ta to cpontain the new log address for the data block
the log layer has assigned a log address to a record antt ’
its associated block, allowing the service to update itsahe agent layer also provides a default commit agent
metadata to reflect the new address. Store agents arein- _. "~ o . . ;
voked after the record and its associated block have beeﬁc:ailrtTr:F()allzs:rglgaet;rlgean;ii?gulzg ;jlgfeigggt ;%uiltr i?)
written to the log, allowing the service to clean up any dates them to contain the block’s address T’his is ade-
record state. Replay agents are invoked when replayin%1uate for services with simple metadata '
records after a crash, allowing services to take actions P ’

appropriate for crash recovery.

The agent layer also provides facilities for services to3:1.3 Store Agents
define new types of agents and cause them to be in-

voked when appropriate. This functionality is used by The store agent is invoked after a record and its associ-

the cleaner, for example, to create a new type of agenkeq data block have been successfully stored in the log.

that handles cleaning a block. Typically, a store agent is responsible for cleaning up the
block’s state, for example, by removing the block from
the cache. This cannot be done until the block has been

3.1.1 Layout Agents stored. As another example, a synchronous block write
can be implemented by registering a store agent on the
block before submitting it to the log layer. When the

Layout agents are responsible for deciding how blocksagent is invoked, it wakes the thread that is writing the
and records should be laid out in the log. A layout agentp|ock.

is invoked when blocks are flushed from the cache and
written to the log. When it is invoked, the layout agent

is provided a list of all records to be written that have the3
agent attached to them. The agent processes the list and
puts the records into ordered sets. The log layer uses the
ordered sets to determine where blocks are placed in th&he replay agent is invoked when replaying the log dur-
log; it attempts to store the blocks in each set contigu-ing server recovery. The agent is given records from the

1.4 Replay Agents

log in the order in which they appear in the log. The re- writes. This agent is attached to a record when it is sub-

play agent is often similar to the commit agent in that it mitted, after which the submitting thread blocks. The

updates the block’s metadata to reflect its position in theagent is invoked once the block is stored in the log, and

log. Processing isn’t exactly the same because the servétrresumes the waiting thread. Since it is transient, it is

may have crashed, causing the log to be truncated, whicbnly invoked once, as desired, and it does not survive

in turn may affect how the records are handled. machine reboots, which is also desirable since the wait-
ing thread will not either.

3.2 Agent Interface

3.4 Overhead

When the agent is invoked, it is passed a list of records
to which it was attached. Furthermore, when an agent

is attached to a record, a fixed-size opaque data field
(calledrecordData) can be provided that is stored in | € agent layer does add overhead to the storage func-

the record and available to the agent when it processelions provided by Swarm. Agents are invoked when
the record. The agent is also passedagentData records are laid-out, committed, stored, replayed, and

parameter that was provided when the agent was creCleaned. Of course, different agents perform different
ated. ThexgentData contains agent-specific informa- amounts of computation, so it is impossible to character-
tion that also helps the agent perform its function. ize the overall performance effect of agents. The intentis

that the overall system performance improvements that

agents enable offsets the overhead of running the agents.
Section 4 describes the different agents developed and
how much they improved system performance.

Agents are invoked beginning with the lowest-level ser-
vice and working toward the highest (i.e., in the reverse
order in which they were attached to the record). Con-
ceptually, agents are attached to records as they pass o .

down through the layers, and the agents are invoked a§"" 29€nt is invoked when a particular event occurs to
the response passes back up through the layers. Swarfh€cord. The agent is expected to respond to the event
does not have provisions for allowing different agent or- °Y manipulating the state of the system, e.g. by adding
derings, perhaps specified when the agents are created B¢ record to a set, or updating metadata. For this rea-
when they are attached to records. A general facility forSON: 2gents are invoked synchronously by Swarm. The
this would require inter-layer knowledge to allow their ©verhead of invoking an agent consists of the cost of a

agents to be ordered properly. Instead, Swarm invoke®@rocedure call, plus the cost of packaging up the records
the agents in layer order. on which the agent should act. We measured the cost of

invoking a null agent (one that does no work) at less than
1 microsecond.

.3 Agent Persisten
33 gent bersistence We also measured the overhead of the default layout
and commit agents described in Section 3.1.1 and Sec-
tion 3.1.2, respectively. These default agents are proba-

Typically, an agent ipersistent in that it remains at- s
tached to a record until the record is deleted. A persis—bly the minimal useful agents for those agent types. The

- . .default layout agent requires 21 microseconds per block,
Fent agentis stored in th.e log by the agent layer SO that Igfwhich %emor%/ aIIocgtion consumes 16 microgeconds
:ﬁrel?ttr?gif;ecii?é Tei(jygz Cfsrgiéﬁn?ecfg tl): n;voeknetand manipulating the set data structures 4 microseconds.
' pie, replay agents, memory allocation overhead is clearly too high, and

are always persistent because they are only invoked afi's something we plan to rectify. Once that is fixed, the

ter a crash and therefore must survive the crash. LayOUtost per block for the default layout agent should be

;%iztshiruet ?llseoblljosglil;l)llifgtairr:jtggélf 'S;iti??gj;zr']lvskeéround 5 microseconds. The default commit agent does
9 " much less work than the layout agent, and therefore re-

. ires only 4 microseconds per block.
The agent layer also suppotti®nsientagents, agents qul y ! P

that are invoked only once and not retained across ma-

chine reboots. These agents are used for processing tha'{1 o A dinth d
; All performance numbers presented in this paper were measure

?ShOUld not be done after a reboot, such as cleanlng u%n a 166Mhz Intel Pentium Pro PC with 64MB of RAM, running

In-memory C!ata structures. .The best example of a trang jnuy version 2.2.16. The Swarm log is stored on a Quantum Fireball

sient agent is the one that is used for synchronous logE4.3 SCSI disk connected to an Adaptec 2940W SCSI host adapter.

3.5 Protection and Security their use.

Swarm must ensure that agents do not interfere witf?-1 Cleaner
each other, or the proper functioning of Swarm itself. It

must also ensure that they do not consume an inordinate . ther | tructured st ‘ S
amount of resources. There are many possible solutionés In other log-structured storage Systems, swarm uses a

to these problems, since these same issues arise in malfi anerthat periodically garbage-collects unused blocks
contexts. One is to write the agents in a type-safe land the log to make room for new segments [13]. In
guage, such as Java. The use of such a language Wou%warm,_the cleaner |s.|mplementvlad asa Iayer above the
limit the agents to accessing only those data structuret?9: hiding the log's finite capacity from higher-level

to which they are granted access; this would prevent aryervices. The cleaner monitors the blocks and records

agent from accessing anything but its own blocks. Thewritten to the log, allowing it to track which portions
of the log are unused. The cleaner is also responsible

use of Java will likely reduce agent performance, but this i)

is probably acceptable since the agents are invoked eﬁfé)r free space ma}r)agement, gnforcmg quot'as on higher-

part of a relatively slow I/O operation. Another down- evel SErvices, |n|t|e}t|ng cleaning to move live data out

side of this approach is that it requires a Java Virtual©' underutilized stripes so that the space they occupy
can be used for new log data, and reserving the appro-

Machine inside of the Swarm infrastructure, which in- ~< ber of stri hat cleani I K
creases Swarm'’s resource requirements and complexit)P.”ate number of stripes so that cleaning always makes
progress.

the agents in a separate process, using proof-carryin Swarm, the cleaner operates by attaching agents to

code [10] to verify the agents’ correctness, or using soft- ecords as they are submﬂtgd to the ng. The cIeangr
ware fault isolation [16, 15] to isolate the agents. All of USES Store agents to track which blocks in the log contain
these should be acceptable, although running agents in Ig/e dﬁt‘z and Wh'(_:h have bc(jaen dgleted.hThel store,a%ent
separate process will likely have high overheads. attached to creation records updates the cleaners data

structures to indicate that the associated blocks contain
1Jive data; conversely, the store agent attached to deletion

Our current prototype does not protect against maliciou ;
or buggy ag?entS' ¥§r expediencli/ the ag%nts are writter{ecords marks the associated blocks as deleted, and also
' i deletes stripes that become empty as a result.

in C and no mechanisms are employed to isolate them:

When an agent is invoked it is passed a list of blocks he | ¢ lied
to which it has been attached. The agent has no direc-{ € cleaner aiso c_reates a new type of agent called a
leaningagent that is used by the upper layers to clean

access to blocks belonging to other services and agent

preventing it from doing so trivially. Nonetheless, a de- IOCkS_' Th? cleaner invokes a record's cleaning aggnt
ployed version of Swarm’s agent infrastructure would when it decides the block must be cleaned. The cleaning

require protection mechanisms. Software fault isolation29€Nt takes whatever actions are necessary to clean the

is probably the best match for our current prototype as ithOCk' For example, the cleanlng ag_ef“ for the _Stmg file
allows the agents to be written in C, but still isolate them. System cl_ean_s a bI,OCk by rgad{ng It into ,the file cache
Software fault isolation has the added advantage that thé"nd marking it as d!rty, causing it t_o be written back out
Vino project has already used it to isolate untrusted codd® the log the next time the cache is flushed.

inside an operating system kernel, allowing us to lever-

age that body of work when applying it to Swarm. 4.2 Sting

Other possible protection mechanisms include running}lj’|

Sting is a local file system that we have implemented as
4 Examples part of Swarm (Figure 5). When loaded into the Linux
kernel, it allows application programs to access standard
UNIX files and directories that are stored in Swarm.
We have implemented several types of agents in thesting is log-structured, and uses a variety of agents to
Swarm prototype. These agents are linked into the Linuxensure that data are stored in the log efficiently, and that
kernel module, and are attached to records by servicemetadata are kept up-to-date.
as part of each service’s processing of the record. This
section describes the services to which we added agentSting uses layout agents to implement a data layout pol-
how they use agents, and what benefits they derive fronicy similar to that of FFS [9]. Sting uses two layout

Application Layer

A

VFS

N

Ext2 Sting
File Syzem File Sygem
A A
\ 4
Buffer Cache
A
Y Y
Dik Driver Nework Driver

agents: FileLayout and DirectoryLayout. The FileLay-
out agent creates a set for each file, putting the blocks of
the file into the set in the order in which they appear in
the file; this tells the log layer that a file’s blocks should
be laid out in the log contiguously and in-order. The
DirectoryLayout agent creates a set for each directory,
putting all blocks belonging to files in the directory into
the set; this tells the log layer that files from the same di-
rectory should be clustered together in the log. The sets
created by the DirectoryLayout agent have lower prior-
ity than the FileLayout agent; this tells the log layer that
it is more important to keep the blocks of a file together
than it is to cluster files from the same directory.

Sting uses two commit agents for metadata manage-
ment: a DataCommit agent for data blocks and indirect
blocks, and an InodeCommit agent for blocks that con-
tain inodes. The DataCommit agent stores the address of
the block in the proper inode or indirect block, reading

it into the cache if necessary. The InodeCommit agent
stores the inode’s log address in the inode map.

The Sting store agent is responsible for cleaning up after
a dirty block has been written, by releasing alleseint
locks and marking the block as clean. The Linux page
cache is then free to replace the block as necessary.

The Sting replay agent performs much the same func-
tion as the traditional Unitsck program that fixes file
system metadata after a crash. During normal operation,
file namespace operations such as creating a file or di-
rectory, creating a hard link, or unlinking a file or direc-
tory generate records that are stored in the log. During
replay, the replay agent processes Sting’s records from
the log in order, using them to reconstruct the correct
namespace.

Figure 5:Sting. Sting is implemented as a Swarm mod- Sting’s cleaning agent cleans blocks by reading them
ule. The entire Sting/Swarm system is loaded into theinto the cache and marking them as dirty. The file
Linux kernel below the VFS layer and above the buffer cache will then write them back out to the log at a later
cache and network drivers. Sting uses the buffer cach@me. As a sanity check, the cleaning agent first cross-
to access local disks, and the network driver to accessgeferences the block with the file metadata to verify that
remote Swarm storage servers.

it is still in-use. Ifitisn't, it is simply deleted.

4.3 Simple Logical Disk

The simple logical disk (SLD) service presents the ab-
straction of a logical disk, one in which blocks are ac-
cessed via fixed addresses. The SLD insulates higher-
level services from the log by maintaining a mapping
from SLD addresses to log addresses. When a block is
moved within the log, this mapping changes, but not the

SLD address. This allows traditional file systems, suchit is invoked, it creates a set that contains all the blocks
as ext2, to run on Swarm without modification. for the web page and its images. The blocks of the web
page are put into the set first, followed by the blocks of
The SLD agents are responsible for maintaining thethe images, in the order in which the links to the images
mapping table. SLD uses two commit agents to accom-appear in the page. This causes the log layer to clus-
plish this. The BlockCommit agent is attached to datater the blocks on the disk in the order in which they are
blocks, and is used to update the block’s log address ifikely to be accessed.
the mapping table. The TableCommit agent is attached
to blocks that contain the mapping table itself, and isWe performed a simple experiment to demonstrate such
used to store the table block's address in the SLD suan agent is easily implemented, and can result is sig-
perblock. This is a good example of a service that hasificant performance gains. The agent consists of only
two types of metadata (the mapping table and the suabout 300 lines of C code. For the experiment, a process
perblock), and that uses different agents to keep the twaeads two HTML files, each containing four embedded
up-to-date. images. This simulates a web browser viewing the two
pages. The pages and theirimages are stored in the same
SLD also attaches a replay agent to all records that readdirectory. The default Sting agents will cluster all of the
the SLD superblock and mapping table from the disk andblocks together because the files are in a single directory,
updates them with the log addresses of the blocks beingput in an unspecified order. Ext2 will store the blocks
replayed. similarly.

With 4KB images, the pages and images are read a factor
4.4 Application Layout Agents of 1.7 times faster using the web-layout agent than Sting

alone, and 7.7 times faster than ext2. Larger images re-

duce the benefit of the smaller seek times the agent pro-

Swarm’s agent mechanism is also available to applica¥ides, but with 64KB images the read time was still 1.3
tion programs. This is useful, for example, to application times faster than Sting alone, and 1.9 times faster than
programs that store files in Sting but want to influence®xt2. These experiments are not intended to be definitive
how Sting organizes blocks in the log. By attaching its On how to organize web pages on disk, but do demon-
own layout agent to records, an application can imple-Strate that agents allow applications to deviate from the
ment block layouts that differ from Sting’s. In this sec- default layout policies, and that doing so can result in
tion, we present two sample application layout agents: substantial performance gains.

web page agent and a read-ordered agent. The web page

agent clusters web pages with their embedded images,

and _the read-ordered agent lays out blocks according t91.4.2 Read-Ordered Layout

previously-observed read access patterns.

The read-ordered layout agent puts blocks into sets in
4.4.1 Web Page Layout the order in WhiCh they were pre_/iousl_y read. qut files
are read sequentially and in their entirety, so this agent
might seem uninteresting, but it does improve start-up
HTML pages often contain embedded images. Thesaerformance for executables, whose pages are typically
images are referred to by URL in the HTML document, not read in-order.
and are stored in a separate file in the web server’s file
system. If a browser reads a page, it is almost certairThe read-ordered agent has two components: a facility
to read the embedded images too. The web page layouhat records the read pattern, and the layout agent itself.
agent attempts to cluster pages together with the embedn our current prototype, the recording is turned on and
ded images they contain. off by the user. The recorded access pattern is then used
by the layout agent to order the blocks in the file the
The simplest way to determine the images embedded imext time they are cleaned. The layout agent itself is rel-
a page is to parse the page’s HTML. The web page lay-atively simple, consisting of about 250 lines of C code.
out agent relies on a user-level program to parse the welt reads the recorded access pattern for a file and puts
pages and present the image information to the agent ithe file’s blocks into sets in the order in which they were
an easily processed form. The layout agent is attached toead. This causes the log layer to store the blocks in
all the records for the web pages and images, and whethe same order. We measured the improvement in start-

up times of three applications, emacs, gdb, and jikes (dhow Sting is architected to reach this goal.
Java compiler). Using the read-ordered agent improved

the emacs start-up time by a factor of 1.7 (from 1.2 to

0.7 seconds). Similarly, gdb improved from by a fac-

tor of 1.67 (0.5 to 0.3 seconds), and jikes by a factor ofg Related Work

1.5 (0.3 to 0.2 seconds). We consider these respectable

performance improvements from such a simple agent.

Swarm’s agent infrastructure makes this possible, by a"Swarm is log-based, and as such is heavily influenced

lowing the agent to organize the blocks according to past[Jy the Log-Structured File System (LFS) [13]. Swarm's

access patterns. use of a log as the only storage abstraction mirrors LFS,
and Sting’s use of inodes and an inode map are also bor-
rowed from LFS. Swarm differs from LFS in the use of
agents to affect log layout, metadata management, and
5 Status cleaning. This allows the file system, Sting, to be de-
coupled from the storage system, Swarm. In LFS, these
two functions are tightly coupled. This decoupling is
The agent infrastructure and services described in thislso one of the features that distinguishes Swarm from
paper have been implemented in the Swarm prototypeZebra [6].
with the exception of persistent agents. The reference to
a persistent agentis stored in the records, but the agent iDrganizing data on disk to improve access performance
self is not stored in the log. Instead, the system relies orhas a long history and many examples. Probably the
the service or application to re-register the agent with theclosest to our work are the layout policies of the Fast
agent layer on system startup. This solution assumes thatile System (FFS) [9]. Sting’s layout agents’ policies
agents’ identifiers and functionality doesn’t change be-are inspired by FFS, in that both attempt to lay out files
tween reboots, which may not be reasonable. Requiringontiguously and cluster files from the same directory
agents to be re-registered is not a problem for servicesogether. Sting differs from FFS slightly in that FFS
that are initialized on startup, such as Sting, but doesn’has an upper limit on the number of file blocks it will
work well for agents that were created by applications.store contiguously before moving to a different area of
We are currently working on adding the functionality to the disk. For simplicity, we did not implement such a
store persistent agents in the log. limit in Sting.

On arelated note, there is a tradeoff between how muclOther file systems have allowed applications to specify
functionality should be encapsulated in the agent, anddata layout, typically through small, notational program-
how much the agent can get from its environment. En-ming languages. MPI-IO [3], for example, allows each
capsulating all functionality in an agent makes the agenfile to have layout attributes (info) such as the stripe
self-sufficient, but increases the size of the agent andvidth, size of each striping unit, and the size of each ar-
may complicate the design and implementation of theray element for files that store arrays. This information
service. On the other hand, a minimal agent is smallerallows the underlying storage system to store the file ef-
and probably doesn't affect the service's organizationficiently, but has limited semantics. The Scalable I/O
as much, but it requires a richer environment in which File System [1] has similar functionality and limitations.
to run. As an example, the Sting agents interpret and

modify Sting’s metadata, such as inodes, indirect blocks Extensible operating systems allow entire subsystems to
and directories. In the current implementation, the Stingbe added and replaced, including file systems. Typically,
agents rely on routines in the Sting service to performthe entire file system is installed as a whole, which does
much of this work. This reduces the agent complexity, allow file system functions such as layout to be tailored
but requires that the Sting service exist in order for themto an application’s needs, but is a very heavy-weight
to run. This violates the premise of persistent agentsmechanism for doing so. Linux provides loadable kernel
that they will continue to do their work after the service modules that allow entire file systems to be loaded in this
that created them ceases to exist. Ideally, one should bfashion. Mach provides for external pagers [11], which
able to configure a system without Sting, yet continueare user-level daemons that move virtual memory pages
to have the cleaning agents attached to Sting’s recordbetween memory and disk. This mechanism could also
function. This does not work in the current system. be exploited by an application to affect layout policies,
We might be able to simply reorganize functions so thatbut is also a heavy-weight solution. The Xok exoker-
the agents are self-contained, but it may take refactoringnel [8] supports user-level library file systems (libFSes).

The underlying disk storage is multiplexed among libF- voked when its associated event occurs (e.g., the block
Ses via XN, the exokernel's in-kernel storage systemis assigned a log address), allowing the service to take
Each libFS is responsible for managing its portion of service-specific actions in response. In this way, Swarm
the underlying storage, allowing it to implement its own can be organized in layers, such that the higher lay-
metadata and layout policies. XN provides protectioners augment the functionality of the lower layers, with-
between libFSes using untrusted deterministic functionsput the lower layers having to know anything about the
which interpret libFS-specific metadata for XN. These higher layers. For example, the cleaning layer can clean
functions allow XN to determine which blocks belong the blocks belonging to higher layers without knowing
to which libFSes. Swarm uses ACLs for protection, al- implicitly how the blocks should be organized on disk,
though a discussion of this topic is outside the scope obr the format of the block’s metadata.
this paper. Xok is similar to Swarm in that it multiplexes
the underlying storage among multiple storage servicesyWe have implemented several services that use agents.
but has very different mechanisms for doing so. The cleaner not only uses agents to implement clean-
ing, but also creates a new type of agent, a cleaning
The Logical Disk (LD) [2] aggregates multiple physical agent, that higher-level services can use to influence the
disks into a single virtual disk, thus hiding the storagecleaner. The Sting file system uses agents to imple-
system’s organization from the file system that is usingment basic file system functionality, including laying out
it. LD provides a list abstraction that helps accomplisha file's blocks contiguously, and updating metadata to
this. LD attempts to cluster blocks on the same list to-record block locations. The SLD service uses agents
gether, allowing the file system to express relationshipgo implement a simple logical disk. Finally, we have
between blocks and how they should be stored. Simiimplemented several application-level layout agents to
larly, the block lists themselves can be placed in a largeldemonstrate that applications that use a file system can
list, expressing locality between lists. LD attempts to use agents to influence how the file system organizes
store lists that are near one another in the meta-list closblocks on disk. The web agent clusters a web page
together on the disks. Swarm’s set abstraction is similaand its included images on the disk, improving web
to LD’s lists, but Swarm’s agent abstraction has no par-server performance, and the read-ordered agent orga-
allel in LD. LD has no inherent mechanism for creating nizes blocks in the order in which they are accessed, im-
and changing lists. proving read performance. Both of these agents demon-
strate the value of agents in file system design.
Active disk technology [12] makes use of processing
power on the disk drive to run application code. This can
dramatically improve application performance by mov-
ing processing closer to the disk, avoiding 1/0 bus bot-Acknowledgments
tlenecks, and by taking advantage of the inherent par-
allelism in running application code on multiple disks.

The active disk work thus far has been confined to run-we would like to thank Tammo Spalink and Rajesh

ning application algorithms on the disk drives; Swarm’s Sundaram for their help in designing and implementing
agent technology focuses on using agents to influenc&warm.

the functioning of the storage system itself.

_ References
7 Conclusion

[1] Peter F. Corbett, Jean-Pierre Prost, Chris

]))) Demetriou, Garth Gibson, Erik Reidel, Jim
Agents provide a flexible mechanism for services and Zelenka, Yuqun Chen, Ed Felten, Kai Li, John

applications to implement policies that affect low-level Hartman, Larry Peterson, Brian Bershad, Alec
storage system functions, such as data layout, metadata \yoiman. and Ruth Aydt. Proposal for a com-
management, and crash recovery. Swarm must multi- mon parallel file system programming interface.

plex a single log between multiple services efficiently, http://www.cs.arizona.edu/sio/apil.0.ps, Septem-
and do so without understanding the internals of those ber 1996. Version 1.0. ’

services. Agents provide the means of doing this. A ser-
vice can attach a service-specific agent to a record when[2] Wiebren de Jonge, M. Frans Kaashoek, and Wil-
it is passed to the log for storage. The agent will be in- son C. Hsieh. The logical disk: a new approach

(3]

[4]

to improving file systems. IfProceedings of the
14th ACM Symposium on Operating Systems Prin-
ciples (SOSP '93)pages 15-28, Asheville, North

Carolina, December 1993.

Message Passing Interface Forum. Mpi-2:
Extensions to the message-passing interface.
http://www.mpi-forum.org/docs/mpi-20.ps.Z.

[13]

Garth A. Gibson, David F. Nagle, Khalil Amiri,
Fay W. Chang, Eugene M. Feinberg, Howard Gob-
ioff, Chen Lee, Berend Ozceri, Erik Riedel, David
Rochberg, and Jim Zelenka. File server scal-
ing with network-attached secure disks. Mno-
ceedings of the 1997 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling
of Computer Systemdune 1997.

[5] John H. Hartman, lan Murdock, and Tammo

[6] John H. Hartman and John K. Ousterhout.

[7]

(8]

9]

[10]

[11]

Spalink. The Swarm scalable storage system. In15]

Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems (ICDCS
'99), June 1999.

The
Zebra striped network file systemACM Trans-
actions on Computer Systemi$(3):274-310, Au-
gust 1995.

Norman C. Hutchinson and Larry L. Peterson. The
x-kernel: An architecture for implementing net-

work protocols. IEEE Transactions on Software

Engineering17(1):64—-76, January 1991.

M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Htctor M. Briceio, Russell Hunt, David
Mazieres, Thomas Pinckney, Robert Grimm, John
Jannotti, and Kenneth Mackenzie. Application per-
formance and flexibility on exokernel systems. In
Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP '9Fages 52-65,
Saint-Mab, France, October 1997.

Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system for
UNIX. ACM Transactions on Computer Systems
2(3):181-197, August 1984.

George Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. IRroceedings

of the Second Symposium on Operating Systems
Design and Implementation (OSDI '96pctober
1996.

R. Rashid, A. Tevanian, M Young, D. Golub,

R. Baron, D. Balck, W. J. Bolosky, and J. Chew.
Machine-independent virtual memory manage-
ment for paged uniprocessor and multiprocessor

[12]

[14]

[16]

architectures. IEEE Transactions on Computers
37(8):896—908, August 1988.

Erik Riedel. Active Disks - Remote Execution for
Network-Attached StoragePhD thesis, Carnegie
Mellon University, November 1999. Available as
Technical Report CMU-CS-99-177.

Mendel Rosenblum and John K. Ousterhout. The
design and implementation of a log-structured file
system.ACM Transactions on Computer Systems
10(1):26-52, February 1992.

Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and implemen-
tation of the Sun Network File System. Rro-
ceedings of the Summer 1985 USENIX Conference
June 1985.

Margo |. Seltzer, Yasuhiro Endo, Christopher
Small, and Keith A. Smith. Dealing with disaster:
Surviving misbehaved kernel extensions. Aro-
ceedings of the Second Symposium on Operating
Systems Design and Implementation (OSDI,96)
October 1996.

Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient software-
based fault isolation. IfProceedings of the 14th
ACM Symposium on Operating Systems Principles
(SOSP '93)December 1993.

