
Instruction Coalescing for 16-bit Code

Arvind Krishnaswamy Rajiv Gupta

Abstract

In the embedded domain, memory usage and energy consumption are critical
constraints. Embedded processors such as the ARM and MIPS provide a 16-bit
instruction set (called Thumb in the case of the ARM cpu family) in addition to the
32-bit instruction set to address these concerns. Using 16-bit instructions one can
achieve code size reduction and I-cache energy savings at the cost of performance.

This paper presents a novel approach that enhances the performance of 16-bit
Thumb code. We have observed that throughout Thumb code there exist Thumb
instruction pairs that are equivalent to a single ARM instruction. We have devel-
oped enhancements to the processor microarchitecture and the Thumb instruction
set to exploit this property. We enhance the Thumb instruction set by incorporat-
ing Augmenting eXtensions(AX). A Thumb instruction pair that can be combined
into a single ARM instruction is replaced by an AXThumb instruction pair by the
compiler. The AX instruction is coalesced with the immediately following Thumb
instruction to generate a single ARM instruction at decode time. The enhanced
microarchitecture ensures that coalescing does not introduce pipeline delays or
increase cycle time thereby resulting in reduction of both instruction counts and
cycle counts. Using AX instructions and coalescing hardware we are also able to
support efficient predicated execution in 16 bit mode.

Keywords - embedded processor, 32-bit ARM ISA, 16-bit Thumb ISA, code size,
energy, performance, AX instructions, instruction coalescing.

1 Introduction

More than 98% of all microprocessors are used in embedded products, the most popular
among them being the ARM family of embedded processors [5]. The ARM proces-
sor core is used both as a macrocell in building application specific system chips and
standard CPU chips.[2] (e.g., ARM810, StrongARM SA-110 [3], XScale [4]). In the
embedded domain, in addition to having good performance, applications must execute
under constraints of limited memory and low energy consumption. Dual instruction
set processors, such as the ARM and MIPS, provide a unique opportunity for code
size reduction by supporting a 16 bit instruction set along with the 32-bit instruction
set. The 16-bit instruction provides a subset of the functionality provided by the 32-bit
instruction set. Hence one can achieve good code size reduction using 16-bit code,
but we pay a performance penalty since, for a given program, the number of 16-bit
instructions needed is much more than the number of 32-bit instructions. In this paper

1

we describe a technique, based on the ARM architecture, that reduces this performance
gap between 16-bit and 32-bit code.

1.1 32-bit ARM Code vs 16-bit Thumb Code

Here we illustrate the tradeoffs present in the 32-bit ARM and 16-bit Thumb instruction
sets to motivate our approach. The data in Figure 1 compares the ARM and Thumb
codes along three metrics: Instruction Count, Code size and I-cache fetches. As we can
see, the number of instructions executed by Thumb code is significantly higher even
though the Thumb code size is significantly smaller. The increase in instruction counts
ranges from 3% to 98% while code size reduction ranges from 29.83% to 32.45%. In
prior work [6] it is shown that this substantial increase in the number of instructions
executed by the Thumb code more than offsets the improved I-cache behavior of the
Thumb code. Therefore the net result is higher cycle counts for the Thumb code in
comparison to the ARM code. While we observe that by using Thumb code we nearly
always save I-cache energy as a result of fewer fetches, the increase in instruction
counts increases the energy consumed in other parts of the processor.

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
R

M
 v

s
T

hu
m

b
C

od
e

(N
or

m
al

iz
ed

)

ARM
Instruction Count
Code Size
Fetch Count

Figure 1: ARM vs Thumb Code

On further analysis we were able to determine that the dynamic instruction count
increase is mainly due to increase in three categories of instructions: Branches, ALU
operations, and MOVs. The reasons for increase in these categories are elaborated in
our discussion of the AX instructions. In the above situations we are able to find short
sequences of Thumb instructions that can be easily replaced by shorter sequences of
ARM instructions. One could generate a mixed binary using both ARM and Thumb
instructions, however, the overhead of explicit switching between 16-bit mode and 32-
bit mode for short sequences negates the benefit of mixed code, as has been shown in
[6].

2

1.2 Contributions

This paper presents a novel approach that enhances the Thumb instruction set to en-
able it to perform like ARM code. These enhancements allow patterns of Thumb in-
structions to be translated into ARM equivalents at runtime without requiring explicit
switching of processor mode. We enhance the Thumb instruction set by incorporating
Augmenting eXtensions(AX). Augmenting instructions are a new class of instructions
which are entirely handled in the decode stage of the processor, not going through the
remaining stages of the pipeline. Each AX instruction is coalesced with the following
non-AX instruction in the program during the decode stage of the processor, where
the translation of Thumb instructions into ARM instructions takes place. Thecompiler
replaces patterns of Thumb instructions by equivalent sequences of AXThumb instruc-
tions. Thedecode stageis redesigned to detect augmenting instructions and perform
coalescing to generate more efficient ARM instructions for execution. The distinctive
characteristics of our approach are:

� Coalescing Without Pipeline Delays.When coalescing is performed, no addi-
tional pipeline bubbles are introduced as instruction fetching does not fall be-
hind. When two instructions are coalesced during execution of AXThumb code,
two additional Thumb instructions are available for decoding in the very next
cycle.

� Simple Coalescing Hardware.By placing the responsibility of identifying in-
struction coalescing opportunities on the compiler, AX enables us to achieve
coalescing using simple modifications to the decode stage. While a compiler can
easily recognize coalescing opportunities, and appropriately mark them using
AX instructions, the hardware cannot do so either easily or safely.

� Supporting Predication in Thumb.AX not only incorporates predicated execu-
tion into the Thumb instruction set, but simple support in the decode stage allows
an implementation of predication which is even more efficient than the ARM im-
plementation of predication.

� Avoiding Mode Switching.Our approach does not require explicit switching
of processor modes since the fetched instructions are always 16 bit AXThumb
instructions.

The remainder of the paper is organized as follows. Section 2 describes the concept
of augmenting instructions and the coalescing mechanism for handling these instruc-
tions. We also show how this novel coalescing mechanism can with a minor modifi-
cation allow us to incorporate a highly effective method for executing predicated code.
We also provide details of the set of augmenting instructions we have developed. Sec-
tion 3 presents the results of our evaluation. Conclusions are given in section 4.

3

2 Instruction Coalescing

ARM: sub reg1, reg2, lsl #2
Thumb: lsl rtmp, reg2, #2

sub reg1, rtmp
AXThumb: setshift lsl #2

sub reg1, reg2

To illustrate the key concepts of our approach we use a simple example. In the code
above we show an ARM instruction which shifts the value inreg2 before subtracting
it from reg1 . Since the shift cannot be specified as part of another Thumb ALU in-
struction, as shown above two Thumb instructions are required to achieve the effect of
one ARM instruction. We would like to coalesce the 2 16-bit instructions into 1 32-bit
instruction. While coalescing is relatively easy to carry out, detecting a legal opportu-
nity for coalescing by examining the two Thumb instructions is in general impossible
to carry out. In our example the Thumb code uses a temporary registerrtmp . If in-
struction coalescing is performed,rtmp is no longer needed and therefore its contents
will not be changed. Therefore, at the time of coalescing, the hardware must also de-
termine that the contents of registerrtmp will not be used after the Thumb sequence.
Clearly this is in general impossible to determine since the next read or write reference
to registerrtmp can be arbitrarily far away.

Since the coalescing opportunity cannot be detected in hardware we rely on the
compiler to recognize such opportunities and communicate them to the hardware through
the use of theAugmenting eXtensions(AX). In the AXThumb code the first instruction
is an augmenting instruction which is not executed but rather always coalesced in the
decode stage with the instruction that immediately follows it to generate a single ARM
instruction for execution. In the above example the augmenting instructionsetshift
merely carries the shift type and amount which is incorporated in the subsequent in-
struction to create the required ARM instruction for execution.

We make the design choice that each Thumb instruction can beaugmentedonly
by a single AX instruction. As a result we are guaranteed that an AX instruction is
always preceded and followed by a Thumb instruction. While it is possible to support a
more flexible mechanism which allows an instruction to be augmented by multiple AX
instructions, this is not useful as it does not speed up the execution of the Thumb code.
The reason for this claim will become clear when we discuss the microarchitecture
design in greater detail.

It should be noted that the code size of all three instruction sequences is the same
(i.e., 32 bits); however, only the AXThumb sequence satisfies the desired criteria as it
results in execution of a single equivalent ARM instruction and is made up of 16 bit
instructions. Thus, the AXThumb code is 16 bit code that runs like the ARM code.

We have introduced the basic idea behind our approach. Next we describe in de-
tail the realization of this idea. First we describe the modified microarchitecture that
is capable of executing the AXThumb code in a manner such that coalescing does
not introduce additional pipeline delays. Second we describe the complete set of AX
instructions and the rationale behind the design of these instructions.

4

2.1 Microarchitecture

Our work is based upon the StrongARM SA-110 pipeline which consists of five stages:
(F) instruction fetch; (D) instruction decode and register read; branch target calculation
and execution; (E) Shift and ALU operation, including data transfer memory address
calculation; (M) data cache access; and (W) result write-back to register file. It per-
forms in-order execution and does not employ branch prediction.

A
R
M

D
e
c
o
d
e
r

F

E

T

C

H

M

U

X

T
H
U
M
B

D
e
c
o
m
p
r
e
s
s
o
rib1

ib2

Select and
Fetch Logic

select

fetch

D E C O D E

Instrn.
buffer

1. Thumb

6. Thumb

4. Thumb

3. Thumb

2. Thumb

5. Thumb

F

W

D

D

D

E

E

E

E

F

F

F

M

M

M

M

M

W

W

W

W

W

F D E

D

F

M

E

D

Figure 2: Thumb Implementation.

2.1.1 Instruction Coalescing

Before we describe our design of the decode stage, let us first review the original de-
sign of the decode stage which allows the ARM processor to execute both ARM and
Thumb instructions. As shown in Figure 2, the fetch capacity of the processor is de-
signed to be 32 bits per cycle so that it can execute one ARM instruction per cycle.
In the ARM mode a 32 bit instruction is directly fed to the ARM decoder. However,
in the Thumb mode the 32 bits are held in aninstruction bufferand the two Thumb
instructions that it contains are selected in consecutive cycles and fed into the Thumb
decompressor, which converts the Thumb instruction into an equivalent ARM instruc-
tion and feeds it to the ARM decoder. Since every time a word is fetched we get two
Thumb instructions, fetch needs to be carried out in alternate cycles.

The key idea of our approach is to process an AX instruction simultaneously with
the processing of the immediately preceding Thumb instruction. What makes this
achievable is the extra fetch capacity already present in the processor.

5

ib1

ib2

ib3

F

E

T

C

H

s
t
a
t
u
s

T
H
U
M
B

16

32

32

Shift and
Fetch Logic

Shift

Fetch
buffer
Instrn.

Processor

A
R
M

D
E
C
O
D
E
R

D
E
C
O

R
O
S
S
E
R
P
M

A

16

16

16

AX

A X D E C O D E

X

1. Thumb

3. Thumb

5. Thumb

6. Thumb

F

F

E M W

F

F

F

F

E

E

E

M

M

M

W

W

W

Thumb−D

Thumb−D

Thumb−D

Thumb−D

2. AX

4. AX

AX−D

AX−D

Figure 3: AXThumb Implementation.

The overall operation of the hardware design shown in Figure 3 is as follows. The
instruction bufferin the decode stage is modified to exploit the extra fetch bandwidth
to keep at least two instructions in the buffer at all times. Two consecutive instructions,
one Thumb instruction and a following AX instruction, can be simultaneously pro-
cessed by the decode stage in each cycle. The AXThumb instruction is processed by
theAX processorwhich updates thestatusfield to hold the information carried by the
AX instruction for augmenting the next instruction in the following cycle. The Thumb
instruction is processed by theAXThumb decompressorand then theARM decoder.
The decompressor is enhanced to use both the current Thumb instruction and the status
field contents modified by the immediately preceding AX instruction in the previous
cycle, if any, to generate thecoalescedARM instruction. The status field is read at
the beginning of the cycle for use in generation of the coalesced ARM instruction and
overwritten at the end of the cycle if an AX instruction is processed in the current cycle.
The status field can be implemented as a 32-bit register. Hence during a thread switch
it is sufficient to save the state of this status register along with other state to ensure
correct execution when this thread resumes.

There are three important points to note about the above operation. First, as shown
by the pipeline timing diagram in Figure 3, in the above operationno extra cycles
are needed to handle the AX instructions. Each sequence (pair) of AX and Thumb
instructions complete their execution one cycle after the completion of the preceding
Thumb instruction. Second the above design ensures that there isno increase in the

6

processor cycle time. The AX processor’s handling of the AX instruction is entirely
independent of handling of the Thumb instruction by the decode stage. In the pipeline
diagram Thumb-D and AX-D denote handling of Thumb and AX instructions by the
decode stage respectively. In addition, the path taken by the Thumb instruction is es-
sentially the same as the original design - the Thumb instruction is first decompressed
and then decoded by theARM decoder. The only difference is the modification made to
the decompressor to make use of thestatusfield information and carry outinstruction
coalescing. However, this modification does not increase the complexity of the decom-
pressor as the generation of an ARM instruction through coalescing of AX and Thumb
instructions is straightforward. An AX instruction essentially predetermines some of
the bits of the ARM instruction generated from the following Thumb instruction. This
should be obvious for thesetshift example already shown. The other AX instruc-
tions that are described in detail in the next section are equally simple. Finally it should
now be clear why we do not allow two AX instructions to augment a Thumb instruc-
tion. Only a single AX instruction can be executed for free. If two consecutive AX
instructions are allowed, their execution will add a cycle to the program’s execution.

The instruction buffer and the filling of this buffer by the instruction fetch mech-
anism are designed such that, in the absence of taken branches, the instruction buffer
always contains at least two instructions. The buffer can hold up to three consecutive
instructions. Thus, it is expanded in size from 32 bits (ib1 andib2) in the original de-
sign to 48 bits (ib1, ib2, andib3). As shown later, this increase in size is needed to
ensure that at least two instructions are present in the instruction buffer. Of the three
consecutive program instructions held inib1, ib2 andib3, the first instruction is inib1,
second is inib2 and third one is inib3. The instruction inib1 is always a Thumb in-
struction which is processed by the Thumb decompressor and the ARM decoder. The
instruction inib2 can be an AX or a Thumb instruction and it is processed by the AX
processor. If this instruction is an AX instruction then it is completely processed, and
therefore at the end of the cycle, instructions in bothib1 andib2 are consumed; other-
wise only the instruction inib1 is consumed. The remaining instructions in the buffer,
if any, areshiftedby 1 or 2 entries so that the first unprocessed instruction is now inib1.
The fetch deposits the next two instructions from the instruction fetch queue into the
buffer at the beginning of the next cycle if at least two entries in the buffer are empty.
Therefore essentially there are two cases: either the two instructions are deposited in
(ib1; ib2) or in (ib2; ib3).

Now we illustrate the need to expand the instruction buffer to hold up to three
instructions. In Figure 4(a) we show a sequence in which the AX instruction(s) can-
not be processed in parallel with the preceding Thumb instruction(s) as only after the
preceding Thumb instruction(s) are processed can the instruction fetch deposit an ad-
ditional pair of instructions into the buffer. Therefore the advantage of providing AX
instructions is lost. On the other hand, in Figure 4(b) when we expand the buffer to
48 bits, the instructions are deposited by the fetch sooner and thereby causing the AX
instruction(s) and the preceding Thumb instruction(s) to be simultaneously present in
the buffer. Therefore the AX instructions are now handled for free.

Next we show how it is ensured that whenever an instruction is found inib1 it is
always a Thumb instruction. If the instruction was shifted fromib2 it must be a Thumb
instruction as the AX processor has concluded that it is not an AX instruction. If the

7

ib1

ib2 ib1

ib2

ib3 ib1

ib2

ib3 ib1

ib1

ib2

ib1

ib2

ib1

ib2

(b) 48 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

4. Thumb

F

F

ARM−D E M W

ARM−D E M W

F

F

F

F

WMEARM−D

WMEARM−D

3. AX

5. AX

AX−D

AX−D

(a) 32 bit Instruction Buffer.

1. Thumb

6. Thumb

2. Thumb

3. AIX

5. AIX

4. Thumb

F

ARM−D E M W

ARM−D E M W

F

F ARM−D E M W

F

F WMEARM−D

F

AX−D

AX−D

Figure 4: Delivering Instructions to Decode Ahead for Overlapped Execution.

instruction was shifted fromib3, it must be a Thumb instruction. This is because in the
preceding cycle the instruction inib2 must have been successfully processed meaning
that it was an AX instruction which implies the next instruction (i.e., the one inib3)
must be a Thumb instruction. The final case is when the fetch directly deposits the next
two instructions into(ib1; ib2). Clearly the instruction inib1 is not examined by the AX
processor in this case. Therefore it must be guaranteed that whenever the instruction
buffer is empty at the end of the decode cycle, the next instruction that is fetched is a
Thumb instruction.

In absence of branches the above condition is satisfied because at the beginning of
the decode cycle the buffer definitely contains two instructions and for it to be empty
the two instructions must be simultaneously processed. This can only happen if the
instruction inib2 was an AX instruction which implies that the next instruction must
be a Thumb instruction.

In the presence of branches, following a taken branch, the first fetched instruction
is also directly deposited intoib1. We assume that the instruction at a branch target is a
Thumb instruction and therefore it can be directly deposited intoib1 as examination of
the instruction by the AX processor is of no use. The compiler is responsible for gener-
ating code that always satisfies this condition. The reason for making this assumption
is that there is no advantage of introducing an AX instruction at a branch target. Only
an AX instruction that is preceded by another Thumb instruction can be executed for
free. If the instruction at a branch target is an AX instruction, and the control arrives
at the target through a taken branch, then the processing of the AX instruction by the
AX processor can no longer be overlapped with the immediately preceding instruction
that is executed, that is, the branch instruction. This is because the AX instruction can
only be fetched after the outcome of the branch is known.1 Therefore, the execution
of AX instruction actually adds a cycle to the execution. In other words the benefit
of introducing the AX instruction is lost. When an AXThumb pair replaces a Thumb
pair, the second Thumb instruction in the AXThumb pair need not be the same as the

1Note that the ARM processor does not support delayed branching and therefore an AX instruction cannot
be moved up and placed in the branch delay slot.

8

second Thumb instruction in the Thumb instruction pair. Hence one cannot allow an
AX instruction in ib1 by issuing a nop when an AIX instruction is found inib1. We
rely on the compiler to schedule code in a manner that avoids placement of an AX
instruction at a branch target. If this cannot be achieved through instruction reordering,
the compiler uses a sequence of two Thumb instructions instead of using a sequence of
an AX and Thumb instructions at the branch target.

2.1.2 Predicated Execution in AXThumb

While the original Thumb instruction set does not support predicated execution, we
have developed a very effective approach to carry out predicated execution using AX-
Thumb code which requires only a minor modification to the decode stage design just
presented. Like instruction coalescing, this method also takes advantage of the extra
fetch bandwidth already present in the processor. We rely on the compiler to place
the instructions from the true and false branches in aninterleavedmanner as shown in
Figure 5. Since the execution of a pair of instructions is mutually exclusive, i.e. only
one of them will be executed, in the decode stage we select the appropriate instruction
and pass it on to the decompressor while the other instruction is discarded.

Predicate
T F

3t

4t

1f

2f

3f

2t

1t

Conditionally
Executed Code

1t

2t

3t

4t

Predicate

1f

2f

3f

nop

Interleaved
Instructions

AX

ib1

ib2

s
t
a
t
u
s

T
H
U
M
B

16
M

X
U

Select

Processor

D
E
C
O

R
O
S
S
E
R
P
M16

16

AX

X
A

Figure 5: Predication in AXThumb.

9

A special AX instruction precedes the sequence of interleaved instructions. This
instruction communicates the predicate in form of acondition flagwhich is used to
perform instruction selection from an interleaved instruction pair. If the condition flag
is set the first instruction belonging to each interleaved pair is executed; otherwise the
second instruction from the interleaved pair is executed. Therefore the compiler must
always interleave the instructions from the true path in the first position and instructions
from the false path in the second position. The special AX instruction also specifies the
count of interleaved instructions pairs that follow it. The AX processor uses this count
to continue to stay in the predication mode as long as necessary and then switches back
to the normal selection mode. The selection of an instruction from each instruction pair
is carried out by using a minor modification to the original design as shown in Figure 5.
Instead of directly feeding the instruction inib1 to the decompressor, the multiplexer
selects either the instruction fromib1 or ib2 depending upon the predicate as shown in
Figure 5. The select signal is generated by the AX processor. For correct operation,
when not in predication mode, the select signal always selects the instruction inib1.

For this approach to work each interleaved instruction pair should be completely
present in the instruction buffer so that the appropriate instruction can be selected. This
condition is guaranteed to be always true as the interleaved sequence is preceded by an
AX instruction. Following the execution of the AX instruction there will be at least
two empty positions in the instruction buffer which will be immediately filled by the
fetch.

The above approach for executing predicated code is more effective than doing so
in the ARM mode. In ARM mode the 32 bit instructions from the true and false paths
are examined one by one. Depending on the outcome of the predicate test, instructions
from one of the branches are executed while the instructions from the other branch are
essentially converted intonops. Therefore the number of cycles needed to execute the
instructions is at least equal to the sum of the instructions on the true and false paths.
In contrast the number of cycles taken to execute the AXThumb code is equal to the
number of interleaved instruction pairs. Note that this advantage is only achievable
because in Thumb mode instructions arrive in the decode stage early while the same is
not true for ARM.

2.2 AX Extensions to Thumb

The AX extension to Thumb consists of eight new instructions. These instructions were
chosen by studying ARM and Thumb codes of benchmarks and identifying commonly
occurring sequences of Thumb instructions which were found to correspond to shorter
ARM sequences of instructions. We first show how we use exactly one free instruction
in the free opcode space of the Thumb instruction set to implement AX instructions.
We describe these instructions next and illustrate their use through examples of typical
situations that were encountered. We categorize the AX instructions according to the
types of instructions whose counts they effect the most. The following discussion will
also make clear the differences in the ARM and Thumb instruction sets that lead to
poorer quality Thumb code.

10

2.2.1 Encoding of AX Instructions

Not surprisingly there are very few unused opcodes available in Thumb. We have
chosen one of these available opcodes to incorporate the AX instructions. Bits 10..15
are taken up by this unused opcode 101110 which now refers to AX. The remaining
bits 0..9 are available for encoding the various AX instructions. Since there are eight
AX instructions, three bits are needed to differentiate between them - we use bits 7..9
for this purpose. The operands are encoded in the remaining bits 0..6.

Unimplemented Thumb Instruction
101110 xxxxxxxxxx
[10..15] [0..9]

AX Instructions
101110 AX opcode AX operands
[10..15] [7..9] [0..6]

The details of how operands are encoded for the various instructions are given
below. Depending upon the number of bits available, the constant fields in various
instructions are limited in size. The immediate constant insetimm is 7 bits, shift
amount insetshift 4 bits, and count insetpred is 3 bits. Finally, registers are
encoded using 4 bits so we can refer to both higher and lower order registers in AX
instructions.

Encodings
101110 setimm #constant
[10..15] [7..9] [0..6]

101110 setshift shifttype shiftamount
[10..15] [7..9] [4..6] [0..3]

101110 setsbit -
[10..15] [7..9] [0..6]

101110 setpred condition count
[10..15] [7..9] [3..6] [0..2]

101110 setsource Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setdest Hreg -
[10..15] [7..9] [3..6] [0..2]

101110 setallhigh -
[10..15] [7..9] [0..6]

101110 setthird reg -
[10..15] [7..9] [3..6] [0..2]

11

2.2.2 ALU Instructions

There are specific differences in the ARM and Thumb instruction sets that cause ad-
ditional ALU instructions to be generated in the Thumb code. There are three critical
differences we have located and to compensate for each of three weaknesses in the
Thumb instruction set we have designed a new AX instruction. ARM instructions are
able to specify negative immediates, shift operations that can be folded into other ARM
instructions, and certain kind of compares that can be folded with other ARM instruc-
tions. None of these three features are available in the Thumb instruction set. The new
AX instructions are as follows.

Negative Immediate
setimm #constant

Folded Shift
setshift shifttype shiftamount

Folded Compare
setsbit

Negative Immediate Offsets. The example shown below, which is taken from
versions of the ARM and Thumb codes of a function inadpcm coder , illustrates this
problem. The constant negative offset specified as part of thestr store instruction
in ARM code is placed into registerr1 using themov andneg instructions in the
Thumb mode. The address computation ofrbase + r1 is also carried out by a
separate instruction in the Thumb mode. Therefore one ARM instruction is replaced
by 4 Thumb instructions.

Original ARM
str rsrc, [rbase, -#offset]

Corresponding Thumb
mov rtmp, #offset
neg rtmp
add rtmp, rbase
str rsrc, [rtmp, #0]

AXThumb
setimm -#offset
str rsrc, [rbase,]

Coalesced ARM
str rsrc, [rbase, -#offset]

The AX instructionsetimm is used to specify the negative operand of the instruc-
tion that immediately follows it. For our example, thesetimm is generated immedi-
ately preceding thestr instruction. When anstr instruction immediately follows a
setimm instruction, the constant offset is taken from thesetimm and whatever con-
stant offset that may be specified as part ofstr is ignored. In the decode stage the
setimm andstr are coalesced to generate the equivalent ARM instruction as shown
above.

Shift Instructions. The setshift instruction has been shown through our example
at the beginning of section 2. We describe one more use here. A shift operation folded
with a MOV instruction is often used in ARM code to generatelarge immediate con-
stants. An immediate operand of a MOV instruction is a 12 bit entity which is divided
into an 8 bit immediateconstant and a 4 bitrotate constant. The eight bit entity is
rotated by therotateamount to generate a 32 bit constant. In Thumb mode the imme-
diate operand is only 8 bits and therefore therotate amount cannot be specified. An

12

additional ALU instruction is used to generate the large constant as shown below. In
the AXThumb codesetshift is used to eliminate the extra shift instruction through
coalescing.

Original ARM
mov reg1, #imm8.rotate4

Corresponding Thumb
mov reg1, #imm8
lsl reg1, #rotate4’ , where
rotate4’ = 32 - 2 * rotate4.

AXThumb
setshift #rotate4
mov reg1, #imm8

Coalesced ARM
mov reg1, #imm8.rotate4

Compare Instructions. In the ARM instruction set MOV and ALU instructions
contain ans -bit. If the s -bit is set, following the MOV or ALU operation, the destina-
tion register contents are compared with the constant value zero and certain flags are set
which can later be tested. Thus, in ARM certain types of compares can be folded into
other MOV and ALU instructions. As illustrated below, since Thumb does not support
thes -bit, it must perform the comparison in a separate instruction. To overcome the
above drawback we introduce thesetsbit instruction which indicates that thes -bit
of the instruction that immediately follows should be set when translation of Thumb
into ARM takes place.

Original ARM
movs reg1, reg2

Corresponding Thumb
mov reg1, reg2
cmp reg1, #0

AXThumb
setsbit
mov reg1, reg2

Coalesced ARM
movs reg1, reg2

2.2.3 Predication - Branch Instructions

Lack of predication in Thumb is the reason for more branches in Thumb code com-
pared to ARM code, as illustrated by the example below. The ARM code performs the
compare; ifr3 contains zero then the tworsbne instructions turn intonops while the
other twoaddeq instructions are executed. The reverse happens ifr3 does not con-
tain zero. In the corresponding Thumb code explicit branches are introduced to achieve
conditional execution of instructions.

13

Original ARM
cmp r3, #0
addeq r6, r6, r1
addeq r5, r5, r2
rsbne r6, r6, r1
rsbne r5, r5, r2

Corresponding Thumb
cmp r3, #0
beq .L13
sub r6, r1
sub r5, r2
b .L14

.L13: add r6, r1
add r5, r2

.L14: ...

AXThumb
cmp r3, #0
setpred eq, #2
add r6, r1
sub r6, r1
add r5, r2
sub r5, r2

Coalesced ARM
cmp r3, #0
sub r6, r6, r1
sub r5, r5, r2
OR
cmp r3, #0
add r6, r6, r1
add r5, r5, r2

The newsetpred instruction we introduce enables conditional execution of Thumb
instructions. This instruction specifies two things. First it specifies thecondition in-
volved in predication (e.g.,eq , ne etc.). Second it specifies thecountof predicated
instruction pairs that follow. Following thesetpred instruction are pairs of Thumb
instructions – the number of such pairs is equal tocount. If the conditionis true, the
first instruction in each pair is executed; otherwise the second instruction each pair is
executed.

setpred condition, #count

In our example, when we examine the AXThumb code, we observe that the con-
dition in this case iseq andcount is 2 since there are two pairs of instructions that
are conditionally executed. Ifeq is true the first instruction in each pair (i.e., theadd
instruction) is executed; otherwise the second instruction in each pair (i.e., thesub in-
struction) are executed. Therefore after the AXThumb instructions are processed by the
decode stage the corresponding ARM instruction sequence generated consists of three
instructions. The sequence contains either theadd instructions or thesub instructions
depending upon theeq flag. Clearly the sequence of instructions generated using our
method is shorter than the original ARM sequence since it does generatenops for the
two instructions that are not executed. Note that this form of predication is restricted
to small length branch hammocks due to the lack of encoding space in thesetpred
instruction.

This form of predication could also reduce the number fetches from the I-cache. In
the case shown below Thumb requires one more fetch than AXThumb code for every
iteration of the outer loop L0. Also note that use of predication reduces the size by one
instruction.

Thumb Code
L0: I0
beq L1
I1
b L2
L1: I2
L2: beq L0

AXThumb
L0: I0
setpred EQ 1
I1
I2
beq L0

14

2.2.4 MOV Instructions

We have identified three distinct reasons due to which extra move instructions are re-
quired in Thumb code. First most ALU Thumb instructions cannot directly reference
values held in higher order registers. Second while ARM supports three address in-
struction format, Thumb uses a two address format and therefore requires additional
move instructions. Finally in Thumb ADD/MOV instructions the result register can be
a higher order register but in this case an immediate operand is not allowed. Therefore
the immediate operand must be moved into a register before it can be used by the high
register based Thumb ADD/MOV instruction. The following AX instructions are used
to overcome the above drawbacks.

High Register Operand
setsource Hreg
setdest Hreg
setallhigh

Third Operand
setthird reg

Immediate Operand
setimm #constant

High Register Operands. Consider the example of a load below in which the
base address is in a higher order register. While the ARM load instruction can directly
reference this register, the Thumb code requires the base address to be moved to lower
order register which can be directly referenced by a Thumb load instruction.

Original ARM
ldr reg, [Hreg, #offset]

Corresponding Thumb
mov Lreg, Hreg
ldr reg, [Lreg, #offset]

AXThumb
setsource Hreg
ldr reg, [, #offset]

Coalesced ARM
ldr reg, [Hreg, #offset]

The instructionsetsource Hreg is used to handle the above situation. The
Thumb instruction that follows thesetsource Hreg instruction makes use ofHreg
as its source operand. After coalescing, the resulting ARM instruction is identical to
the the ARM instruction used in the ARM code. Thesetdest Hreg is used in a
similar way.

Thepush instruction is used to carry out saving of registers at function boundaries.
The ARM push instruction provides a 16 bit mask which indicates which registers
should be saved and which are not to be saved. The corresponding Thumbpush
instruction provides a 8 bit mask which corresponds to lower order registers. As a
consequence, saving of higher order registers requires additional move instructions in
Thumb code as illustrated by the example given below. While ARM code can use a
singlepush instruction to save both lower order registers (r4 - r7) and higher order
registers (r8 - r11), The Thumb code uses onepush to save lower order registers,
then moves contents of higher order registers into lower order registers, and then uses
another push to save their contents.

15

Original ARM
push fr4,.., r11 g

Corresponding Thumb
push fr4, r5, r6, r7 g
mov r7, r11
mov r6, r10
mov r5, r9
mov r4, r8
push fr4, r5, r6, r7 g

AXThumb
push fr4, r5, r6, r7 g
setallhigh
push fr0, r1, r2, r3 g

Coalesced ARM
push fr4, r5, r6, r7 g
push fr8, r9, r10, r11 g

To address this problem we provide thesetallhigh AX instruction. When this
instruction precedes a Thumbpush instruction, the 8 bit mask is interpreted to cor-
respond to higher order registers. In absence of precedingsetallhigh instruction
the 8 bit mask in the Thumbpush instructions corresponds to the lower order regis-
ters. The bit positions of registersr0 throughr7 in the mask correspond to that ofr8
throughr15 respectively. The AXThumb code for the above example is shown be-
low. It contains twopush instructions, the first one saves the contents of lower order
registers and the second one preceded bysetallhigh saves the contents of higher
order registers. The move instructions present in the Thumb code have been eliminated.
The difference between original ARM code and coalesced ARM code is that original
ARM requires only a singlepush instruction while the coalesced ARM code contains
two push instructions.setallhigh can similarly be used for restoring registers in
combination withpop . Note that the AXThumb code has fewer 16-bit instructions,
reducing both the code size and I-cache fetches compared to Thumb code.

Third Operand. Additional move instructions are required to compensate for the
lack of three address instruction format in Thumb. We introduce thesetthird reg
AX instruction to avoid the extra move instruction. When a Thumb instruction is a
preceded by asetthird reg instruction, thenreg is treated as the third address
for the Thumb instruction as shown below. Following coalescing the impact of extra
move instruction is entirely eliminated.

Original ARM
add reg1, reg2, reg3

Corresponding Thumb
mov reg1, reg2
add reg1, reg3

AXThumb
setthird reg3
add reg1, reg2

Coalesced ARM
add reg1, reg2, reg3

Immediate Operand. The Thumb ADD/MOV instructions can directly reference
higher order registers. However, in these cases if the operand cannot be an immediate
constant, requiring an an extra move as shown below.

Original ARM
add Hreg1, Hreg1, #imm

Corresponding Thumb
mov rtmp, #imm
add Hreg1, rtmp

AXThumb
setimm #imm
add Hreg1,
OR
setdest Hreg1
add , #imm

Coalesced ARM
add Hreg1, Hreg1, #imm

16

We can use thesetimm instruction already introduced earlier to avoid the move
instruction as shown above. The immediate operand is incorporated into the Thumb
instruction that follows thesetimm instruction by the coalescing actions of the decode
stage resulting in a single ARM instruction. Alternatively thesetdest instruction can
be used as shown above. In either case the coalesced ARM instruction is the same.

Original ARM
and reg1, reg1, #imm

Corresponding Thumb
mov rtmp, #imm
and reg1, rtmp

AXThumb
setimm #imm
and reg1,

Coalesced ARM
and reg1, reg1, #imm

Another situation where extra move instructions are generated due to the presence
of immediate operands is when bitwise boolean operations are used. Instructions for
these operations cannot have immediate operands generating an extra move.

2.3 Compiler Support: AX Postpass

AXThumb transformations are performed as a postpass, after the compiler has gener-
ated object code. The transformation which involves detecting and replacing sequences
of Thumb code with corresponding AXThumb code consists of three phases. Each of
the three phases deals with a particular kind of AXThumb transformation. The first
phase handles predication of Thumb code using thesetpred AX instruction. The
second phase handles the generic case for AX transformations like the example used
to describe instruction coalescing. The third phase handles thesetallhigh AX in-
struction used to eliminate unnecessary moves at function prologues and epilogues.
The algorithms for each of the three phases along with code examples are described in
detail next.

2.3.1 Phase 1

The code segment shown below, illustrates how Thumb code can be predicated using
the setpred instruction. The original Thumb code has to execute explicit branch
instructions to achieve conditional execution, choosing between the subtract and add
operations. Using thesetpred instruction we can avoid this explicit branching. This
instruction specifies two things. First it specifies theconditioninvolved in predication
(e.g.,eq , ne etc.). Second it specifies thecountof predicated instruction pairs that
follow. Following thesetpred instruction are pairs of Thumb instructions – the
number of such pairs is equal tocount. If the conditionis true, the first instruction in
each pair is executed; otherwise the second instruction each pair is executed.

17

Thumb Code
(1) cmp r3, #0
(2) beq (6)
(3) sub r6, r1
(4) sub r5, r2
(5) b (8)
(6) add r6, r1
(7) add r5, r2
(8) mov r3, r9

AXThumb Code
(1) cmp r3, #0
(2) setpred EQ, #2
(3) add r6, r1
(4) sub r6, r1
(5) add r5, r1
(6) sub r5, r2
(7) mov r3, r9

In our example, when we examine the AXThumb code, we observe that the con-
dition in this case iseq andcount is 2 since there are two pairs of instructions that
are conditionally executed. Ifeq is true the first instruction in each pair (i.e., theadd
instruction) is executed; otherwise the second instruction in each pair (i.e., thesub in-
struction) are executed. Therefore after the AXThumb instructions are processed by the
decode stage the corresponding ARM instruction sequence generated consists of three
instructions. The sequence contains either theadd instructions or thesub instructions
depending upon theeq flag.

This method of predication is more effective than ARM predication because, in the
case of ARM,nops are issued for predicated instructions whose condition is not satis-
fied. However this form of predication can be applied only to small branch hammocks
corresponding to a simpleif-then-else construct. Hence the algorithm described
below, first detects such branch hammocks in theCFGfor the function, then interleaves
the instructions from the two branches, merging them with the parent basic block. We
consider pairs of sibling nodes during a Breadth-First Traversal of theCFGfor ham-
mock detection. A hammock is detected when (i) the predecessor of both siblings is
the same, (ii) there is exactly one predecessor (iii) and both siblings have the same suc-
cessor. Once a hammock is detected, it is predicated by inserting asetpred instead
of the branch instruction and interleaving the code from the two branches as shown in
Figure 2.3.1. TheCFGs for the code example described above, before and after the
transformation are shown in Figure 2.3.1.

2.3.2 Phase 2

The code segment shown below illustrates the general case for AX Transformations
which captures the majority of AX instructions. This example uses thesetshift
andsetsource AX instructions. Thesetshift instruction specifies the type and
amount of the shift needed by the following instruction. Thesetsource instruction
specifies the high register needed as the source for the following instruction. While
the Thumb code requires the execution of five instructions, the AXThumb code only
executes three instructions.

Thumb Code
(1) mov r2, r5
(2) lsl r4, r2, #2
(3) mov r3, r9
(4) sub r1, r4
(5) ldr r5, [r3, #100]

AXThumb Code
(1) mov r2, r5
(2,4) setshift lsl #2

sub r1, r2
(3,5) setsource high r9

ldr r5, [-,#100]

18

input : A CFG for a function
output : A modified CFG with ’set’predicated code

for all siblings(n1; n2) in the BFS Traversal of the CFGdo
/* Check for a hammock in the CFG */
PredEQ = SuccEQ = FALSE;
if numPreds (n1) == numPreds (n2) == 1 then

if Pred (n1) == Pred (n2) then
PredEQ = TRUE;

end
end
if numSuccs (n1) == numSuccs (n2) == 1 then

if Succ (n1) == Succ (n2) then
SuccEQ = TRUE;

end
end
/* SetPredicate if hammock found */
if SuccEQ andPredEQ then

DeleteLastIns(Pred(n1)) ;
InsertIns(Pred(n1) , setpred, cond) ;
for each pair of instructionsin1, in2 fromn1 andn2 do

InsertIns(Pred(n1) , in1) ;
InsertIns(Pred(n1) , in2) ;

end
MergeBB(Pred(n1) , Succ(n1)) ;
DeleteBB(n1) ;
DeleteBB(n2) ;

end
end

Figure 6: SetPredicate

19

Figure 7: Predication

20

Since these transformations are local to a basic block, the algorithm shown in Fig-
ure 2.3.2 uses the Basic Block dependence DAG as its input. Since AXThumb pairs
replace dependent Thumb instructions, it is sufficient to examine adjacent nodes along
a path in the DAG. We traverse the DAG in Bread-First Order and examine each node
with its predecessor. AXThumb pairs have to be instructions adjacent to each other
in the instruction schedule. While replacing Thumb pairs with equivalent AXThumb
pairs, in order to ensure that this property is maintained, we coalesce the nodes of the
candidate Thumb pairs into one node representing the AXThumb pair. However to
maintain the acyclic property of the DAG, we have to ensure that this coalescing of
candidate Thumb instructions does not introduce a cycle. The nodes in the DAG are
numbered according to the topological sorted order of the instruction schedule. By
checking for back edges from higher numbered nodes to lower numbered nodes during
coalescing we make sure that the acyclic property is maintained. The final instruction
schedule is the ordering of nodes according to increasing node id where for coalesced
nodes, the node id is the id of the first instruction in the node.

For our example, instructions 3 and 5 are candidates and instructions 2 and 4 are
candidates. TheCandidateAXPair function takes in 2 Thumb instructions and
checks to see if they are candidates for replacement. This involves a liveness check.
Using liveness information, in our example one can say that register r4, in instruction
2, is a temporary register. Since the two dependent instructions (subtract and shift) can
be replaced using asetshift instruction and register r4 is not live after instruction
3, theCandidateAXPair function returns the AXThumb pair that could replace
instructions 2 and 4. Since coalescing nodes 2 and 4 does not introduce a cycle, the
replacement is legal. The algorithm for phase 2 is shown in Figure 2.3.2 and the DAG
for our example, before and after the transformation is shown in Figure 2.3.2.

2.3.3 Phase 3

The third phase handles the specific case of thesetallhigh instruction, where a
whole sequence of Thumb instructions is converted to an AXThumb pair. The code
segment shown below illustrates the need for asetallhigh instruction. Since only
low registers can be accessed in Thumb mode, the saving and restoring of context at
function boundaries results in the use of extra move instructions. In the example above,
first the low registers are pushed onto the stack, the high registers are then moved to the
low registers before they are pushed onto the stack. Using the setallhigh instruction we
can avoid the extra moves, indicating that the next instruction accesses high registers.

Thumb Code
(1) push [r4, r5, r6, r7]
(2) mov r4, r8
(3) mov r5, r9
(4) mov r6, r10
(5) mov r7, r11
(6) push [r4, r5, r6, r7]

AXThumb Code
(1) push [r4, r5, r6, r7]
(2,3) setallhigh

push [r4, r5, r6, r7]

This transformation, like phase 2, is local to a basic block and uses the basic block
DAG as its input. The alogrithm detects such sequences during a Breadth-First traver-
sal of the DAG. The dependence in the DAG is between the push instructions and

21

input : Basic Block DAG D with nodes numbered according to the topological
order of the instruction schedule

output : Basic Block DAG D with Coalesced Nodes to indicate AXThumb instruc-
tion pairs

for each n� nodes in BFS order of Ddo
for each p� Pred(n) do

Let dependence between n and p be due to register r.
if r is not live following instructions (n,p)then

/* Check if nodes n and p are coalescable */
if CandidateAXPair(n,p) then

G ;
G Coalesce(n,p)
/* Check if coalesced Graph is a DAG */
isDAG = TRUE
for each e� edges in Gdo

if Source(e) < Destination(e) then
isDAG = FALSE

end
end
if isDAG then

D G
end

end
end

end
end

Figure 8: DAG Coalescing for generic AX instructions

Figure 9: Phase 2

22

the move instructions as shown in Figure 2.3.3. The move instructions are siblings
with predecessor and successors as the push instructions in the DAG. This condition is
checked for as shown in Figure 2.3.3. ThePushorPopList functions find instruc-
tions that push/pop a list of registers and performs the liveness check on these registers.
ThemovLoHi function makes sure the register being used in the mov instruction is in
the list of registers in the push/pop instruction encountered before. Once such a pat-
tern is detected all the sibling nodes are replaced with one single node containing the
setallhigh instruction. This node is then coalesced with the succesor node which
is the push/pop instruction to ensure that two instructions are adjacent to each other in
the instruction schedule.

input : Basic Block DAGs (with nodes in the topological sorted order of the
instruction schedule) for the basic block predecessors of the exit node
and successors of the entry node in the CFG

output : Reduced Basic Blocks with setallhigh AX instructions
for each DAG D� set of basic blocks Bdo

for each n� BFS order of nodes in Ddo
if PushOrPopListLo(n) then

/* Check for the replaceable mov instructions */
isReplacable = TRUE
for each m� Succ(n) do

if not movLoHi(m) j not PushOrPopListHi(Succ(m)) j
numSuccs(m) 6= 1 then

isReplacable = FALSE
end

end
/* Remove mov’s and insert a setallhigh */
if isReplacablethen

for each m� Succ(n) do
Save Succ(m) Remove(m)

end
Succ(n) Save
SettoLo(Save)
Coalesce(setallhigh,Succ(n))

end
end

end
end

Figure 10: DAG Coalescing for setallhigh AX instructions

3 Experimental Results
Experimental setup A modified version of the Simplescalar-ARM [1]simulator,
was used for experiments. It simulates the five stage Intel’s SA-1 StrongARM pipeline
[3] with an 8-entry instruction fetch queue. The I-Cache configuration for this proces-
sor are: 16Kb cache size, 32b line size, and 32-way associativity, and miss penalty of

23

Figure 11: SetAllHigh AX transformation

64 cycles (a miss requires going off-chip). The simulator was extended to support both
16-bit and 32-bit modes, the Thumb instruction set and the system call conventions
followed in thenewlib c library. This is a lightweight C library used on embedded
platforms that does not provide explicit network, I/O and other functionality typically
found in libraries such asglibc . The xscale-elf gcc version 2.9 com-
piler used was built to create a version that supports generation of ARM, Thumb as
well as mixed ARM and Thumb code. Code size being a critical constraint, all pro-
grams were compiled at -O2 level of optimization, since at higher levels code size
increasing optimizations such as function inlining and loop unrolling are enabled. The
benchmarksused are taken from theMediabench [7],Commbench[14] andNet-
Bench [8] suites as they are representative of a class of applications important for
the embedded domain.The benchmark programs used do not require functionality not
present innewlib .

Instruction Counts The use of AX instructions reduces the dynamic instruction
count of 16-bit code by 0.4% to 32%. Figure 12 shows this reduction normalized
with the counts for 32-bit ARM code. The difference in instruction count between
ARM and Thumb code is between 3% and 98%. Using AX instructions we reduce the
perfromance gap between 32-bit and 16-bit code. For cases such ascrc andadpcm
where there is substantial difference between ARM and Thumb code, we see improve-
ments between 25% and 30% bridging the performance gap between ARM and Thumb
by a factor of one third in the case ofcrc and more than one half in the case ofadpcm.
For cases such asdrr where Thumb code is not much worse than ARM code (3%),
we see little improvement using AX instructions. In the other cases we see an improve-
ment over Thumb code of about 10% on an average. The difference in the instruction
counts between ARM and Thumb code indicates the room for possible improvement
of 16-bit code due to constraints present in 16-bit code. Using AX instructions we are

24

able to considerably bridge this gap between 32-bit and 16-bit code.

Cycle Counts Figure 13 shows the cycle count data for Thumb and AXThumb code
relative to the ARM code. The use of AX instructions gives varying cycle count
changes between -0.2% and 20% compared to Thumb code. We see reduction of 15%
to 20% in cycle counts forcrc andadpcm compared to the Thumb making the reduc-
ing the difference between ARM and Thumb by half in the case ofcrc and about 66%
with theadpcm programs. In the other 3 cases where Thumb cycle counts are higher
than ARM, viz. frag reed.encode , reed.decode , andrtr , we see that there
is a moderate reduction in cycle counts compared to Thumb. However the difference
between the ARM and Thumb codes itself being moderate, in the cases ofrtr and
reed.encode , AXThumb code gives a lower cycle count compared to even ARM
code. The improved I-cache behavior of the Thumb and AXThumb codes compared to
ARM code makes this possible. In the other cases, where Thumb code already outper-
forms ARM code we see little improvement as there is little scope for the use of AX
instructions.

Code Size and Fetch Data The code sizes of Thumb and AXThumb are almost
identical. This is because in all cases where AXThumb instruction replace Thumb
instructions, the size is only decreased if at all changed. The decrease occurs due to
the introduction ofsetallhigh or setpred instructions as mentioned before. In
all other cases the size does not change. The code sizes relative to ARM are shown
in Figure 14. Figure 15 shows the I-cache fetches for Thumb and AXThumb codes
relative to ARM code. In the three cases where Thumb has more I-cache fetches viz.
crc and the twoadpcm programs, we see that AXThumb reduces the fetches making
them almost as little as ARM. In the other cases we see AX always has fewer I-cache
fetches compared to Thumb, making it even better compared to ARM. Fewer fetches
could result from code size reducing AX transformations. Additionally, the number
fetches into the instruction queue depends on the utilization of the queue. AXThumb
consumes instructions at a faster rate from the instruction queue compared to Thumb,
filling up the queue slower compared to Thumb. Hence on taken branches when the
queue is flushed there are fewer instruction that are flushed, which account for the extra
fetches performed by Thumb. From an energy perspective, we see that energy spent
on the I-cache will be lesser in AXThumb compared to Thumb. Additionally, since the
instruction count is reduced, energy spent in other parts of the processor is also reduced.
The addition of the AX processor in the decode stage is a very small increase in energy
spent since the operations of the AX processor are very simple involving detection of
the AX opcode and setting the status if the instruction is an AX instruction. Hence we
also save on overall energy using AX instructions.

Usage of AX instructions In Table 1 we show a weighted distribution of the AX
instructions executed by each benchmark. Each benchmark uses a different set of AX
instructions and all AX instructions have been used by at least two benchmarks. In-
structions that made an impact in almost all benchmarks weresetsbit , setshift ,
setsource andsetthird . Predication was found to be useful only inadpcm as in

25

other benchmarks small branch hammocks capable of being predicated were not found.
In crc , a small set ofsetsbit instructions in the hotspots of the code gave very good
performance improvement.drr had little opportunity for insertion of AX instructions
resulting in the use of a fewsetsbit instructions which did not give much of an
improvement. The use ofsetallhigh in rtr resulted in smaller code as a result of
removing unnecessary moves, which was also the reason for reduced instruction count.

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

ARM
Thumb
AX

Figure 12: Normalized Instruction Counts

4 Conclusions

The design of dual instruction width processors like ARM poses an important chal-
lenge. Some of the functionality of the 32 bit ARM instructions must be sacrificed to
obtain a more compact 16 bit encoding for Thumb instructions. We have demonstrated
an approach which very effectively compensates for the weaknesses of the 16-bit code
bridging the performance gap between 16-bit and 32-bit codes without detriment to the
code size and energy reducing properties of 16-bit code. A new class of AX instruc-
tions is carefully designed so that extra Thumb instructions can be eliminated at run-
time through instruction coalescing performed in the processor’s decode stage. These
instructions were implemented using exactly one unused opcode in the 16-bit encoding
space. The compiler is responsible for identifying Thumb instructions that can be elim-
inated and replacing them with appropriate AX instructions. The hardware extensions
are simple and by handling the AX instructions in parallel with other instructions we
avoid any increase in the processor’s cycle time.

26

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

ARM
Thumb
AX

Figure 13: Normalized Cycle Counts

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
od

e
S

iz
e

ARM
Thumb
AX

Figure 14: Code Size

27

rtr crc

adpcm.ra
wcaudio

adpcm.ra
wdaudio

pegwit.g
en

pegwit.e
nc

pegwit.d
ec

fra
g

reed.encode

reed.decode drr
0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 F
et

ch
 D

at
a

ARM
Thumb
AX

Figure 15: Fetch Data

Table 1: Usage of Different AX Instructions.

Benchmark setallhigh setpred setsbit setshift setsource setdest setthird setimm

rtr 11.77% 0.00% 82.34% 5.88% 0.00% 0.00% 0.00% 0.00%

crc 0.00% 0.00% 0.27% 99.72% 0.00% 0.00% 0.00% 0.00%

adpcm.rawcaudio 0.00% 36.30% 36.30% 14.52% 0.00% 7.26% 0.00% 5.59%
adpcm.rawdaudio 0.00% 34.47% 34.47% 13.79% 3.44% 10.34% 3.44% 0.00%

pegwit.gen 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%
pegwit.encrypt 0.19% 0.00% 80.22% 5.01% 6.23% 0.00% 8.32% 0.00%
pegwit.decrypt 0.17% 0.00% 74.47% 8.48% 5.47% 0.00% 11.39% 0.00%

frag 4.44% 0.00% 0.00% 6.66% 13.33% 4.44% 66.66% 4.44%

reed.encode 0.01% 0.00% 3.81% 0.00% 68.45% 0.00% 27.71% 0.00%
reed.decode 0.01% 0.00% 1.09% 0.63% 88.29% 0.00% 9.95% 0.00%

drr 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

28

References

[1] D. Burger and T.M. Austin, “The Simplescalar Tool Set, Version 2.0,”Computer
Architecture News, pages 13–25, June 1997.

[2] S. Furber, “ARM system Architecture,” Publisher: Addison Wesley Longman,
1996.

[3] Intel Corporation, “SA-110 Microprocessor Technical Reference Manual”

[4] Intel Corporation, “The Intel XScale Microarchitecture Technical Summary”

[5] Intel Corporation, “ The Intel PXA250 Applications Processor - A White Paper,”
February 2002.

[6] Removed to preserve authors anonymity.

[7] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Mediabench: A Tool for Eval-
uating and Synthesizing Multimedia and Communications Systems,”IEEE/ACM
International Symposium on Microarchitecture(MICRO), Research Triangle Park,
North Carolina, December 1997.

[8] Memik, Mangione Smith and Hu, “NetBench: A Benchmarking Suite for Network
Processors,”IEEE International Conference on Computer-Aided Design, November
2001

[9] MIPS Technologies, “MIPS32 Architecture for Programmers Volume IV-a: The
MIPS16 Application Specific Extension to the MIPS32 Architecture,” March 2001.

[10] J. Montanaro et al., “A 160-MHz, 32-b, 0.5-W CMOS RISC Microprocessor,”
IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, November 1996.

[11] G. Reinman and N. Jouppi, “An Integrated Cache Timing and Power Model,”
Technique Report, Western Research Lab., 1999.

[12] D. Seal, Editor, “ARM Architecture Reference Manual,” Second Addition,
Addison-Wesley.

[13] S. Wilton and N.Jouppi, “An Enhanced Access and Cycle Time Model for On-
Chip Caches,”Technique Report, Western Research Lab., May 93.

[14] T. Wolf and M. Franklin, “Commbench - A Telecommunications Benchmark for
Network Processors,”IEEE International Symposium on Performance Analysis of
Systems and Software, April 2000.

29

