Exploiting Trust in Peer-to-Peer Systems

Srinivas Visvanathan and John H. Hartman
{srini, jhh}@cs.arizona.edu

Technical Report: TR03-09
December 1, 2003

Abstract

Second generation peer-to-peer systems [5, 6] have shown a lot of promise
with many desirable properties such as scalability, self-configuration, au-
tomatic load balancing etc. However the open nature of these systems also
makes them vulnerable to Byzantine attacks.

These systems are designed to be fault tolerant in the presence of a few
malicious nodes. We however believe that even a handful of evil nodes
could disrupt the system by exploiting certain weaknesses that we have
identified. In these systems, a single maclicious node, can present multi-
ple identities to the system. This allows them to emulate multiple nodes
simultaneously and also allows them limited control of their placement in
overlay networks[4, 7] that are integral to the system. We devised attacks
based on these weaknesses to disrupt lookup and storage operations in the
peer-to-peer storage systems, CFS[5] and PAST[6]. We show that it is possi-
ble to exploit these weaknesses to attack these systems and have evaluated
the feasibility of these attacks.

1 Introduction

Peer-to-peer systems are a hot topic in operating systems research. Though
the area initially became popular with the advent of peer-to-peer file sharing
applications like Napster [1], Gnutella [3] and Freenet [2], systems researchers
were quick to identify many desirable properties of peer-to-peer systems, in
general, such as scalability and symmetry.

The first generation peer-to-peer systems were developed for commercial
[1] or political reasons [2, 3]. Their basic design did not make them very ef-
ficient; Napster had a centralized directory, Gnutella used a broadcast-based
protocol and Freenet used probabilistic routing that sacrificed efficiency for
anonymity. Many researchers were quick to see the opportunity for improve-
ment and this led to the development of several second generation peer-to-peer
systems [5, 6]. All these systems organized servers in the Internet as an overlay

network that provided routing and configuration services. Different kinds of
peer-to-peer applications could be built on top of them. These systems were
more efficient and could provide guarantees about reliability and availability.
They were also designed to tolerate fail-stop failures (node failure that can eas-
ily be detected by other nodes). However, researchers had not thoroughly ad-
dressed the issue of Byzantine failures in these systems (failures where a node
appears active, but behaves incorrectly, or more likely, maliciously). The basic
openness of peer-to-peer systems seem to make them especially vulnerable to
Byzantine failures.

The aim of this project is to examine the issue of trust in peer-to-peer sys-
tems and see how it could be misused by malicious hosts. We wanted to do this
by studying a prototype peer-to-peer system and seeing how we could disrupt
its operations. For this project we chose to work with a prototype peer-to-peer
system called Chord [4] that was developed at MIT and is used in CFS [5]. We
were successful in identifying vulnerabilities in the system related to the issue
of trust. We were also able to modify Chord nodes to operate in a malicious
manner and disrupt the operations of the system. We have also investigated
how applicable these issues and attacks are in the Pastry [7] system that is used
in PAST [6].

In the next section we provide some background about the design and im-
plementation of second generation peer-to-peer systems. Section 3 describes
the weaknesses we were able to identify and section 4 describes how we at-
tempted to exploit these weaknesses. In section 5 we review work done by
other researchers and conclude in section 6.

2 Background

Second generation peer-to-peer systems are organized into two distinct lay-
ers. The lower layer is made up of Internet servers that organize themselves
into an overlay network. This layer basically provides a consistent, distributed
hashing scheme. Nodes in this network are assigned identifiers or ID’s. Keys
representing resources are also assigned ID’s drawn from the same space. The
network of nodes implement a hashing scheme that maps resource keys onto
node keys i.e. each resource is assigned to a node that is responsible for it. The
hashing scheme is distributed because the information required to perform a
mapping is distributed across several nodes. It is consistent which means that
when nodes join or leave the system, the mapping is updated to reflect the
modified set of nodes in the system. The number of nodes that have to update
their mapping information, due to the change in system state, should ideally
be minimal.

The upper, or application, layer uses the facilities of the lower layer as part
of its operation. It relies on the lower layer to (i) locate a node responsible for
a resource, (ii) notify it when nodes joined or left the system, so that it can
manage the reallocation of resources to nodes. Many different kinds of ap-
plications can be implemented in the upper layer using the hashing provided

by the lower layer. CFS and PAST both implement a read only file system on
the routing layer. SQUIRREL [8] is a decentralized, peer-to-peer web caching
system built on Pastry.

CFS uses Chord as its lower layer and implements a block level storage on
it using a layer called Dhash. Each Chord node is assigned a 160-bit identifier
number which is computed as the SHA-1 hash of its IP address and virtual
server number (The virtual server number allows each Chord node to present
multiple virtual servers and is used for load balancing). The 160-bit identi-
fier space wraps around and is viewed as a circle. Chord identifiers are hence
points on the circle (a simplified version with a 5-bit identifier space is shown
in Figure 1). Blocks of data that are stored on Chord nodes are also assigned
160-bit identifiers that are computed has SHA-1 hashes of their content or some
public key. Chord maps blocks to nodes responsible for them as follows: a
block with Chord identifier number (or chordID) k is stored on the Chord node
which has the smallest chordID greater than or equal to k. This node is denoted
as the successor of k or succ(k). The Chord layer on each node n maintains two
pieces of information for routing:

1. The chordID and IP addresses of the first r nodes that follow n in the
chord ring. The parameter r will be explained shortly.

2. A finger table with up to 160 entries, where the i** entry holds the chor-
dID and IP address of succ(n + 2(~1). All arithmetic is modulo 26°. A
simplified version is shown in Figure 1 for a node in the 5-bit identifier
space.

When a node n has to route a message to another node m, it first consults
its list of successors to see if m is among them. If not, it uses its finger table
to find the furthest finger, f, with chordID less than m. Node n then queries f
about m. f either has m in its finger table, or refers n to one of its fingers that’s
closer to m.

The Dhash layer that is built on top of Chord manages storage. When a
block, with chordID b, is to be stored in the network, Dhash uses Chord to find
the node n (n = succ(b)) responsible for the block. It then contacts that node
and instructs it to store the block. In order to maintain redundancy, copies of
the block are also stored on the r successors of n (r is some suitable replication
level). If n or any of its r successors depart, or if a new node joins and becomes a
new successor of n, the Chord layer notifies the Dhash layer in these nodes. The
Dhash layer then appropriately reassigns blocks. Block lookup is reasonably
straightforward. When the Dhash layer in a node wants to find a block b, it
uses the Chord layer to find n = succ(b). It then contacts n or any of its r
successors to retrieve the block (in case n is not available). One point to note
is that when finding the successor of some chordID z, the Chord system first
tries to find the first node preceding = on the ring (denoted as pred(z)). Once
pred(x) has been found, it can be queried to find its successor, which will be
suce(x).

3(5)

(1) 29
Finger Tablefor 1

Finger # Chord ID
1 5
24 2 5
3 5
4 14
5 19

17 (19)

Figure 1. Shows a Chord ring with a 5-bit identifier space. Nodes are denoted
by circles and blocks are denoted by boxes. Both nodes and boxes are anno-
tated with their ChordID. In addition blocks are annotated, in parenthesis, with
the ID of their successor node. The finger table of node 1 is also shown. Row i
of the node 1’s finger table will hold the chordID and IP address of the node n,
where n = suce(1 +207Y),i € {1,2,3,4,5}.

In PAST, Pastry provides the routing functionality. Like Chord, Pastry as-
signs nodes 128-bit identifiers (or IDs), that are treated as points in a circular
address space. Pastry, however, uses a different scheme for mapping blocks to
nodes. In Pastry a resource with ID z is assigned to r nodes, whose IDs are
numerically closest to x (r is again a replication factor). Routing is also done
differently. The routing table of a node n in has three sections (as shown in
Figure 2:

1. A neighborhood set that holds the IDs and IP addresses of the nodes
closest to n, by proximity, on this network.

2. A leaf set containing [entries. The entries comprise the IDs and IP ad-
dresses of /2 nodes with the numerically closest IDs less than n and [/2
nodes with the numerically closest IDs greater than n. [is a system pa-
rameter.

3. A routing table with at most (2° — 1) x [log,, N] entries (N is the size of
the identifier space). For the purpose of routing, IDs are thought of as a
sequence of digits in the base 2°. A node’s routing table is organized into
[log,» N rows with 2° — 1 entries per row. The 2° — 1 entries at row i,
refer to nodes whose ID matches n’s ID up to the first i digits, but whose
(i + 1)t" digit has one of the 2° — 1 possible values other than the (i + 1)

NodelD: 10233102
Leaf set: Smaller | Larger
10233033| 10233021 | 10233120 | 10233122
10233001 10233000 | 10233230 | 10233232
Routing Table:

-0-2212107 1 —-2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022
10-0-31203 10-1-32102 2 10-3-23302
102-0-0230 102-1-1302 102-2-2307 3
1023-0-322 1023-1-000 1023-2-121 3
10233-0-01 1 10233-2-37

0 102331-2-(

2

Neighborhood set:
13021022 | 10200230 | 11301233 31301233
02211202 | 22301203 | 31203203 33213321

Figure 2: State of a hypothetical Pastry node with ID 10233102. All humbers
are in base 4 and each node keeps track of 8 leaves. The IDs of each entry in the
routing table have been split as (common prefix with 10233102)-(next digit)-
(rest of ID). As can be seen the top row has no common prefix with the node’s
ID and successive rows have larger prefixes in common. The IP addresses as-
sociated with each entry are not shown. Adapted from Rowstron et. al. [7].

digit of n. If there is more than one node available for an entry, then the
closer node is chosen, based on some suitable proximity metric.

When node n receives a message that has to be routed to some node m, it
checks to see if m is in its leaf set and routes the message directly, if so. If not,
then then the message is forwarded to a node that shares a common prefix with
m by at least one more digit (b bits) than it does. If no such node is available,
it forwards the message to a node whose ID shares the same number of prefix
digits as it does with m, but is numerically closer to m than it is. Hence the
routing procedure always converges.

3 Weaknesses

A major issue in the peer-to-peer systems described above is that nodes may be
unreliable. It is not possible to control their software or activities. Hence there
is a very real possibility of certain parties deploying nodes that will try to make
the system unavailable/Zunreliable. In this section, we consider weaknesses in

such systems which can be exploited for disrupting operations like storing a
block, lookup, ring formation etc.

A trivial way to break the system would be to have a large humber of evil
nodes join the network. They can coordinate among themselves to disrupt
operations. For this project, however, we decided to assume that most nodes
in the system were good and only a small fraction of them may be evil. This
is consistent with the conditions under which reliability and availability are
guaranteed in the CFS paper [5].

One important feature in both Chord and Pastry is the ability of a single
physical node have more than one identity on the network. Evil nodes can
take advantage of this in two ways. Firstly, if nodes can control where they
appeared on the network (by picking one of the many available identities),
they can choose these positions strategically e.g. a node can choose a position
so that a particular data block gets mapped to it. Secondly, a node or group
of nodes can simply instantiate all identities simultaneously and coordinate
among these identities to disrupt operations.

In Chord, a node’s identifier is computed as a cryptographic hash of its IP
address and virtual server number Hence it can place itself at several positions
depending on the number of IP addresses at its disposal and the number of
virtual server numbers that the system allows a chord node to have.

Consider a Chord ring with (n — 1) nodes and one block. An evil node
that wishes to control the block would have to make itself the successor of the
block. If the evil node has at its disposal b possible identities (b = number of
IP’s x number of virtual server nos.), the probability that it is able to become
the block’s successor using one of these b identities is:

b
-1
=1 (5
n
Based on this we can compute the following:

b log (1 —p)

n nllog(n —1) — logn]

The fraction % is almost constant for a given p. Hence if we wish to have
certain odds at placing our evil node, then the number of evil identities we
need is some constant fraction of the total number of nodes. Table 1 shows
the number of identities needed for various probabilities in different sized net-
works. In Chord, the maximum number of virtual servers that can be started
by a given node is an important factor that affects the ease with which an evil
node can control its placement. In the prototype implementation from MIT,
this value was set at 1024. Hence a node with a single IP available to it could
place itself where it wanted in a network of size 1024 with probability of 0.5.
The more the IP addresses available to a node, the more identities it can create
and the larger the size of the network it can tackle.

A similar argument can made for the Pastry system. Given a network with
(n — 1) nodes and a single block, if an evil node wants to control the block, the

Probability — p=0.25 p=0.50 p=0.75

Ring size |

n = 1024 294 709 1418
n = 16384 9426 22712 45425
n = 1048576 301656 726817 1453634

n = 1073741824 | 308896273 | 744261117 | 1488522235

Table 1: Each entry in the table lists the number of identities an evil node must
be able to create in order to have odds p of placing itself where it wants in a
Chord network of size n

relations between p, b and n will be the same as before. However in Pastry, the
number of identities (b) that an evil node can create is theoretically unlimited.
The identifier for a node is computed as the cryptographic hash of its public
key and the number of public keys a node can generate is unlimited.

4 Disrupting operations

In this section we describe the various attacks that we tried in Chord. These
attacks assume that the evil node has been able to place itself suitably on the
network. We tried two different attacks. The first attack was aimed at disrupt-
ing the store operation in Chord/Dhash and the second attack disrupted the
lookup operation.

4.1 Disrupting stores

As mentioned earlier, in Chord, when a block is to be stored, Dhash first finds
the node responsible for a block i.e. the blocks successor. It then performs a
store operation on that node and its successors. We hoped that if an evil node
was strategically placed as the successor of a block, the evil node could lie
about storing the block and maintaining the replicas. The effectiveness of this
attack however depends on exact implementation of the store. If the Dhash
client requesting the store, sends the block to the successor and relies on the
successor to perform replication, then successor can simply respond with an
acknowledgment and not do anything. If the Dhash client first contacts the
block’s successor to find its r successors, it could instead send the block to each
of them for storage. Even if we have a single evil node that would be in charge
of the block, its successors would still hold replicas. The Chord prototype used
the second approach. Hence, we were unable to disrupt the store operation.
The PAST system, however, uses the first approach[6]. Hence it should be pos-
sible to disrupt the store operation in PAST.

Figure 3: Disrupting the lookup in Chord

4.2 Disrupting the lookup

Lookup disruption is a weaker attack where evil nodes that are queried as part
of a lookup lie about their fingers or successors. It is a weaker attack because
it will only work if the evil node is queried as part of the lookup. In Pastry,
the lookup is randomized to avoid making the path of a lookup deterministic.
When a node receives a message destined for some other node m it finds an
entry in its routing table that has a prefix of 1 digit more in common that it does
with m. In reality multiple nodes are maintained at each entry. Hence during
each lookup, a different node could be returned. The PAST implementation
however, biases this selection toward nodes that are closer to the queried node.

In the Chord prototype, we were able to implement the lookup disruption
successfully. Figure 3 shows the steps involved in a lookup operation. The
points on the ring are nodes while the box is a block. Assume node q is search-
ing for the block B. It makes a query to node ¢, to find out the closest finger of
e that precedes B. Assume that e has p in its finger table (p is the predecessor
of B). Ideally, e would return the id and IP of p to ¢ (the dotted arc denotes
this; e refers ¢ to p during the lookup). ¢ would then query p which would
respond saying that it was the predecessor of b and return its successor’s (i.e.
t) ID and IP. We modified the Chord implementation to make e lie. When e was
queried by q, e replied stating that it was the predecessor of B and it returned
the ID and IP of ¢ (the arc from e to ¢ denotes this). ¢ can be any node that lies
beyond s and its r successors, but which lies before the finger f that follows e
in ¢'s finger table. ¢ would think that ¢ was the successor of B and try fetching
the block form ¢ and its successors. ¢ and its successors would simply respond
stating that they don’t have the block.

Ring size — n = 4096 n = 32768 n = 1048576
No. of evil identities |

e=32 0.03227 (0.77%) | 0.00507 (0.10%) | 0.00021 (0.00%)
e =128 0.12649 (3.03%) | 0.02024 (0.39%) | 0.00085 (0.01%)
e =1024 0.85409 (20.0%) | 0.15800 (3.03%) | 0.00676 (0.10%)

Table 2: The table shows the odds of an evil node getting queried during a
lookup of an n-node network. An evil node can create up to e identities. The
number in the parenthesis is the percentage of nodes in the ring that are evil.

As mentioned earlier, this attack is weak, since the odds of an evil node
being queried is quite low. In the Chord paper [4], they prove that with high
probability, the number of nodes that get queried during a lookup in an n-
node ring is O(log(n)). In the experimental section, they show that show that
the average value is %log(n). In a Chord system with n nodes and one evil node
that can create up to e evil identities, the odds that a lookup would go through
an evil node is:

log(n + e)
2(n+e)

Table 2 shows the odds for different values of n and e. As can be seen,
unless a significant fraction of the nodes in the ring are evil, the odds of the
lookup going through an evil node are low.

5 Related work

There have been many papers that have addressed the issue of Byzantine fail-
ures in more traditional distributed systems [9, 10]. With the advent of peer-
to-peer systems, researchers initially focused on improving the efficiency of
these systems. Some recent projects have however looked at Byzantine fail-
ures in peer-to-peer systems too. Douceur [11] investigates, at an abstract
level, the vulnerability of peer-to-peer systems to attacks where malicious hosts
present several identities. It coined the name, Sybil attack, for such attacks.
Liskov et. al. [12] present the design and implementation of a Chord like
peer-to-peer system that is resilient against Sybil attacks. However the system
they have proposed does place several restrictions on the base Chord design
e.g.only trusted servers can join the ring. They use the peer-to-peer concept
more as a way of avoiding centralization, unlike traditional peer-to-peer sys-
tems which are truly open. While there is a significant overlap of ideas in our
work with Douceur[11] and Liskov [12], we have tried identifying actual at-
tacks that could be mounted on second generation peer-to-peer systems.

6 Conclusion

In this project we had set out to investigate the vulnerability of peer-to-peer
systems in the presence of Byzantine failures. We were able to identify a weak-
ness that malicious hosts could exploit to attack the system, namely the ability
of a host to present multiple identities. We have presented two possible attacks
that relies on this weakness. We have also analyzed the feasibility of these
attacks.

References

[1] http://www.napster.com
[2] http://freenet.sourceforge.net
[3] http://www.gnutella.com

[4] 1. Stoica, R. Morris, D. Karger, M. F. Kashoek and H. Balakrishnan. Chord:
A scalable, peer-to-peer lookup service for Internet applications. In Proc.
ACM SIGCOMM’01 San Diego, CA. Aug. 2001.

[5] F. Dabek, M. F. Kashoek, D. Karger, R. Morris and I. Stoica. Wide-area
cooperative storage with CFS. In Proc. ACM SOSP’01, Banff, Canada, Oct.
2001.

[6] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer
storage utility. In Proc. HotOS VIII, Schloss EImau, Germany, May 2001.

[7] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM Mid-
dleware 2001, Heidelberg, Germany. Nov. 2001

[8] S. lyer, A. Rowstron and P. Druschel, SQUIRREL: A decentralized, peer-
to-peer web cache, In Proc. PODC, Monterey, CA. 2002.

[9] L. Lamport, R. Shostak and M. Pease. The Byzantine Generals Problem.
TPLS(43), 1982.

[10] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proc.
0SDI, 1999.

[11] J. Douceur. The Sybil Attack. In Proc. IPTPS, Cambridge, Massachusetts.
March 2002.

[12] R. Rodrigues, B. Liskov and L. Shrira. The Design of a Robust Peer-to-
Peer System. In Proc. of the Tenth ACM SIGOPS European Workshop.
Saint-Emilion, France, September 2002.

10

