

TR03-16

May, 2002

Venti FS: A Hash Based File System

Siva Kollipara, Srinivasan Badrinarayanan

Supervisor: Dr. John Hartman

Abstract
Venti, a network storage system, is a write-once
archival repository. It provides a block level
interface and uses unique hashes (SHA1 hash) to
identify these blocks. These hashes can be used
to identify duplicate blocks and thus eliminate
redundant duplication of blocks and reduce
storage consumption. A direct mapping between
hashes and disk addresses is not possible,
therefore an indexer is used to map the hashes to
Venti disk addresses. Venti can be used as a
building block for constructing a variety of
storage applications such as logical backup,
physical backup and snapshot file systems.

Most file systems to date use fixed size blocks.
Fixed size blocks limit the amount of duplication
possible. However by breaking files into
variable sized blocks based on the identification
of anchor or break points, duplication can be
increased and cross file similarities can be
exploited efficiently.

We have built a file system on top of Venti and
investigated the implications of several design
decisions:
1. Use of different searching algorithms (B –

Tree / Binary Tree) in indexer;
2. Variable Sized blocks instead of fixed size

blocks.

We present some performance results that
measure the average execution time for various
operations of the file system and also analyze
the impact of the design decisions made.

Key Words: Venti, File System, Rabin
Fingerprint, SHA 1 Hash, B – Tree, Binary Tree

1. Introduction
Applications rely on file systems to store data on
and retrieve data from mass storage devices. File

systems provide the underlying support that
applications need to create and access files and
directories on the individual volumes associated
with the devices.

A file system is a hierarchical structure (file
tree) of files and directories. This file tree uses
directories to organize data and programs into
groups, allowing the management of several
directories and files at one time. The file system
consists of one or more drivers and supporting
dynamic-link libraries that define the data
formats and features of the file system. These
determine the conventions used for file names,
the level of security and recoverability available,
and the general performance of operations.

Most file systems to date use fixed size blocks to
store and retrieve data from device. Fixed size
blocks limit the amount of duplication possible.
However by breaking files into variable sized
blocks based on the identification of anchor or
break points, duplication can be increased and
cross file similarities can be exploited
efficiently.

Venti [1] is a block level storage system that can
be used as a building block for constructing a
variety of storage applications such as logical
backup, physical backup and file systems. It is a
write once storage that prohibits data to be
deleted or modified once it has been written to
Venti. A unique hash (SHA1 hash), of the
contents of the block, identifies the blocks in
Venti. These hashes are also used as the address
of the block on the storage device. The hash size
being large, a direct mapping between hashes
and disk addresses is not possible, therefore an
indexer is used to map the hashes to Venti disk
addresses. The indexer in [1] uses a binary
search tree algorithm to search through
mappings.

Venti FS: A Hash Based File System

Siva Kollipara, Srinivasan Badrinarayanan
{ksskumar,srinivas}@cs.arizona.edu

Department of Computer Science
The University of Arizona

This paper describes the design and
implementation of Venti FS – A Hash Based
File System. The goal of Venti FS is to develop
a filesystem using Venti that achieves a
reasonable performance. The file system
efficiency is improved by using 1) B – Tree
search [6] in the Venti indexer, 2) variable sized
blocks that reduce the block usage and help
exploit cross – file similarities.

The remainder of the paper is organized as
follows. In section 2 we look at the motivations
behind the design decisions made. Section 3
presents the File System issues that arise
because of using Venti as the storage device.
The File System Organization and the File
System components are discussed in Section 4
followed by the File System prototype in
Section 5. Section 6 highlights the performance
measurements. Section 7 talks about related
work. Section 8 lists areas of Future work. In
section 9 we present our conclusion.

2. Design Motivations
Unlike a binary-tree, each node of a b-tree may
have a variable number of keys and children.
Since each node tends to have a large branching
factor (a large number of children), it is typically
necessary to traverse relatively few nodes before
locating the desired key. If access to each node
requires a disk access, then a b-tree will
minimize the number of disk accesses required.
The minimization factor is usually chosen so
that the total size of each node corresponds to a
multiple of the block size of the underlying
storage device. This choice simplifies and
optimizes disk access. Consequently, a b-tree is
an ideal data structure for situations where all
data cannot reside in primary storage and
accesses to secondary storage are comparatively
time consuming (or expensive).

When file blocks are identified by file contents,
rather than on position within a file, cross – file
similarities can be better exploited. Using
variable sized blocks, where the block
boundaries are identified by identification of
anchor or break points, avoids the problem of
sensitivity to shifting file offsets. This decreases

update latency as now insertions and deletions
affect only the neighboring blocks. Similar
techniques has been successfully used in LBFS
[3] to save file bandwidth .

Such a scheme, therefore, improves occurrence
of duplicate blocks, because updates change
fewer blocks, and makes efficient usage of the
disk. Though fixed size blocks can also exploit
similarities, the scope is very limited. The block
consolidation is poor and not as much when
variable size chunks are used.

Based on these observations, we proposed to use
a B – Tree search algorithm in the Venti indexer
and variable sized blocks. This can significantly
improve the efficiency of the indexer lookup and
reduce the disk usage.

3. The Venti Disk and File System
Issues

The Venti Storage has several unique features
different from conventional disks. This could
pose potential problems to the File System
design and implementation. It is, therefore,
necessary to understand and analyze the various
file system issues that could arise as a result of
the new archival storage system.

3.1 Block Address and Block Contents
In Venti a unique hash of the block contents
identifies the blocks. This hash is also used to
address the block. This tightly couples the block
address with the block contents unlike
traditional disks where the block address is
independent of the contents of the block. This
unique feature of Venti is a major concern when
designing a file system as it leads to other
related issues.

3.2 Immutable writes
The tight coupling between the block contents
and address makes in place updates of data
impossible. When a content of a block changes,
its hash value changes and therefore the address
where the block is stored also changes. Thus one
cannot modify a block without changing its
address. So writes are immutable. This means
that once a block is written to the storage it
cannot be changed. This is an issue because now

to modify a block a new copy of the block with
the desired changes has to be written to a new
address. As a consequence:

3.3 Old Data Preserved
The old data is not lost and can be recovered or
used if we retain the address of the previous
version of the block.

3.4 Floating Inode Table
An Inode Table is stored on the Venti Storage
and when the table is updated it has to be stored
at a new address. The Venti File System, hence,
has a floating Inode Table. The Inode Table is
an implementation detail and will not be an issue
if it is not a part of the system.

4. File system Organization
The File System is composed of five main
components as shown in figure 1.

4.1 The Client
The Client is a simple shell that accepts
commands from the user. The commands are
parsed and the request is mapped to a File
System interface call.

4.2 File System
The File System has 2 layers.

4.2.1 The File System Interface
This provides an API to the File System calls
supported. It is this File System Interface that is
exported to the clients and used by the clients.

4.2.2 File System Core
The File System Core is the crux of the entire
system. It implements all the file system
functionalities and integrates and interacts with
the various components.

4.3 Indexer
The indexer maps hashes to disk addresses. The
indexer exists as a separate entity and is not a
part of the Venti Server as in the prototype. The
reason behind this is to make the Indexer
independent of Venti. De coupling the indexer
from Venti gives it more flexibility. If the
indexer is a part of Venti then any new indexing
schemes devised should also make use of the
Venti interface. This could pose a limitation on
the different potential indexing schemes.

4.4 Chunker
The Chunker is responsible to divide the file into
variable sized blocks. The Chunker uses the
Rabin Fingerprint [4] to determine the block
boundaries. A Rabin fingerprint is the
polynomial representation of the data modulo a
predetermined irreducible polynomial. The
block boundaries are identified using Rabin by
computing the fingerprint on every overlapping
48 bytes of the file. If the low – order 13 bits of
the fingerprint equals a pre determined constant
value, then that identifies the end of a block.
The Rabin Fingerprint is efficient to compute on
a moving window in a file. There is however a
maximum and minimum block size of 8K and
2K respectively imposed by the file system. This
is to keep the Rabin Algorithm to be within
bounds and eliminate the possibility of
pathological cases.

4.5 The Venti Server
Simulates the storage device. It stores the file
system data and metadata. A simple API is used
to interact with the disk.

5. File System Prototype
The design of the Venti File System is similar to
the Unix File System. The file system is
organised as a hierarchy of directories starting
from a single directory called root which is
represented by a / (slash). Immediately below
the root directory are several system directories

File
System

Chunker
 Indexer

Disk

Clients

Figure 1: File System Organization

that contain information required by the
operating system. Like Unix a directory is also a
file that holds other files and directories.

From the perspective of the Venti server, all the
files are represented and stored as blocks. The
files are divided into blocks and the blocks are
stored in the disk. A Hash of the Block Contents
identifies these blocks. A file can consist of
many blocks and to enable data to be retrieved
from all blocks of the file, the file system must
store the block hashes. These hashes are stored
in additional blocks that are also written to the
Venti server. This process is repeated
recursively until a single hash is obtained. This
hash represents the root of a tree of blocks and
corresponds to a root file hash of the file. This is
shown in figure 2.

Once blocks are written they are immutable and
cannot be changed. To update a block, therefore,
a new block is created with the changes and the
pointer to the old block is replaced with a
pointer to the new block.

5.1 Venti Block Types
All blocks consist of a header and the data. The
header information has block type information
that is used to distinguish between the various
different blocks that are present. There are 4
types of blocks.

5.1.1 The Inode Table
The Inode Table is the entry point to the file
system. It is a list of <inode no, hash> tuples.

The hash in the tuple is the root file hash of the
file. The inode table uses the inode number to
retrieve the root file hash for a file. Inode
number zero always represents the hash of the
root directory (/) of the file system. The hash of
the inode table block is stored at a fixed location
from where it can be retrieved at startup.

5.1.2 Directory Block
The directory block stores the mapping between
logical file names to inode numbers.

5.1.3 File Block
The file block should not be confused with a
data block. This contains a list of data block
entries. The entries in the file block are
represented by <hash, offset, size>. The hash is
the hash of the data block. The offset gives the
starting offset of the data in the file and the size
is the number of bytes of data in the data block.

File Blocks have 2 sub types – Direct and
Indirect. The Direct File Block has the list of
block hashes for the file. If all the data block
entries cannot be placed in a single file block
then more blocks are used and a single hash for
the file blocks is obtained by recursive hashing.
The intermediate hashes of the file blocks are
stored in Indirect File blocks. These types of File
Block store the hash values of the direct file
blocks.

H (Data Block 1)

H (Data Block 1)

Direct File Block 1

H (Direct File Block 1)

Indirect File Block

Root File Hash

Figure 2: Recursive Hashing of Data Blocks

Data Block 1

Data Block 2

Data Block 7

Data Block 8

H (Data Block 7)

H (Data Block 8)

Direct File Block 2
H (Direct File Block 2)

5.1.4 Data Block
The Data block has the actual file data
corresponding to one block of the file.

Any file system operation starts with the Inode
Table Hash. Path names are resolved one
component of the path at a time. Given a path, it
has to be resolved to a hash. This hash is the
hash of the last component of the path, if such a
path exists.

5.2 Path Resolution/Data Blocks Retrieval
1. Retrieve the inode table block, using the

Inode Table Hash.
2. Fetch the hash value for the given inode

number. (For the root directory inode
number is 0, so the first time default inode
number of 0 is used.)

3. Fetch Block from Venti Server for the given
hash.

4. If Block is a Directory Block:
a. Search the next component in the

path through the entries of the
directory block.

b. If the file name doesn’t exist then
path is invalid. If an entry is found,
then the corresponding inode
number is returned.

c. Return to step 2
5. If Block is an indirect File Block:

a. For every hash value fetch the
Direct File Blocks � i.e. loop back
to step 3

6. If Block is a direct File Block

a. Use offset, size values in each File
Block entry to find out the data
blocks required.

b. For every hash required fetch the
data blocks � i.e. loop back to step
3

7. If Block is Data Block
a. Return contents of the data

A schematic representation of the same is shown
in figure 3.

5.3 Inode Table Indirection
The directory block entries store inode numbers.
This is an extra level of indirection because what
is required is a mapping from a file name to its
hash. In the prototype, however, a file name
maps to an inode number and the inode number
is used to obtain the file hash. The
straightforward approach is to store the hash
values of the file names instead of the inode
numbers. This will remove the extra level of
indirection, but presents many drawbacks and
inefficiencies. The Inode table is currently stored
as a single block; instead it can be stored as a
normal venti file. The benefits of saving space,
faster processing etc., would then apply here too.

Inode Table

Inode Root Hash

Directory Block

Directory Entries

Inode Table Hash
1

3

5 6

3
4

Resides on
Venti Disk

Figure 3: Path Resolution/Data Blocks Retrieval – Schematic Representation

Inode Root Hash

File Block

Data Block Entries

Data Block

Data

5.3.1 Cascading Updates
When directory entries have a mapping of file
names to hash values it leads to cascading
updates: When a file is modified, its hash and
address changes. The meta – data structures
have to be updated to reflect this change and
keep the system consistent. The directory entry
of the parent directory of the file is modified to
hold the new hash value. This in turn causes the
directory block’s hash to change, leading to an
update of its parent directory block. This
continues and cascades all the way to the root
directory (/). The cascading halts when we get a
new root hash for the file system. Such
cascading updates makes writes inefficient.

 The Indirection eliminates and resolves this
problem. Now when a file is modified, its hash
value changes and the inode table is modified so
that the inode number to file hash mapping is
changed. An inode table hash is now computed
because the inode table has been updated. This
hash is then used for further accesses to the file
system. This completes all the writes and
updates required. The directory entries are
unaffected as they hold inode numbers that do
not change. The number of updates is very less
compared to the previous scheme and
completely eliminates cascading updates. There
is a possibility of inode table blocks being
recursively hashed. Calculations, however, show
that the maximum depth of such an indirection is
limited to 2 or 3. In the previous case, the
indirection was dependent on the depth of the
file in the file system tree.

5.3.2 The “.” And “..” Problem
A traditional drawback in using hash based
schemes for file systems is the “.” and “..”
problem. In any traditional file system like
UNIX, when a directory is created it has two
default entries: “.” that refers to the current
directory and “..” that points to the parent
directory. If the directory entry block has

mappings between filenames to hashes it makes
the implementation of “.” and “..” impossible.
This is because, the directory entry for “.”
should be a mapping from “.” to the directory’s
hash value and “..” to the parent directory’s
hash. Since hashes depend on block contents, it
is impossible to know the hash values before the
relevant entries are made in the directory. Thus,
“.” and “..” implementation is a problem.

In our system, the directory entries now have
inode numbers. The directory entries for “.” and
“..” ,now, maps to an inode number. Since
directory blocks and inode numbers don’t
change when files are updated, the problem is
resolved.

6. Performance
Table 1 gives the preliminary performance
results for the read and writes operations in
various situations. Though the performance is
poor compared to any other system. It is justified
and acceptable by the fact that the measurements
were done on a simulation environment on top
of the Unix File System and no caching.

The results shown are not for a comparison of
how our file system performs against other file
systems. It just highlights the performance
relative to the various design alternatives. It is
seen that when variable sized blocks are used the
latency increases because of the time taken to
break the file into variable chunks. When B –
Trees are used instead of Binary Trees in the
Indexer the performance increases as expected.
For virgin writes the entire data along with the
meta – data is written to the disk. For duplicate
writes, there is no write to the disk since the data
already exists. Thus the latency for virgin writes
is higher than duplicate writes. The duplicate
writes have higher bandwidth than virgin writes.
Table 2 gives you the block usage when
Variable sized blocks and fixed size blocks are

 Virgin Writes Sequential Reads Duplicate Writes
Binary Tree without Rabin 2.5 957 10
Binary Tree with Rabin 2.53 796.2 5
B Tree Without Rabin 2.67 1278.5 9.4
B Tree with Rabin 3.8 669.77 5.3

Table 1: The performance of read/write operations in Kbytes/sec

used. As expected the chunking reduces number
of blocks used.

The performance of indexer lookups is shown in
the Table 3. The B – Tree indexing scheme is
more efficient than the traditional Venti
approach of using Binary Trees. The
performance however deteriorates when
Variable Sized blocks are used. This is because,
now, the Chunking module takes more time to
break the file into variable sized blocks.

The B – Tree used in the experiments has an
order 2 (a branching factor of 5). This could be
the reason why the performance of Binary Tree
is close to that of B – Tree. Increasing the order
of the B – Trees, can increase the performance
gap between the Binary and B – Trees.

The experiments conducted just analyze the
possibility of such a system. The experiments
show that though Rabin Fingerprinting is a good
idea of reducing block usage, it contributes to
latency. This extra latency reduces the
performance of the Indexer and the system in
general. So there should be a judicious balance
between the use of variable and fixed sized
blocks. This requires in depth analysis and
further experimentation.

7. Related Work
The Venti storage system uses hashes to identify
blocks. The indexer used maps the hashes to
addresses. The indexer is divided into buckets.
Buckets contain a list of hashes. Given a hash, a
binary search tree is used to search through a
bucket. The Venti Indexer in our current
implementation makes the indexing scheme
more efficient by using a B – Tree instead of the
Binary Tree approach.

The Plan 9 File System uses Venti as the storage
device. The Venti Server comprising the
indexer, and Venti Disk is used to store the
permanent data while the magnetic disk is used
as a cache to speed up operations. The Plan 9
File System has influenced the Venti File
System design. Our system, however, improves
on the performance and design by making some
clever design choices.

The Read Only Secure File System (SFSRO)
consists of a database that is a read only server
and can be accessed by many clients securely. It
uses the SHA1 hash to identify and retrieve
blocks from the server that is similar to the Venti
FS block identification scheme. In this it
recursively hashes on the contents of the data to
build a complex structure. SFSRO provides
strong data integrity between the client and

 Without Rabin With Rabin

40k Read/Write
Average per
operation in
usec

 GetINode UpdateIndex
Binary Tree 255.43 18592.674
B Tree 160.85 8242.734

 GetINode UpdateIndex
Binary Tree 144.198 8865.834
B Tree 318.2 17649

80k Read/Write

Average per
operation in

usec

 GetINode UpdateIndex
Binary Tree 175.1 14546.45
B Tree 114.1 10946.57

 GetINode UpdateIndex
Binary Tree 143.7 12880.624
B Tree 141.8 13311.958

151k
Read/Write
Average per
operation in
usec

 GetINode UpdateIndex
Binary Tree 35.2 4591.536
B Tree 40.4 6712.941

 GetINode UpdateIndex
Binary Tree 57.4 8487.62
B Tree 52.6 8920.95

Table 3. Indexer Lookup Performance

servers. The database is digitally signed and
access is granted to the system through a secure
public key. Our system emulates a SFS – Read
Write File System.

LBFS is a network file system designed for low
bandwidth networks. It exploits cross-file
similarities and takes advantage of the fact that
the same chunks of data often appear in multiple
files or multiple versions of the same file. This
makes LBFS work well over low bandwidth.
Venti FS exploits similar cross-file similarities
to overcome the limitation posed by fixed size
data blocks and help reduce the block usage on
the storage system.

8. Future Work
The Venti File System developed is very
primitive and there is scope of further research.

The Venti[1] prototype uses a Binary Tree
Indexer with Fixed Size Blocks. This is the first
of the four possibilities that are possible (refer
Table 1). Based on system attributes, like system
usage, load, age etc, the system can make a
clever choice of which configuration to use and
shift to that configuration dynamically.

The Global File System [7] uses stuffed dinodes,
which allows both file system information and
real data to be included in the dinode file system
block. As an offshoot from this approach,
stuffed fingerprints could be used in which the
hash value and the file data could be stored in
the File Block. This would reduce the number of
updates and lookups.

In the current prototype, when the Inode Table
Hash changes the old hash is lost. If, however,
we store the old inode table hashes along with an
associated timestamp indicating when the hash
was valid, it could be used to keep track of
earlier images of the File System. This makes
the implementation of snapshots and a
versioning file system very easy. The old inode
table hashes and the timestamp can be stored on
the local disk using the local file system. So the
Disk Based File System coupled with Venti File
System could provide a strong extensive File
System backbone.

The current Venti indexing scheme has been
improved by using a B – Tree. In the future if
other faster indexing schemes are designed,
these can be plugged into the system. Potential
systems that could provide indexing
functionalities include database servers, token
servers, DNS.

9. Conclusion
We have proposed a new file system based on
the Venti archival storage system. The design
decisions made of using a B – Tree based Venti
Indexer and having variable sized blocks
improved the performance of the file system.
The File system incorporates ideas from the Log
Structure File System[9].

Several unique features of the Venti File System
include the Inode Table Indirection – that
reduces the file update latency and eliminates
the “.” And “..” problem. Keeping track of
earlier root hashes along with a timestamp can
provide a consistent snapshot of the file system.
The system is very similar to the secure read
only file system except that it has also now write
capability.

A prototype version of the file system has been
developed and work is under progress to
improve the performance and also to incorporate
many more features that are currently not
supported.

Acknowledgements
We wish to thank Dr. John Hartman for his
valuable feedback and comments. We also thank
the faculty in the Computer Science Department
at The University of Arizona and friends for
their help and support.

References
[1] “Venti: a new approach to archival

storage”, Sean Quinlan and Sean
Dorward, Bell Labs, Lucent Technologies

[2] “Finding similar files in a large file
system”, Udi Manber

[3] “A low-bandwidth network file system”,
Athicha Muthitacharoen, Benjie Chen,
and David Mazières

[4] “Fingerprinting by random polynomials”,
Michael O. Rabin

[5] Cormen, Leiserson, and Rivest
[6] http://www.public.asu.edu/~peterjn/btree
[7] Kenneth W. Preslan et al. A 64-bit,

shared disk file system for linux. IEEE
Symposium on Mass Storage Systems,
pages 22–41, San Diego, CA, March
1999.

[8] FU, K., KAASHOEK, M. F., AND
MAZI `ERES, D. Fast and secure
distributed read-only file system. In
Proceedings of the 4th USENIX
Symposium on Operating Systems Design
and Implementation (OSDI) (Oct. 2000),
pp. 181–196.

[9] [Rosenblum92] M. Rosenblum and J.
Ousterhout. The design and
implementation of a log-structured file
system. Proc. of the 13th Symp.on
Operating System Principles, pages 1-15,
October 1991.

