
 
 
 

TR03-16 
 

May, 2002 
 
 
 
 

Venti FS: A Hash Based File System  
 

 

 

Siva Kollipara, Srinivasan Badrinarayanan 
 
 

Supervisor: Dr. John Hartman

 



Abstract 
Venti, a network storage system, is a write-once 
archival repository. It provides a block level 
interface and uses unique hashes (SHA1 hash) to 
identify these blocks. These hashes can be used 
to identify duplicate blocks and thus eliminate 
redundant duplication of blocks and reduce 
storage consumption. A direct mapping between 
hashes and disk addresses is not possible, 
therefore an indexer is used to map the hashes to 
Venti disk addresses. Venti can be used as a 
building block for constructing a variety of 
storage applications such as logical backup, 
physical backup and snapshot file systems.  
 
Most file systems to date use fixed size blocks. 
Fixed size blocks limit the amount of duplication 
possible. However by breaking files into 
variable sized blocks based on the identification 
of anchor or break points, duplication can be 
increased and cross file similarities can be 
exploited efficiently.  
 
We have built a file system on top of Venti and 
investigated the implications of several design 
decisions: 
1. Use of different searching algorithms (B – 

Tree / Binary Tree) in indexer;  
2. Variable Sized blocks instead of fixed size 

blocks. 
 
We present some performance results that 
measure the average execution time for various 
operations of the file system and also analyze 
the impact of the design decisions made. 
 
Key Words: Venti, File System, Rabin 
Fingerprint, SHA 1 Hash, B – Tree, Binary Tree 

1. Introduction 
Applications rely on file systems to store data on 
and retrieve data from mass storage devices. File 

systems provide the underlying support that 
applications need to create and access files and 
directories on the individual volumes associated 
with the devices.  
 
A file system is a hierarchical structure (file 
tree) of files and directories. This file tree uses 
directories to organize data and programs into 
groups, allowing the management of several 
directories and files at one time. The file system 
consists of one or more drivers and supporting 
dynamic-link libraries that define the data 
formats and features of the file system. These 
determine the conventions used for file names, 
the level of security and recoverability available, 
and the general performance of operations.  
 
Most file systems to date use fixed size blocks to 
store and retrieve data from device. Fixed size 
blocks limit the amount of duplication possible. 
However by breaking files into variable sized 
blocks based on the identification of anchor or 
break points, duplication can be increased and 
cross file similarities can be exploited 
efficiently. 
 
Venti [1] is a block level storage system that can 
be used as a building block for constructing a 
variety of storage applications such as logical 
backup, physical backup and file systems. It is a 
write once storage that prohibits data to be 
deleted or modified once it has been written to 
Venti.  A unique hash (SHA1 hash), of the 
contents of the block, identifies the blocks in 
Venti. These hashes are also used as the address 
of the block on the storage device. The hash size 
being large, a direct mapping between hashes 
and disk addresses is not possible, therefore an 
indexer is used to map the hashes to Venti disk 
addresses.  The indexer in [1] uses a binary 
search tree algorithm to search through 
mappings. 

Venti FS: A Hash Based File System 

  
 

Siva Kollipara, Srinivasan Badrinarayanan 
{ksskumar,srinivas}@cs.arizona.edu 

Department of Computer Science 
The University of Arizona 



  
This paper describes the design and 
implementation of Venti FS – A Hash Based 
File System. The goal of Venti FS is to develop 
a filesystem using Venti that achieves a 
reasonable performance. The file system 
efficiency is improved by using 1) B – Tree 
search [6] in the Venti indexer, 2) variable sized 
blocks that reduce the block usage and help 
exploit cross – file similarities. 
 
The remainder of the paper is organized as 
follows. In section 2 we look at the motivations 
behind the design decisions made. Section 3 
presents the File System issues that arise 
because of using Venti as the storage device. 
The File System Organization and the File 
System components are discussed in Section 4 
followed by the File System prototype in 
Section 5. Section 6 highlights the performance 
measurements. Section 7 talks about related 
work. Section 8 lists areas of Future work. In 
section 9 we present our conclusion. 

2. Design Motivations 
Unlike a binary-tree, each node of a b-tree may 
have a variable number of keys and children.  
Since each node tends to have a large branching 
factor (a large number of children), it is typically 
necessary to traverse relatively few nodes before 
locating the desired key. If access to each node 
requires a disk access, then a b-tree will 
minimize the number of disk accesses required. 
The minimization factor is usually chosen so 
that the total size of each node corresponds to a 
multiple of the block size of the underlying 
storage device. This choice simplifies and 
optimizes disk access. Consequently, a b-tree is 
an ideal data structure for situations where all 
data cannot reside in primary storage and 
accesses to secondary storage are comparatively 
time consuming (or expensive). 
 
When file blocks are identified by file contents, 
rather than on position within a file, cross – file 
similarities can be better exploited. Using 
variable sized blocks, where the block 
boundaries are identified by identification of 
anchor or break points, avoids the problem of 
sensitivity to shifting file offsets. This decreases 

update latency as now insertions and deletions 
affect only the neighboring blocks. Similar 
techniques has been successfully used in LBFS 
[3] to save file bandwidth . 
 
Such a scheme, therefore, improves occurrence 
of duplicate blocks, because updates change 
fewer blocks, and makes efficient usage of the 
disk. Though fixed size blocks can also exploit 
similarities, the scope is very limited. The block 
consolidation is poor and not as much when 
variable size chunks are used. 
 
Based on these observations, we proposed to use 
a B – Tree search algorithm in the Venti indexer 
and variable sized blocks. This can significantly 
improve the efficiency of the indexer lookup and 
reduce the disk usage. 

3. The Venti Disk and File System 
Issues 

The Venti Storage has several unique features 
different from conventional disks. This could 
pose potential problems to the File System 
design and implementation. It is, therefore, 
necessary to understand and analyze the various 
file system issues that could arise as a result of 
the new archival storage system. 

3.1 Block Address and Block Contents 
In Venti a unique hash of the block contents 
identifies the blocks. This hash is also used to 
address the block. This tightly couples the block 
address with the block contents unlike 
traditional disks where the block address is 
independent of the contents of the block. This 
unique feature of Venti is a major concern when 
designing a file system as it leads to other 
related issues. 

3.2 Immutable writes 
The tight coupling between the block contents 
and address makes in place updates of data 
impossible. When a content of a block changes, 
its hash value changes and therefore the address 
where the block is stored also changes. Thus one 
cannot modify a block without changing its 
address. So writes are immutable. This means 
that once a block is written to the storage it 
cannot be changed. This is an issue because now 



to modify a block a new copy of the block with 
the desired changes has to be written to a new 
address. As a consequence: 

3.3 Old Data Preserved 
The old data is not lost and can be recovered or 
used if we retain the address of the previous 
version of the block. 

3.4 Floating Inode Table 
An Inode Table is stored on the Venti Storage 
and when the table is updated it has to be stored 
at a new address. The Venti File System, hence, 
has a floating Inode Table. The Inode Table is 
an implementation detail and will not be an issue 
if it is not a part of the system. 

4. File system Organization 
The File System is composed of five main 
components as shown in figure 1. 

4.1 The Client 
The Client is a simple shell that accepts 
commands from the user. The commands are 
parsed and the request is mapped to a File 
System interface call. 

4.2 File System 
The File System has 2 layers.  
 
4.2.1 The File System Interface 
This provides an API to the File System calls 
supported. It is this File System Interface that is 
exported to the clients and used by the clients. 
 

4.2.2 File System Core 
The File System Core is the crux of the entire 
system. It implements all the file system 
functionalities and integrates and interacts with 
the various components. 

4.3 Indexer 
The indexer maps hashes to disk addresses. The 
indexer exists as a separate entity and is not a 
part of the Venti Server as in the prototype. The 
reason behind this is to make the Indexer 
independent of Venti. De coupling the indexer 
from Venti gives it more flexibility. If the 
indexer is a part of Venti then any new indexing 
schemes devised should also make use of the 
Venti interface. This could pose a limitation on 
the different potential indexing schemes. 

4.4 Chunker 
The Chunker is responsible to divide the file into 
variable sized blocks. The Chunker uses the 
Rabin Fingerprint [4] to determine the block 
boundaries. A Rabin fingerprint is the 
polynomial representation of the data modulo a 
predetermined irreducible polynomial. The 
block boundaries are identified using Rabin by 
computing the fingerprint on every overlapping 
48 bytes of the file. If the low – order 13 bits of 
the fingerprint equals a pre determined constant 
value, then that identifies the end of a block.  
The Rabin Fingerprint is efficient to compute on 
a moving window in a file. There is however a 
maximum and minimum block size of 8K and 
2K respectively imposed by the file system. This 
is to keep the Rabin Algorithm to be within 
bounds and eliminate the possibility of 
pathological cases. 

4.5 The Venti Server 
Simulates the storage device. It stores the file 
system data and metadata. A simple API is used 
to interact with the disk.  

5. File System Prototype 
The design of the Venti File System is similar to 
the Unix File System. The file system is 
organised as a hierarchy of directories starting 
from a single directory called root which is 
represented by a / (slash). Immediately below 
the root directory are several system directories 
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Figure 1: File System Organization 
 



that contain information required by the 
operating system. Like Unix a directory is also a 
file that holds other files and directories. 
 
From the perspective of the Venti server, all the 
files are represented and stored as blocks. The 
files are divided into blocks and the blocks are 
stored in the disk. A Hash of the Block Contents 
identifies these blocks. A file can consist of 
many blocks and to enable data to be retrieved 
from all blocks of the file, the file system must 
store the block hashes. These hashes are stored 
in additional blocks that are also written to the 
Venti server. This process is repeated 
recursively until a single hash is obtained. This 
hash represents the root of a tree of blocks and 
corresponds to a root file hash of the file. This is 
shown in figure 2. 
 
Once blocks are written they are immutable and 
cannot be changed. To update a block, therefore, 
a new block is created with the changes and the 
pointer to the old block is replaced with a 
pointer to the new block.  

5.1 Venti Block Types 
All blocks consist of a header and the data. The 
header information has block type information 
that is used to distinguish between the various 
different blocks that are present. There are 4 
types of blocks. 
 
5.1.1 The Inode Table 
The Inode Table is the entry point to the file 
system. It is a list of <inode no, hash> tuples. 

The hash in the tuple is the root file hash of the 
file. The inode table uses the inode number to 
retrieve the root file hash for a file. Inode 
number zero always represents the hash of the 
root directory (/) of the file system. The hash of 
the inode table block is stored at a fixed location 
from where it can be retrieved at startup. 
 
5.1.2 Directory Block 
The directory block stores the mapping between 
logical file names to inode numbers.   
 
5.1.3 File Block 
The file block should not be confused with a 
data block. This contains a list of data block 
entries. The entries in the file block are 
represented by <hash, offset, size>. The hash is 
the hash of the data block. The offset gives the 
starting offset of the data in the file and the size 
is the number of bytes of data in the data block.  
 
File Blocks have 2 sub types – Direct and 
Indirect. The Direct File Block has the list of 
block hashes for the file. If all the data block 
entries cannot be placed in a single file block 
then more blocks are used and a single hash for 
the file blocks is obtained by recursive hashing. 
The intermediate hashes of the file blocks are 
stored in Indirect File blocks. These types of File 
Block store the hash values of the direct file 
blocks. 
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Figure 2: Recursive Hashing of Data Blocks 
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5.1.4 Data Block 
The Data block has the actual file data 
corresponding to one block of the file. 
 

Any file system operation starts with the Inode 
Table Hash. Path names are resolved one 
component of the path at a time. Given a path, it 
has to be resolved to a hash. This hash is the 
hash of the last component of the path, if such a 
path exists. 

5.2 Path Resolution/Data Blocks Retrieval 
1. Retrieve the inode table block, using the 

Inode Table Hash. 
2. Fetch the hash value for the given inode 

number. (For the root directory inode 
number is 0, so the first time default inode 
number of 0 is used.) 

3. Fetch Block from Venti Server for the given 
hash. 

4. If Block is a Directory Block: 
a. Search the next component in the 

path through the entries of the 
directory block. 

b. If the file name doesn’t exist then 
path is invalid. If an entry is found, 
then the corresponding inode 
number is returned.  

c. Return to step 2 
5. If Block is an indirect File Block: 

a. For every hash value fetch the 
Direct File Blocks � i.e. loop back 
to step 3 

6. If Block is a direct File Block 

a. Use offset, size values in each File 
Block entry to find out the data 
blocks required. 

b. For every hash required fetch the 
data blocks � i.e. loop back to step 
3 

7. If Block is Data Block 
a. Return contents of the data 

A schematic representation of the same is shown 
in figure 3. 

5.3 Inode Table Indirection 
The directory block entries store inode numbers. 
This is an extra level of indirection because what 
is required is a mapping from a file name to its 
hash. In the prototype, however, a file name 
maps to an inode number and the inode number 
is used to obtain the file hash. The 
straightforward approach is to store the hash 
values of the file names instead of the inode 
numbers. This will remove the extra level of 
indirection, but presents many drawbacks and 
inefficiencies. The Inode table is currently stored 
as a single block; instead it can be stored as a 
normal venti file. The benefits of saving space, 
faster processing etc., would then apply here too. 
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Figure 3: Path Resolution/Data Blocks Retrieval – Schematic Representation 
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5.3.1  Cascading Updates 
When directory entries have a mapping of file 
names to hash values it leads to cascading 
updates: When a file is modified, its hash and 
address changes. The meta – data structures 
have to be updated to reflect this change and 
keep the system consistent. The directory entry 
of the parent directory of the file is modified to 
hold the new hash value. This in turn causes the 
directory block’s hash to change, leading to an 
update of its parent directory block. This 
continues and cascades all the way to the root 
directory (/). The cascading halts when we get a 
new root hash for the file system. Such 
cascading updates makes writes inefficient.  
 
 The Indirection eliminates and resolves this 
problem. Now when a file is modified, its hash 
value changes and the inode table is modified so 
that the inode number to file hash mapping is 
changed. An inode table hash is now computed 
because the inode table has been updated. This 
hash is then used for further accesses to the file 
system. This completes all the writes and 
updates required. The directory entries are 
unaffected as they hold inode numbers that do 
not change. The number of updates is very less 
compared to the previous scheme and 
completely eliminates cascading updates. There 
is a possibility of inode table blocks being 
recursively hashed. Calculations, however, show 
that the maximum depth of such an indirection is 
limited to 2 or 3. In the previous case, the 
indirection was dependent on the depth of the 
file in the file system tree. 
 
5.3.2 The “.” And “..” Problem 
A traditional drawback in using hash based 
schemes for file systems is the “.” and “..” 
problem. In any traditional file system like 
UNIX, when a directory is created it has two 
default entries: “.” that refers to the current 
directory and “..” that points to the parent 
directory. If the directory entry block has 

mappings between filenames to hashes it makes 
the implementation of “.” and “..” impossible. 
This is because, the directory entry for “.” 
should be a mapping from “.” to the directory’s 
hash value and “..” to the parent directory’s 
hash. Since hashes depend on block contents, it 
is impossible to know the hash values before the 
relevant entries are made in the directory. Thus, 
“.” and “..” implementation is a problem. 
 
In our system, the directory entries now have 
inode numbers. The directory entries for “.” and 
“..” ,now, maps to an inode number. Since 
directory blocks and inode numbers don’t 
change when files are updated, the problem is 
resolved. 

6. Performance 
Table 1 gives the preliminary performance 
results for the read and writes operations in 
various situations. Though the performance is 
poor compared to any other system. It is justified 
and acceptable by the fact that the measurements 
were done on a simulation environment on top 
of the Unix File System and no caching. 
 
The results shown are not for a comparison of 
how our file system performs against other file 
systems. It just highlights the performance 
relative to the various design alternatives. It is 
seen that when variable sized blocks are used the 
latency increases because of the time taken to 
break the file into variable chunks.  When B – 
Trees are used instead of Binary Trees in  the 
Indexer  the performance increases as expected. 
For virgin writes the entire data along with the 
meta – data is written to the disk. For duplicate 
writes, there is no write to the disk since the data 
already exists. Thus the latency for virgin writes 
is higher than duplicate writes. The duplicate 
writes have higher bandwidth than virgin writes. 
Table 2 gives you the block usage when 
Variable sized blocks and fixed size blocks are 

 Virgin Writes Sequential Reads Duplicate Writes 
Binary Tree without Rabin 2.5 957 10 
Binary Tree with Rabin 2.53 796.2 5 
B Tree Without Rabin 2.67 1278.5 9.4  
B Tree with Rabin 3.8 669.77 5.3 

Table 1: The performance of read/write operations in Kbytes/sec 
  



used. As expected the chunking reduces number 
of blocks used. 
 
The performance of indexer lookups is shown in 
the Table 3. The B – Tree indexing scheme is 
more efficient than the traditional Venti 
approach of using Binary Trees. The 
performance however deteriorates when 
Variable Sized blocks are used. This is because, 
now, the Chunking module takes more time to 
break the file into variable sized blocks. 
 
The B – Tree used in the experiments has an 
order 2 (a branching factor of 5). This could be 
the reason why the performance of Binary Tree 
is close to that of B – Tree. Increasing the order 
of the B – Trees, can increase the performance 
gap between the Binary and B – Trees. 
 
The experiments conducted just analyze the 
possibility of such a system. The experiments 
show that though Rabin Fingerprinting is a good 
idea of reducing block usage, it contributes to 
latency. This extra latency reduces the 
performance of the Indexer and the system in 
general. So there should be a judicious balance 
between the use of variable and fixed sized 
blocks. This requires in depth analysis and 
further experimentation. 

7. Related Work 
The Venti storage system uses hashes to identify 
blocks. The indexer used maps the hashes to 
addresses. The indexer is divided into buckets. 
Buckets contain a list of hashes. Given a hash, a 
binary search tree is used to search through a 
bucket. The Venti Indexer in our current 
implementation makes the indexing scheme 
more efficient by using a B – Tree instead of the 
Binary Tree approach. 
 
The Plan 9 File System uses Venti as the storage 
device. The Venti Server comprising the 
indexer, and Venti Disk is used to store the 
permanent data while the magnetic disk is used 
as a cache to speed up operations. The Plan 9 
File System has influenced the Venti File 
System design. Our system, however, improves 
on the performance and design by making some 
clever design choices. 
 
The Read Only Secure File System (SFSRO) 
consists of a database that is a read only server 
and can be accessed by many clients securely. It 
uses the SHA1 hash to identify and retrieve 
blocks from the server that is similar to the Venti 
FS block identification scheme. In this it 
recursively hashes on the contents of the data to 
build a complex structure. SFSRO provides 
strong data integrity between the client and 

 Without Rabin With Rabin 
 
40k Read/Write 
Average per 
operation in 
usec 
 

 
 GetINode UpdateIndex 
Binary Tree 255.43 18592.674 
B Tree 160.85 8242.734  

 
 GetINode UpdateIndex 
Binary Tree 144.198 8865.834 
B Tree 318.2 17649  

 
80k Read/Write 

Average per 
operation in 

usec 
 

 
 GetINode UpdateIndex 
Binary Tree 175.1 14546.45 
B Tree 114.1 10946.57  

 
 GetINode UpdateIndex 
Binary Tree 143.7 12880.624 
B Tree 141.8 13311.958  

 
151k 
Read/Write 
Average per 
operation in 
usec 

 
 GetINode UpdateIndex 
Binary Tree 35.2 4591.536 
B Tree 40.4 6712.941  

 
 GetINode UpdateIndex 
Binary Tree 57.4 8487.62 
B Tree 52.6 8920.95  

Table 3. Indexer Lookup Performance 
 



servers. The database is digitally signed and 
access is granted to the system through a secure 
public key. Our system emulates a SFS – Read 
Write File System. 
 
LBFS is a network file system designed for low 
bandwidth networks. It exploits cross-file 
similarities and takes advantage of the fact that 
the same chunks of data often appear in multiple 
files or multiple versions of the same file. This 
makes LBFS work well over low bandwidth. 
Venti FS exploits similar cross-file similarities 
to overcome the limitation posed by fixed size 
data blocks and help reduce the block usage on 
the storage system.  

8. Future Work 
The Venti File System developed is very 
primitive and there is scope of further research. 
 
The Venti[1] prototype uses a Binary Tree 
Indexer with Fixed Size Blocks. This is the first 
of the four possibilities that are possible (refer 
Table 1). Based on system attributes, like system 
usage, load, age etc, the system can make a 
clever choice of which configuration to use and 
shift to that configuration dynamically.  
  
The Global File System [7] uses stuffed dinodes, 
which allows both file system information and 
real data to be included in the dinode file system 
block. As an offshoot from this approach, 
stuffed fingerprints could be used in which the 
hash value and the file data could be stored in 
the File Block. This would reduce the number of 
updates and lookups. 
 
In the current prototype, when the Inode Table 
Hash changes the old hash is lost. If, however, 
we store the old inode table hashes along with an 
associated timestamp indicating when the hash 
was valid, it could be used to keep track of 
earlier images of the File System. This makes 
the implementation of snapshots and a 
versioning file system very easy. The old inode 
table hashes and the timestamp can be stored on 
the local disk using the local file system. So the 
Disk Based File System coupled with Venti File 
System could provide a strong extensive File 
System backbone. 

 
The current Venti indexing scheme has been 
improved by using a B – Tree. In the future if 
other faster indexing schemes are designed, 
these can be plugged into the system. Potential 
systems that could provide indexing 
functionalities include database servers, token 
servers, DNS. 

9. Conclusion 
We have proposed a new file system based on 
the Venti archival storage system. The design 
decisions made of using a B – Tree based Venti 
Indexer and having variable sized blocks 
improved the performance of the file system. 
The File system incorporates ideas from the Log 
Structure File System[9]. 
 
Several unique features of the Venti File System 
include the Inode Table Indirection – that 
reduces the file update latency and eliminates 
the “.” And “..” problem. Keeping track of 
earlier root hashes along with a timestamp can 
provide a consistent snapshot of the file system. 
The system is very similar to the secure read 
only file system except that it has also now write 
capability. 
 
A prototype version of the file system has been 
developed and work is under progress to 
improve the performance and also to incorporate 
many more features that are currently not 
supported. 
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