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Abstract

This paper presents an implementation of the novel watermarking method proposed by Venkatesan,
Vazirani, and Sinha in their recent paper A Graph Theoretic Approach to Software Watermarking. An
executable program is marked by the addition of code for which the topology of the control-flow graph
encodes a watermark. We discuss issues that were identified during construction of an actual implemen-
tation that operates on Java bytecode. We measure the size and time overhead of watermarking, and
evaluate the algorithm against a variety of attacks.

1 Introduction

This paper builds upon and elaborates a software watermarking scheme proposed by Venkatesan, Vazirani,
and Sinha in A Graph Theoretic Approach to Software Watermarking [20]. We will refer to that paper as
VVS and to its watermarking scheme as GTW. The present paper contributes:

• The first public implementation of GTW

• An implementation that operates on Java bytecode

• An example of an error-correcting graph encoding

• The generation of executable code from graphs

• Several alternatives for marking basic blocks

• Extraction (not just detection) of a watermark value

• Empirical measurements of an actual GTW implementation

• Experimental analysis of possible attacks

Graph theoretic watermarking encodes a value in the topology of a control-flow graph, or CFG [1]. Each
node of a CFG represents a basic block consisting of instructions with a single entry and a single exit. A
directed edge connects two basic blocks if control can pass from one to the other during execution. The CFG
itself also has a single entry and a single exit.

A watermark graph W is merged with a target program’s graph P by adding extra control-flow edges
between them. Basic blocks belonging to W are marked to distinguish them from the nodes of P . These
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int gcd ( int x , y ){
while ( x%y!=0){

t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+

� �

void watermark ( ){
i f ( true )

return
else

return
}

� �

a©⇒

� �

int gcd ( int x , y ){
while ( x%y!=0){

watermark();
t=x%y ;
x=y ;
y=t ;}

return y ;
}

� �

+ b©⇔
√

√√
P F

P W P + W

Figure 1: Overview of graph theoretic watermarking. In a© the code for watermark W is merged with the
code for program graph P , by adding fake calls from P to W . In b© the same process is shown using a
control-flow graph notation. Part b© also shows how the mark is later recovered by separating the marked
(
√

) nodes of W from P with some tolerance for error.

marks are later used to extract W from P +W during the recognition process. The GTW process is illustrated
in Figure 1.

The VVS paper hypothesizes that naively inserted watermark code is weakly connected to the original
program and is therefore easily detected. Weakly connected graph components can be identified using
standard graph algorithms and can then be manually inspected if they are few in number. Such inspection
may reveal the watermark code at much lower cost than manual inspection of the full program.

The attack model of VVS considers an adversary who attempts to locate a cut between the watermark
subgraph and the original CFG (dashed edges in Figure 1). The GTW algorithm is designed to produce
a strongly connected watermark so that such a cut cannot be identified. The VVS paper proves that such
a separation is unlikely. More formally, the GTW algorithm adds edges between the program P and the
watermark W in such a way that many other node divisions within P have the same size cut as the division
between P and W .

We have implemented the GTW algorithm in the framework of SandMark [4], a tool for experiment-
ing with algorithms that protect software from reverse engineering, piracy, and tampering. SandMark
contains a large number of obfuscation and watermarking algorithms as well as tools for manually and au-
tomatic analysis and reverse engineering. SandMark operates on Java bytecode. It can be downloaded for
experimentation from sandmark.cs.arizona.edu.

Our implementation of GTW, which we will call GTWSM , is the first publicly available implementation
of the GTW algorithm and this paper is the first empirical evaluation of the algorithm. We have found that
GTW can be implemented with minimal overhead, a high degree of stealthiness, and with relatively high
bit-rate. Error-correcting graph techniques make the algorithm resilient against edge-flip attacks, in which
the basic blocks are reordered, but it remains vulnerable to a large number of other semantics-preserving
code transformations. GTW’s crucial weakness is its reliance on the reliable recognition of marked basic
blocks during watermark extraction. We are unaware of any block marking method that is invulnerable to
simple attacks.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 presents
an overview of our implementation, and Sections 4 and 5 describe the embedding and recognition algorithms

2



in detail. Section 6 evaluates GTW with respect to resilience against attacks, bit-rate, and stealth. Section 7
discusses future work.

2 Related Work

Davidson and Myhrvold [10] published the first software watermarking algorithm. A watermark is embedded
by rearranging the order of the basic blocks in an executable. Like other order-based algorithms, this is easily
defeated by a random reordering.

Qu and Potkonjak [16, 14] encode a watermark in a program’s register allocation. Like all algorithms
based on renaming, this is very fragile. Watermarks typically do not survive a decompilation/recompilation
step. This algorithm also suffers from a low bit-rate.

Stern et al. [19] use a spread-spectrum technique to embed a watermark. The algorithm changes the fre-
quencies of certain instruction sequences by replacing them with equivalent sequences. This algorithm can be
defeated by obfuscations that modify data-structures or data-encodings and by many low-level optimizations.

Arboit’s [2] algorithm embeds a watermark by adding special opaque predicates to a program. Opaque
predicates are logical expressions that have a constant value, but not obviously so [8].

Watermarks are categorized as static or dynamic. The algorithms above are static markers, which embed
watermarks directly within the program code or data. Collberg and Thomborson [5] proposed the first
dynamic watermarking algorithm, in which the program’s run-time behavior determines the watermark.
Their algorithm embeds the watermark in the topology of a dynamically built graph structure constructed
at runtime in a response to a particular key input sequence. This algorithm appears to be resilient to a large
number of obfuscating and optimizing transformations.

3 An Overview of GTWSM

Our implementation of GTW operates on Java bytecode. Choosing Java lets us leverage the tools of the
SandMark and BCEL [9] libraries, and lets us attack the results using SandMark’s collection of obfusca-
tors. Like every executable format, Java bytecode has some unique quirks, but the results should be generally
applicable.

The GTW embedding algorithm takes as input application code P , watermark code W , secret keys ω1

and ω2, and integers m and n. GTWSM uses a smaller and simpler set of parameters. Values of m and n
are inferred from P , W , and ω1. The clustering step (Section 4.4) is unkeyed, so ω2 is unused. Thus, our
implementation takes as input application code P , a secret key ω, and a watermark value.

Figure 2(a) gives an overview of the GTWSM embedding process which proceeds in the following steps:

1. The watermark value v is split into k values, {v0, . . . , vk−1} (Section 4.1).

2. The split values are encoded as directed graphs {G0, . . . , Gk−1} (Section 4.2).

3. The generated graphs are converted into CFGs {W0, . . . , Wk−1} by generating executable code for each
basic block (Section 4.3).

4. The application’s clusters are identified (Section 4.4).

5. The watermark is merged with the application by adding control-flow edges to the graphs (Section 4.5).

6. Each basic block is marked to indicate whether it is part of the watermark (Section 4.6).

The recognition process described in VVS has three steps: detection of watermark nodes, sampling of
subsets of the watermark nodes, and computation of robust properties of these subsets. The set of robust
property values composes the watermark. The process is as follows:

1. Marked nodes of the program CFG are identified (Section 5.1).

2. The recognizer selects several subsets of the watermark nodes for decoding (Section 5.2).

3. Each subset is decoded to compute a value, and the individual values are combined to yield the
watermark (Section 5.3).
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Figure 2: An overview of the embedding and recognition processes in GTWSM .

3.1 Example

For a concrete example, we embed the watermark 31415926 into the Java code shown in Figures 3 and 4. A
key of 42 seeds the random number generator.

The watermark value is split into a set of ten integers (2, 8, 14, 15, 22, 27, 33, 40, 46, and 47) using the
algorithm described in Section 4.1. Each part is encoded as a graph using the algorithm of Section 4.2. The
graph encoding of the integer 8 is shown in Figure 6. The new methods are collected into a single new Java
class and merged into the application.

A cluster graph is constructed next. In our implementation, each method is a cluster, so the cluster
graph is just the call graph.

Random edges are now added to the cluster graph. In this trivial example, a single edge is added based
on the original application’s characteristic connectivity. Additional edges are added to prevent detection of
the watermark through dead code analysis.

Finally, every block in the program is inspected, and altered if necessary, to indicate whether it is part of a
watermark method; this inserts load/add/store sequences throughout the application. Section 4.6 describes
the marking algorithm;

Recognition begins by detecting marked blocks, and consequently marked methods, as described in
Section 5. For the example program, the watermark methods (m0,m2,. . . ,m9) are found to be marked. The
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public c lass Fac t o r i a l {

public static int f a c t o r i a l ( int n ) {
i f (n < 0)

throw new Arithmet icExcept ion ( ) ;

int r e s u l t ;
for ( r e s u l t = 1 ; n > 1 ; r e s u l t ∗= n−−) ;
return r e s u l t ;

}
public static void main ( St r ing argv [ ] ) {

for ( int i = −1000 ; ; i++)
try { f a c t o r i a l ( i ) ; break ; }
catch ( Ar ithmet icException e ) {}

}
}

� �

Figure 3: Source code for a program that exits after finding a valid input to the factorial function by trying
integers in ascending order starting with -1000.

control flow graph of each marked block is decoded as described in Section 4.2. The complete set of integers
(2, 8, 14, 15, 22, 27, 33, 40, 46, and 47) is then combined to yield 31415926, the original watermark value.

4 Embedding

The construction of a watermark graph W is not discussed in VVS. In GTWSM we accept an integer value
for transformation into a watermark CFG. The recognition process performs the inverse transformation from
CFG to integer.

The embedding process involves several steps: splitting the watermark value into small integers; con-
structing directed graphs that encode these values; generating code that corresponds to the graphs; and
connecting the code to the program.

4.1 Watermark Value Splitting

GTWSM splits a watermark value v into a multiset S of k integers, k ≥ 2. Empirically, we have determined
that values of k between 5 and 15 produce watermark methods that are neither overly large nor overly
numerous.

A watermark value v is split as follows:

1. Compute the minimum exponent l such that v can be represented using k − 1 digits of base 2l.

2. Split the value v into digits v0, v1, . . . , vk−2 such that 0 ≤ vj < 2l and v =
∑k−2

j=0 2jlvj .

3. Encode the digits in the multiset {s0, s1, ..., sk−1} where s0 = l − 1 and si = si−1 + vi−1.

For a concrete example, consider splitting a watermark value of 31415926 with k = 10. The minimum
radix is 8, so l = 3. This produces a list vi of 6, 6, 1, 7, 5, 6, 7, 6, 1 and finally the multiset {2, 8, 14, 15,
22, 27, 33, 40, 46, 47}.

4.2 Encoding Integers as Graphs

Each integer is converted into a graph for embedding in the application. Several issues must be considered
when choosing a graph encoding:

1. The graph must be a digraph (a directed graph) for use as a CFG.
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Method int f a c t o r i a l ( int )

0 i l o ad 0
1 i f g e 12
4 new #2 <Class java . lang . ArithmeticException>
7 dup
8 i n v ok e sp e c i a l #3 <Method java . lang . Ari thmeticExcept ion ()>

11 athrow
12 i c on s t 1
13 i s t o r e 1
14 goto 25
17 i l o ad 1
18 i l o ad 0
19 dup
20 i c on s t 1
21 i sub
22 i s t o r e 0
23 imul
24 i s t o r e 1
25 i l o ad 0
26 i c on s t 1
27 i f i cmpgt 17
30 i l o ad 1
31 i r e t u r n

Method void main ( java . lang . St r ing [ ] )
0 s ipush −1000
3 i s t o r e 1
4 goto 7
7 i l o ad 1
8 i n v ok e s t a t i c #4 <Method int f a c t o r i a l ( int)>

11 pop
12 goto 25
15 a s t o r e 2
16 goto 19
19 i i n c 1 1
22 goto 7
25 return

Exception tab l e :
from to ta r g e t type

7 12 15 <Class java . lang . Ari thmeticException>
� �

Figure 4: Bytecode for the code shown in Figure 3
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Method int f a c t o r i a l ( int )

0 nop
1 i l o ad 0
2 g e t s t a t i c #57 < Fie ld int dummyint0>
5 i c on s t 1
6 iadd
7 pu t s t a t i c #57 < Fie ld int dummyint0>

10 i f g e 33
13 i c on s t 0
14 i n v ok e s t a t i c #35 <Method int m2( int)>
17 pop
18 nop
19 i c on s t 0
20 i n v ok e s t a t i c #32 <Method int m9( int)>
23 pop
24 nop
25 new #2 <Class java . lang . ArithmeticException>
28 dup
29 i n v ok e sp e c i a l #3 <Method java . lang . Ari thmeticExcept ion ()>
32 athrow
. . .

Method int m4( int )
0 nop
1 i l o ad 0
2 dup
3 bipush 31
5 i s h r
6 ixo r
7 i s t o r e 0
8 i l o ad 0
9 i c on s t 3

10 i s h r
11 g e t s t a t i c #29 < Fie ld int dummyint0>
14 i c on s t 1
15 iadd
16 pu t s t a t i c #29 < Fie ld int dummyint0>
19 i s t o r e 0
20 i l o ad 0
21 i c on s t 4
22 i u sh r
23 i s t o r e 0
24 i l o ad 0
25 g e t s t a t i c #29 < Fie ld int dummyint0>
28 i c on s t 3
29 iadd
30 pu t s t a t i c #29 < Fie ld int dummyint0>
33 i f e q 47
. . .

� �

Figure 5: Disassembly of watermarked application code (excerpts).

7



Foot

Head

0 1 2 3 4

Body

Figure 6: Reducible permutation graph of the integer value 8

2. The graph must have the structure of a valid CFG. It should have a header node with in-degree zero and
out-degree one from which every node is reachable, and it should have a footer node with out-degree
zero that is reachable from every node.

3. The graph should have a maximum out-degree of two. Basic block nodes with out-degrees of one or
two are easily generated using standard control-structures such as if- and while-statements. Nodes
with higher out-degree can only be built using switch-statements. These are relatively unusual in real
code, and hence conspicuous.

4. The graph should be reducible [1], because true Java code produces only reducible graphs. Intuitively,
a CFG is reducible if it is compiled from properly nested structured control constructs such as if- and
while-statements. More formally, a reducible flow graph with root node r has edges that can be split
into an acyclic component and a component of backedges, where each backedge (u, v) has the property
that every path from r to u passes through v. In this case, v is said to dominate u.

5. The control structures represented by the graph should not be deeply nested, because real programs
seldom nest deeply.

In GTWSM each part of the split watermark is encoded as a reducible permutation graph, or RPG [3].
These are reducible control-flow graphs with a maximum out-degree of two, mimicking real code. They are
resilient against edge-flip attacks and can be correctly decoded even if an attacker rearranges the basic blocks
of a method.

An RPG is a reducible flow graph with a Hamiltonian path consisting of four pieces (see Figure 6):

A header node: The root node of the graph having out-degree one from which every other node in the
graph is reachable. Every control-flow graph has such a node.

The preamble: Zero or more additional initial nodes from which all later nodes are reachable. Any node
in the body can have an edge to any node in the preamble while preserving reducibility.

The body: The set of nodes used to encode a value. Edges within the body, from the body to the preamble,
and from the body to the footer node encode a permutation that is its own inverse.

A footer node: A node with out-degree zero that is reachable from every other node of the graph. This
node represents the method exit.

There is a one-to-one correspondence between self-inverting permutations and isomorphism classes of RPGs,
and this correspondence can be computed in polynomial time. An RPG encoding a permutation on n
elements has a bitrate of at least 1

4 lg n − 0.62 bits per node [3].
For encoding integers we use only those permutations that are their own inverses, as this greatly reduces

the need for a preamble. An integer n is encoded as the RPG corresponding to the nth self-inverting
permutation, using the enumeration of Collberg et al. [3].
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4.3 Generating Code from a Graph

A graph is embedded in an application by building a set of instructions that have a corresponding CFG. We
want to generate code (in this case Java bytecode) that is stealthy, executable, and efficient. In VVS it is
expected that watermark code be connected to the application by means of opaque predicates, and hence
never executed. This leaves the watermarked application open to tracing attacks. In GTWSM , we generate
executable watermark code that has no semantic effect on the program.

Given a graph, our code generator produces a static method that accepts an integer argument and returns
an integer result. Tiny basic blocks that operate on an integer are chosen randomly from a set of possibilities
to form the nodes in the graph. The basic blocks are connected as directed by the graph, using conditional
jumps and fall-through paths whenever possible. When used in combination with a graph encoder that
mimics genuine program structures (such as our RPG encoder), the result is a synthetic function that is not
obviously artificial.

If the graph has at least one leaf node (representing a return statement) then the generated function is
guaranteed to reach it, so the function can safely be called. Furthermore, the generator can be instructed to
guarantee a positive, negative, zero, or nonzero function result, allowing the function call to be used in an
opaque predicate.

4.4 Clustering

GTW includes a clustering step before the edge addition step to increase the complexity of the graphs to
which edges are added. If edges are added directly to control flow graphs, few original nodes will have more
than two out-edges or a small number of in-edges, and high-degree nodes generated by edge adding will be
conspicuous. The clustering step allows complex graphs to occur stealthily. VVS specifies a clustering step
that proceeds by

Partition[ing] the graph G into n clusters using ω as a random seed, so that edges straddling
across clusters are minimized (approximately).

VVS also states that

The clustering step (2) must have a way to find different clusterings for different values of ω, so
that the adversary does not have any knowledge about the clustering used.

With Java bytecode, edges can be added only within methods or to entry points of other (accessible)
methods. This constrains the usable clusterings. Fortunately, the natural clustering of basic blocks into Java
methods is suitable for our needs. The proven difficulty of separating W from P does not rely on keyed
clustering, so we have chosen in GTWSM to simply treat each Java method as a cluster.

Each node in the cluster graph then represents an application or watermark method, and an edge between
two nodes represents a method call. This clustering scheme is very likely to approximately minimize the
number of edges between clusters, since two basic blocks in the same method are much more likely to be
connected than two basic blocks in different methods. This scheme also allows us to implement edge addition
stealthily, efficiently, and easily. We were unable to identify any substantially different clustering scheme
with both of these properties.

4.5 Adding Control-Flow Edges

The GTW algorithm adds edges between clusters using a random walk, with nonuniform probabilities de-
signed to merge the watermark code indistinguishably into the program. This process begins by choosing a
random start node n, then repeatedly choosing another node l, creating an edge between n and l, and finally
setting n = l. This process proceeds until m edges have been added between P and W .

To ensure that watermark code is not trivially detected as dead code, we then continue randomly adding
edges until no watermark method has degree zero.

VVS does not address the issue of choosing m. Our implementation chooses m to make the average
degree of the watermark nodes approximately the same as the average degree of the application nodes as
follows.
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Let p be the number of program clusters and w be the number of watermark clusters. Set qp = p−1
p+w−1

and qw = w−1
p+w−1 . Let e be the number of edges in the original cluster graph. Then set

m =
4ew(1 − qw)(1 − qp)

p(2 − qw)(1 − qp) − w(2 − qp)(1 − qw)
. (1)

Within the watermark cluster graph, qw is the probability that the next node chosen in the random walk
will also be a watermark node. The probability that one edge-ending is added to watermark nodes is 1 − qw,
qw(1 − qw) for two edge-endings, q2

w(1 − qw) for three, and so on. The expected number of edge-endings to
be added to watermark nodes before leaving to original program nodes is then Ew =

∑∞
n=1 nqn−1

w (1− qw) =
1

1−qw
.

Similarly, qp is the probability that the next node chosen after a cluster from the original program is
another cluster from the original program. We obtain the analogous value Ep = 1

1−qp
for the expected

number of edge-endings to be added to program nodes before leaving for watermark nodes.
For every two cross edges added, we expect to add 1 + Ew edge-endings to watermark nodes and 1 + Ep

edge endings to program nodes. Let m = 2k. Since we want the average degree to be the same in original
program nodes and watermark nodes, we have the formula

k(1 + Ew)
w

=
2e + k(1 + Ep)

p
. (2)

Solving (2) for m gives (1).
Because each method is a cluster, adding an edge from cluster A to cluster B means inserting code

into method A that calls method B. The generated watermark methods are pure functions, so they can be
executed without affecting program semantics. Therefore, the added method calls to watermark methods can
actually be executed. However, application code may have arbitrary side effects, so the edge adding process
must not change the number or order of executions of application methods. Therefore, added application
method invocations are protected with opaquely false predicates to ensure that they are not actually executed.
Additionally, application methods may be declared to throw checked exceptions. Preparing for and catching
checked exceptions requires the addition to A of several blocks other than the method call block.

Also as a result of making each method a cluster, not every edge can be created. For example, private
methods from different classes cannot call each other. In this case, the edge is simply not created and the
process continues normally.

4.6 Marking Basic Blocks

Each basic block that corresponds to a node of the watermark must be individually marked for later recog-
nition. The VVS paper does not provide an actual algorithm, but suggests that

one may store one or more bits at a node that flags when a node is in W by using some padded
data after suitable keyed encryption and encoding.

For marking purposes, the contents of a block can be changed as long as the modified code is functionally
equivalent to the original. Here are some examples of possible block markers:

1. Add code that accomplishes no function but just serves as a marker, for example by loading a value
that is never used or writing to a value that has no effect on overall program behavior.

2. Count the number of instructions in a block, and use the parity as a mark. Add a no-op instruction,
or make a more subtle change, to alter the mark.

3. Count accesses of static variables to determine a mark. Add variables and accesses as necessary to
produce the desired results.

4. Compute a checksum of the instructions and use one or more bits of that as a mark. Alter the code as
necessary to produce desired results.

10



5. Transform the instruction sequence in each block to a canonical form, then vary it systematically to
encode marks.

6. Add marks in the meta-information associated with each block. For example, alter or create debugging
information that associates code locations with source line numbers.

All of these marking methods are easily defeated if an adversary’s goal is to disrupt the watermark
without necessarily reading it. We are not aware of any robust block marking technique; this remains an
unsolved problem.

For our implementation we have adopted the checksum technique, computing the MD5 digest [17] of
each block. Only instruction bytes and immediate constant values, such as those in bipush, contribute to
the digest value. This makes the digest insensitive to some simple changes such as reordering of the Java
“constant pool”.

A block is considered marked if the low-order two bits of the checksum are zero. We expect, then, to
alter 3

4 of the blocks in the watermark set but only 1
4 of the other blocks to get the right results. A real

application will have many more application blocks than watermark blocks, so this is a desirable imbalance.
Marking is keyed by concatenating a secret value to the instruction sequence before computing the MD5

digest. The set of marks cannot be read, nor can it be counterfeited, without knowing the key.

5 Recognition

The recognition process in VVS has three steps: detection of watermark nodes, sampling of subsets of the
watermark nodes, and computation of robust properties of these subsets. The set of robust property values
composes the watermark.

5.1 Node Detection

A basic block that is part of the watermark code can be detected by computing its MD5 digest, as described
in Section 4.6. A digest value ending in two zero bits indicates a mark. Attacks on the watermarked program
may change the digest value of some blocks, but our recognizer uses “majority logic” to recover from isolated
errors. If 60% of the blocks in a method are marked, the recognizer treats all the blocks in that method as
marked. If fewer than 40% of the blocks are marked, all are considered unmarked. If the number is between
40% and 60%, the recognizer tries both possibilities.

5.2 Subset Sampling

GTW specifies that after the watermark nodes have been detected, several subsets of them should be sampled.
GTWSM uses method control flow graphs as samples, and every watermark node is contained in exactly one
sample set, in particular, the control flow graph it belongs to.

5.3 Graph Decoding

The recognition process attempts to decode each sampled method control flow graph as a Reducible Permu-
tation Graph [3] that encodes an integer. A valid RPG can be decoded into a self-inverting permutation. The
decoder proceeds by first computing the dominance hierarchy of the graph and, once the graph is verified to
be reducible, finding the unique Hamiltonian path in the graph. This Hamiltonian path imposes an order on
the vertices, after which decoding the graph into a self-inverting permutation is relatively straightforward,
as laid out in [3].

Each graph’s permutation is mapped back to an integer, using the same enumeration as in Section 4.2.
The combined set of integers S is combined to produce single integer v, the watermark. This calculation is
as follows:

1. Let k = |S|. Write S as {s0, s1, . . . , sk−1}, where s0 ≤ s1 ≤ · · · ≤ sk−1.

2. Set l = s0 + 1. For each 0 ≤ j ≤ k − 2, set vj = sj+1 − sj .
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Figure 7: Increase in code size for the machineSim program.

3. Then v =
∑k−2

j=0 2jlvj .

5.4 Use in Fingerprinting

Because the recognizer returns a specific watermark value, as opposed to just a success/failure flag, GTWSM

can be used for fingerprinting. This is a technique where each copy of an application program is distributed
with its own unique watermark value, allowing pirated copies to be traced back to a specific original.

6 Evaluation

Most software watermarking research has focused on the discovery of novel embedding schemes. Little
work has been done on their evaluation. A software watermarking algorithm can be evaluated using several
criteria:

Data rate: What is the ratio of size of the watermark that can be embedded to the size of the program?

Embedding overhead: How much slower or larger is the watermarked application compared to the origi-
nal?

Resistance to detection (stealth): Does the watermarked program have statistical properties that are
different from typical programs? Can an adversary use these differences to locate and attack the
watermark?

Resilience against transformations: Will the watermark survive semantics-preserving transformations
such as code optimization and code obfuscation? If not, what is the overhead of these transformations?
How much slower or larger is the application after enough transformations have been applied that the
watermark no longer can be recognized?

6.1 Data Rate and Embedding Overhead

A watermark of any size can be embedded in even the smallest of programs using this algorithm. Larger
watermarks merely require larger watermark graphs, or a larger number of them, thus incurring larger
overhead in terms of increased code size.

For non-trivial programs, there is little relationship between watermark size and code growth, as illus-
trated in Figure 7. Block marking and edge addition add code that proportional to the size and complexity
of the application, not the watermark. For watermarks up to 150 bits, size increases varying between 40 and
75 percent were measured.

CaffeineMark [18] benchmark results show the effect of watermarking on execution time. Some programs
were not affected significantly, while others took 20 to 36 percent longer, as shown in Table 1.
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Category Original Watermarked Slowdown
Sieve 8676 6876 20.7%
Loop 25636 16344 36.2%
Logic 20635 13231 35.9%
String 19481 20198 -3.6%
Float 18657 18646 0%

Method 19106 12783 33.1%
Overall 17719 13816 22.0%

Table 1: CaffeineMark scores before and after embedding a watermark.

6.2 Stealth

Some common attacks against watermarking systems, such as manual attacks and subtractive attacks, begin
by identifying the code composing the watermark. To resist such attacks, watermarking could should be
stealthy: It should be indistinguishable from the host code. Two useful measures of stealth are the similarity
of the watermark code to the host code and the similarity of the watermark code to general application code.

GTWSM introduces several new artificially-generated methods to an application. These methods are not
stealthy in two respects. First, these methods include a very high percentage of arithmetic operations. While
general Java bytecode includes approximately 1% arithmetic instructions, the methods inserted by GTWSM

contain approximately 20% arithmetic instructions. Second, the control flow graphs of the inserted methods
are all reducible permutation graphs. While RPGs are designed to mimic the structure of real control flow
graphs, only 2 of 3236 methods in the SpecJVM benchmarking suite have control flow graphs that are RPGs.
Therefore, RPGs are not stealthy if an attacker is looking for them.

GTWSM currently introduces unstealthy code to implement edge addition between clusters. Edges be-
tween application methods are protected using the particularly conspicuous opaque predicate if (null !=
null). Also, GTWSM passes a constant for each argument to the called function; real code is more likely to
compute at least one of its arguments.

6.3 Semantics-Preserving Attacks

Automated attacks are the most serious threat to any watermark. Debray [13, 12, 11] has developed a family
of tools that optimize and compress X86 and Alpha binaries. BLOAT [15] optimizes collections of Java class
files. SandMark implements a collection of obfuscating code transformations that can be used to attack
software watermarks.

We first tested the robustness of GTWSM on a Java application machineSim which simulates a Von
Neumann machine. Various SandMark obfuscations were applied to see if a watermark could survive.
The watermark was successfully recognized after inlining, register re-allocation, local variable merging, array
splitting, class inheritance modification, local variable splitting, and many others. It was destroyed by
primitive boxing, basic block splitting, method merging, class encryption, and code duplication. These types
of transformations are described in [6, 7, 8].

Method merging makes such large changes to control-flow graphs that there is really no hope of recovering
the watermark value. Primitive boxing changes the instructions in many basic blocks in a method, and
thereby changes the marks on the blocks. Code duplication and basic block splitting add nodes to the
control flow graph of a method. While RPGs can survive some kinds of attacks on edges, they cannot
survive node additions.

The attack model considered in VVS is a small number of random changes to the watermarked application.
We have implemented an obfuscation that randomly modifies a parameterized fraction of blocks in a program.
If fewer than about half of the blocks in a watermarked application are modified, the watermark survives.
If more than that are modified, the watermark cannot be recovered.
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6.4 False Positive Rates

For our implementation to detect a spurious watermark in an unmarked application, the application would
have to have at least two methods with acceptable control-flow graphs in which the majority of basic blocks
would produce MD5 digests with two low-order zero bits. The probability of finding a mark in a single basic
block is only 1

4 . We examined a large group of methods from real programs and found the probability of a
control-flow graph being a valid RPG to be 0.002. While there is a possibility of finding an RPG with only
two or three nodes where all the nodes are marked in a real program, choosing watermark values from a
sufficiently sparse set should be enough to prevent false positives.

7 Discussion and Future Work

Our implementation of the GTW watermarking system is fully functional and reasonably efficient. It is
resilient against a small number of random program modifications, in accordance with the threat model
assumed by VVS.

The system is more vulnerable to pervasive changes, including several obfuscations implemented in the
SandMark system. Such vulnerabilities stem from issues left unaddressed by the VVS paper. These and
other areas provide opportunities for future work.

Static marking of basic blocks is the fundamental mutation applied by the watermarker. Development
of a robust marking method, capable of withstanding simple program transformations, is still an unsolved
problem.

Another area of great potential is the encoding of values as graph structures. In particular, the devel-
opment of other error-correcting graphs, as postulated by VVS, would greatly increase the strength of a
watermark.

More sophisticated generated code and opaque predicates would improve the stealthiness of a watermark.
Implementations of GTW for other architectures besides Java would undoubtedly prove enlightening,

because they would be likely to supply somewhat different challenges and opportunities.
One key feature of GTW is the algorithm for connecting new code representing a watermark into an

existing application. This algorithm also adds branches within the pre-existing code and is interesting in its
own right as a means of obfuscation. This also has potential for further research.

8 Summary

We have produced a working implementation of the Graph Theoretic Watermark described by Venkate-
san et al. [20]. The implementation is faithful to the paper within the constraints of Java bytecode, and
includes necessary components that were left unspecified by the original paper. While the GTW design pro-
tects against detection, its fundamental dependence on static block marking leaves watermarked programs
vulnerable to distortive attacks.
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