
Dynamic Graph-Based Software Watermarking

Christian Collberg∗, Clark Thomborson†, Gregg M. Townsend‡

Technical Report TR04-08

April 28, 2004

Abstract

Watermarking embeds a secret message into a cover message. In media watermarking the secret is usually a
copyright notice and the cover a digital image. Watermarking an object discourages intellectual property theft, or
when such theft has occurred, allows us to prove ownership.

The Software Watermarking problem can be described as follows. Embed a structure W into a program P such
that: W can be reliably located and extracted from P even after P has been subjected to code transformations such
as translation, optimization and obfuscation; W is stealthy; W has a high data rate; embedding W into P does not
adversely affect the performance of P; and W has a mathematical property that allows us to argue that its presence in
P is the result of deliberate actions.

In this paper we describe a software watermarking technique in which a dynamic graph watermark is stored in the
execution state of a program. Because of the hardness of pointer alias analysis such watermarks are difficult to attack
automatically.

1 Introduction
Steganography is the art of hiding a secret message inside a host (or cover) message. The purpose is to allow two parties
to communicate surreptitiously, without raising suspicion from an eavesdropper. Thus, steganography and cryptog-
raphy are complementary techniques: cryptography attempts to hide the contents of a message while steganography
attempts to hide the existence of a message. History provides many examples of steganographic techniques used in
the military and intelligence communities. For example, secret dispatches have been sent using invisible ink, hidden
tattoos, microdots, etc.

Steganography—in the form of media watermarking and fingerprinting—has also found commercial applications.
In image watermarking a copyright notice that identifies the intellectual property owner is imperceptibly embedded
into the host image. Web spiders have been constructed that trawl the Internet for watermarked images that have been
used without permission from their copyright owner. In media fingerprinting a customer identifier (such as a credit
card number) is embedded into the host. This allows the intellectual property owner to trace the original purchaser of
a pirated media object.

Media watermarking algorithms have been devised for many different host types, including images, audio, video,
and text [9]. Algorithms typically exploit limitations in the human perception system. Audio watermarks, for example,
can be hidden in short echos which humans have difficulty detecting. Many attacks against media watermarks have
also been constructed. StirMark [48], for example, is able to defeat many image watermarking schemes by applying
sequences of image transforms.

∗Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA, collberg@cs.arizona.edu
†Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand. cthombor@cs.auckland.ac.nz
‡Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA, gmt@cs.arizona.edu

1

Our interests lie in the watermarking of software. Conceptually, a software watermarking system consists of
functions

embed(P,w,key) → Pw

extract(Pw,key) → w

recognize(Pw,key,w) → [0.0,1.0]

attack(Pw) → P′
w

where embed transforms a program P into Pw by embedding the watermark w using the secret key key and extract
extracts w from Pw. In non-blind watermarking systems extract is replaced by a recognize function that returns the
likelihood that a particular watermark occurs in P. The attack function attempts to destroy the watermark embedded in
Pw such that extract(P′

w,key) 6→ w. In other words, attack models the capabilities of a software pirate trying to remove
a watermark from a protected program prior to illegally redistributing it.

This paper makes the following contributions:

• We present the first complete implementation of a dynamic software watermarking algorithm (known as the
Collberg-Thomborson (CT) algorithm) for Java bytecode.

• We introduce several techniques for improving the stealth of the introduced watermark code, the data rate of the
embedding, and the resilience of the watermark against automatic attacks.

• We evaluate the CT algorithm with respect to stealth, data rate, and resilience to attack. This is the first software
watermarking algorithm which has been evaluated to this level of detail.

The remainder of the paper is structured as follows. In Sections 1.1 through 1.5 we discuss watermarking in
general, attacks on watermarking systems, the ideas behind the CT watermarking algorithm, and the design of the
SandMark software protection research tool in which CT has been implemented. In Section 2 we present an infor-
mal classification of software watermarking algorithms, discuss attacks against software watermarks, and review the
previous literature. In Section 3 we present the basic implementation of the CT algorithm. In Sections 4, 5, and 6
we discuss methods for improving the resilience, bit-rate, and stealth of the algorithm, respectively. In Section 7 we
empirically evaluate the algorithm, in Section 8 we discuss our findings and in Section 9 we summarize.

1.1 Attacks on Watermarking Systems
The strength of any steganographic system is a function of its data rate, stealth, and resilience. The data rate expresses
the number of bits of hidden data that can be embedded within each kilobyte of cover message, the stealth expresses
how imperceptible the embedded data is to an observer, and the resilience expresses the hidden message’s degree of
immunity to attack by an adversary. All steganographic systems exhibit a trade-off between these three metrics in that
a high data rate implies low stealth and resilience. For example, the resilience of a watermark can easily be increased
by exploiting redundancy (i.e. including it several times in the host message) but this will result in a reduction in data
rate.

To evaluate the quality of a watermarking scheme we must also know how well it stands up to different types
of attacks. In general, no steganographic scheme is immune to all attacks, and often several techniques have to be
employed simultaneously to attain the required degree of resilience. In [9] Bender writes about media watermarking:
“. . . all of the proposed methods have limitations. The goal of achieving protection of large amounts of embedded
data against intentional attempts at removal may be unobtainable.”

To illustrate these concepts we will assume the following scenario. Alice watermarks a host object O with water-
mark W and key K , and then sells O to Bob. Before Bob can sell O on to Douglas he must ensure that the watermark
has been rendered useless, or else Alice will be able to prove that her intellectual property rights have been violated.
Figure 1 shows the three principal kinds of attacks Bob can launch against the watermark:

subtractive attack If Bob can detect the presence and (approximate) location of W , he may try to crop it out of O.
An effective subtractive attack is one where the cropped object has retained enough original content to still be
of value to Bob.

2

WWK K
O O ′ 2©1©

(a) At 1© Alice creates a watermarked object O ′, by adding wa-
termark W using key K to her original object O. At 2© Bob
steals a copy of O ′ and Charles extracts its watermark using
K to show that O ′ is owned by Alice.

W’ W’

W W
W1
W2

O ′′

K

3©

2©

4©

1©

5©

O ′O
K

O ′′

O ′′

(b) 2© shows an effective subtractive attack, where Bob successfully
removes W from O ′. 3© shows an effective additive attack, where
Bob adds new watermarks W1 and W2 to make it hard for Charles
to prove that W is Alice’s original watermark. 4© shows an effec-
tive distortive attack, where Bob transforms O ′ (and W) to make it
difficult for Charles to detect or extract W . At 5© Charles attempts
to extract W from the distorted object, and either fails completely
or gets a distorted watermark.

F1

F2

F3

O1

O2O
1©

K
O3

2©
O ′

(c) At 1© Alice creates several versions of O, each with a different fin-
gerprint (serial-number) F . 2© shows a collusive attack, where Bob
is able to remove the fingerprint by comparing O1, O2, and O3.

Figure 1: Attacks on watermarking systems.

3

distortive attack If Bob cannot locate W and is willing to accept some degradation in quality of O, he can apply
distortive transformations uniformly over the object and, hence, to any watermark it may contain. An effective
distortive attack is one where Alice can no longer detect the degraded watermark, but the degraded object still
has value to Bob.

additive attack Finally, Bob can augment O by inserting his own watermark W ′ (or several such marks). An effective
additive attack is one in which Bob’s mark completely overrides Alice’s original mark so that it can no longer
be extracted, or where it is impossible to detect that Alice’s mark temporally precedes Bob’s.

Alice might, in some cases, be able to tamperproof her object against attacks from Bob. Tamperproofing is any
technique used by Alice specifically to render de-watermarking attacks ineffective.

Most media watermarking schemes seem vulnerable to attack by distortion. For example, image transforms (such
as cropping and lossy compression) will distort an image enough to render many watermarks unrecoverable [5, 47].

1.2 Attacks on Fingerprinting Systems
Fingerprinting is similar to watermarking, except a different secret message is embedded in every distributed cover
message. This may allow us not only to detect when theft has occurred, but also to trace the copyright violator. A
typical fingerprint would include vendor, product, and customer identification numbers.

Fingerprinting objects makes them vulnerable to collusive attacks. As shown in Figure 1(c), an adversary might
attempt to gain access to several fingerprinted copies of an object, compare them to determine the location of the
fingerprints, and, as a result, be able to reconstruct the original object.

1.3 Software Watermarking
Our interest is the watermarking and fingerprinting of software. Although much has been written about protection
against software piracy [4, 30, 28, 54, 31, 34, 38], software watermarking is an area that has received very little
attention. This is unfortunate since software piracy is rampant. A sizeable fraction, estimated at 39% with a valuation
of 13 billion dollars, of business application software is installed annually without a license [BSA2003,Malhotra94]

There are three main issues at stake when designing a software watermarking technique:

required data rate How large is the watermark or fingerprint compared to the size of the program?

form of cover program Will the program be distributed in a typed architecture-neutral virtual machine code or an
untyped native binary code?

expected threat-model What kinds of de-watermarking attacks can we expect from Bob?

There are also logistic issues that need to be addressed. For example, how do we generate and distribute a large
number of uniquely fingerprinted programs, and how do we handle bug-reports for these? This paper will ignore such
complications.

In this paper we will assume that Alice’s object O is an application distributed to Bob as a collection of Java class
files. As we shall see, watermarking Java class files is at the same time easier and harder than watermarking stripped
native object code. It is harder because class files are simple for an adversary to decompile [50] and analyze. It is
easier because Java’s strong typing allows us to rely on the integrity of heap-allocated data structures.

Finally, we will assume a threat-model consisting primarily of distortive attacks, in the form of various types
of semantics-preserving code transformations. Ideally, we would like our watermarks to survive translation (such as
compilation, decompilation, and binary translation [16]), optimization, compression [20], and obfuscation [14, 15, 13].

Based on these assumptions, we will examine various software watermarking techniques and attempt to answer
the following questions:

• In what kind of language structure should the watermark be embedded?

• How do we extract the watermark and prove that it is ours?

• How do we prevent Bob from distorting the watermark?

• How does the watermark affect the performance of the program?

4

Heap

n2=CreateNode()
n3=CreateNode()
addEdge(n1,n2)
addEdge(n1,n3)
addEdge(n2,n3)

n1=CreateNode()

n4=CreateNode()
n5=CreateNode()
addEdge(n4,n5)
addEdge(n1,n4)
addEdge(n5,n1)

P ⇒

PwG1 G2

G ⇒W⇒⇓

⇓
W

⇒

i1, i2, . . . ,n

p1

p2

p3

p4

G

⇒

⇓

Figure 2: Overview of the CT algorithm.

1.4 The CT Algorithm
The CT software watermarking algorithm is a dynamic algorithm. The idea is that rather than embedding the water-
mark directly in the code of the application, code is embedded that builds the watermark at runtime. The algorithm
assumes a secret key K which is necessary to extract the watermark. K is a sequence of inputs I0, I1, . . . to the
application.

The embedding and extraction processes are illustrated in Figure 2. The watermark number W is embedded in the
topology of a graph G; the graph is split into several components G1,G2, . . .; each Gi is converted into Java bytecode
Ci that builds it; and each Ci is embedded into the application along the execution path that is taken on the special input
I0, I1, During extraction the watermarked application is run with I0, I1, . . . as input, the watermark graph gets built
on the heap, the graph is extracted and the watermark number is recovered.

There are several motivations for this design. First of all, because of pointer aliasing effects it is difficult to analyze
code that builds graph structures [23, 52]. Thus it would be difficult for an attacker to statically analyze a watermarked
program to look for code that builds a watermark graph or to destroy the graph using semantics-preserving transfor-
mations. Second, object-oriented programs typically contain a large number of the types of operations necessary to
build a graph, namely object allocations and pointer assignments. Thus the code that gets inserted is likely to fit in
with surrounding code. Third, since a large graph can be split into an arbitrary number of components that can be
spread over the entire program, it should be possible to stealthily embed large watermarks. Fourth, and finally, since
the watermark is data rather than code it should be easier to tamperproof. If the watermark graph is selected to have
a particular property (such as being planar, having a certain diameter, etc.) code can be inserted to test this property.
This is in contrast to static code watermarks for which tamperproofing requires the code segment of the executable to
be examined. This is difficult to do stealthily.

Figure 3 shows a simple example of a what a program may look like after having been watermarked. The original
program Simple is modified into Simple_W such that when run with the secret input argument "World" the
watermark graph is built on the heap. In a typical implementation Simple_W and Watermark would be obfuscated
to prevent attacks by pattern matching.

Palsberg et al. [46] present the first implementation of the CT algorithm. We compare their implementation to ours
in Section 8.1.

1.5 SandMark

SandMark [11] is a tool for doing research on software protection algorithms. The goal is to provide an infrastruc-
ture for implementing and evaluating algorithms for code obfuscation, software watermarking, and tamperproofing.
SandMark currently contains implementations of forty code obfuscation algorithms and fourteen watermarking al-
gorithms. It also supports various reverse engineering tools such as a slicer, a bytecode differ [8], and a bytecode
viewer. These can be used to aid manual attacks against software protection algorithms. A number of software com-

5

� �

p u b l i c c l a s s Simple {
s t a t i c void P (S t r i n g i) {

System . o u t . p r i n t l n (” H e l l o ” + i) ;
}
p u b l i c s t a t i c void main (S t r i n g a r g s []) {

P (a r g s [0]) ;
}

}
� �

⇓
� �

p u b l i c c l a s s Simple W {
s t a t i c void P (S t r i n g i , Watermark n2) {

i f (i . e q u a l s (” World ”)) {
Watermark n1 = new Watermark () ;
Watermark n4 = new Watermark () ;
n4 . edge1 = n1 ;
n1 . edge1 = n2 ;
Watermark n3 = (n2 ! = n u l l) ? n2 . edge1 : new Watermark () ;
n3 . edge1 = n1 ;

}
System . ou t . p r i n t l n (” He l l o ” + i) ;

}
p u b l i c s t a t i c void main (S t r i n g a r g s []) {

Watermark n3 = new Watermark () ;
Watermark n2 = new Watermark () ;
n2 . edge1 = n3 ;
n2 . edge2 = n3 ;
P (a r g s [0] , n2) ;

}
}

c l a s s Watermark exten ds j a v a . l a n g . O b j e c t {
p u b l i c Watermark edge1 , edge2 ;

}
� �

Figure 3: Example of a trivial class before and after being watermarked with the CT algorithm.

plexity metrics [27, 35, 40, 45, 25, 29] are provided for measuring the effect of code obfuscation and watermarking
algorithms.

SandMark works on Java bytecode. A typical code obfuscation algorithm, for example, will read a Java jar-file (a
collection of class files) as input and produce a modified jar-file as output.

SandMark is designed using a plug-in style architecture and supports a number of useful static analyses (class
hierarchy, control-flow, call graph, def-use, stack-simulation, liveness, etc.) simplifying the development of new
software protection algorithms. SandMark relies on BCEL [1] for bytecode editing, DynamicJava [2] for scripting,
and BLOAT [44] for code optimization. SandMark is currently approximately 120,000 lines of Java code of which
approximately 10,000 lines comprises the CT implementation.

The CT algorithm that will be described in this paper has been implemented within SandMark. It can be down-
loaded from http://sandmark.cs.arizona.edu. Appendix A shows a screenshot of SandMark recognizing

6

a CT watermark.

2 Techniques for Software Watermarking
Static Watermarks are stored in the application executable itself. In a Unix environment this is typically within the
initialized data section (where static strings are stored), the text section (executable code), or the symbol section
(debugging information) of the executable. In the case of Java, information could be hidden in any of the many
sections of the class file format: constant pool table, method table, line number table, etc.

Static Data Watermarks are very common since they are easy to construct and extract. For example, several
copyright notices can easily be extracted from the Netscape 4.78 binary:

> strings /usr/local/bin/netscape | grep -i copyright
Copyright (C) 1998 Netscape Communications Corporation.
Copyright (c) 1996, 1997 VeriSign, Inc.

Media watermarks are commonly embedded in redundant bits, bits which we cannot detect due to the imperfection
of our human perception. Static Code Watermarks can be constructed in a similar way, since object code also contains
redundant information. For example, if there are no data or control dependencies between two adjacent statements S1
and S2, they can be flipped in either order. A watermarking bit could then be encoded in whether S1 and S2 are in
lexicographic order or not.

Dynamic Watermarks are extracted from a program’s execution state rather than from the program code or data
itself. They were first introduced in [12]. The idea is that in order to extract a watermark from an application it is run
with a special input sequence I =I1· · ·Ik which makes it enter a state which represents the watermark. I can be thought
of as a secret key known only to the owner of the software and unlikely to occur naturally.

Dynamic watermarking methods differ in which part of the program state the watermark is stored, and in the way
it is extracted. When the special input sequence is entered, Dynamic Easter Egg Watermarks perform some action
that is immediately perceptible by the user, making watermark extraction trivial. Typically, the code will display a
copyright message or an unexpected image on the screen. For example, entering the URL pabout:mozillaq in the
Netscape 7.01 browser will make a message pAnd the beast shall be made legion. []q appear.

Dynamic Execution Trace Watermarks are extracted from the trace (either instructions or addresses, or both) of
the program as it is being run with a particular input I . The watermark is extracted by monitoring some (possibly
statistical) property of the address trace and/or the sequence of operators executed.

Dynamic Data Structure Watermarks are extracted by examining the current values held in the watermarked pro-
gram’s variables, after the end of the special input sequence has been reached. This can be done using either a
dedicated watermark extraction routine which is linked in with the executing program, or by running the program
under a debugger.

2.1 Attacks Against Software Watermarks
No known software watermarking method is completely immune to attack. In the worst case an adversary can study
the input/output behavior of the watermarked application and completely rewrite it, sans the mark. We do not consider
this a reasonable attack. We would, however, want the watermark to survive attacks by translation, optimization, and
obfuscation, since tools that perform such operations are readily available [22, 21, 16, 44, 11] and can be used by even
the most unsophisticated attacker.

Static data watermarks are highly susceptible to distortive attacks by obfuscation. In the simplest case, an automatic
obfuscator might break up all strings (and other static data) into substrings which are then scattered over the executable.
This makes watermark extraction nearly impossible. A more sophisticated de-watermarking attack would convert all
static data into a program that produces the data [14].

Many code obfuscation techniques [14, 15] will successfully thwart the extraction of code watermarks. Since
software is such a fluid medium it is easy to devise transformations which will destroy just about any structure of a
program. Figure 4(a) shows some of the basic code transformations on which code obfuscations can be built:

• A language construct can be split or two constructs can be merged. For example, an array or a method can be
split into two halves, or two modules or two integer variables can be merged into one.

7

L: X:

SPLIT MERGE

Increase
Dimensions

Increase
Nesting

REF

RENAME

CLONE

Dimensions
Decrease

Nesting
Decrease

DEREF

REORDER

A
A
A

(a) Basic code obfuscation transformations.

SPLIT

Increase
Dimensions

Increase
Nesting REF

MERGE
REORDER

(b) Example showing how simple obfuscating transformations can be combined.

Figure 4: Obfuscation attacks against software watermarks.

• The dimensionality of a construct can be increased or decreased. For example, an array can be folded or flattened.

• The nesting level of a construct can be increased or decreased. For example, the complexity of a method can
be increased by turning a single loop into a loop nest, or a scalar variable can be boxed into a heap-allocated
variable.

• A level of indirection can be added, for example by turning a static method into a virtual method.

• Language constructs such as methods, variables, and classes can be renamed.

• A compound language construct can be reordered. For example, two adjacent statements without data- or
control-dependencies can be swapped.

• A language construct can be cloned. For example, a method can be duplicated, each clone can be differently
obfuscated, and different calls can be made to invoke the different clones.

Most current commercial code obfuscators only perform name obfuscation. SandMark, however, supports a full-
fledged obfuscation engine with transformations that affect control-flow, classes, methods, and data-structures.

While each individual obfuscation may only add a small amount of confusion, transformations can be cascaded,
as shown in Figure 4(b).

Figure 5 shows the result of applying a sequence of obfuscating transformations to a simple program. The trans-
formations were performed automatically by the SandMark tool and the resulting program was decompiled using
Ahpah’s SourceAgain decompiler. The transformations applied were:

1. boolean splitting (a boolean variable is split into two small integer variables);

8

� �

p u b l i c c l a s s C {
s t a t i c i n t gcd (i n t x , i n t y) {

i n t t ;
whi le (t ru e) {

boolean b = x % y = = 0 ;
i f (b) return y ;
t = x % y ; x = y ; y = t ;

}
}
p u b l i c s t a t i c void main (S t r i n g [] a){

System . o u t . p r i n t (” Answer : ”) ;
System . o u t . p r i n t l n (gcd (1 0 0 , 1 0)) ;

}
}

� �

⇓T
� �

p u b l i c c l a s s C {
s t a t i c O bj e c t g e t 0 (O b j e c t [] I) {

I n t e g e r I7 , I6 , I4 , I3 ; i n t t9 , t 8 ;
I7 =new I n t e g e r (9) ;
f or (; ;) {

i f (((I n t e g e r) I [0]) . i n t V a l u e () % ((I n t e g e r) I [1]) . i n t V a l u e () = = 0)
{ t 9 = 1 ; t 8 = 0 ; } e l s e { t 9 = 0 ; t 8 =0;}

I4 =new I n t e g e r (t 8) ;
I6 =new I n t e g e r (t 9) ;
i f ((I4 . i n t V a l u e () ˆ I6 . i n t V a l u e ()) ! = 0)

re turn new I n t e g e r (((I n t e g e r) I [1]) . i n t V a l u e ()) ;
e l s e {

i f ((((I7 . i n t V a l u e () + I7 . i n t V a l u e () ∗ I7 . i n t V a l u e ()) % 2 ! = 0) ? 0 : 1) ! = 1)
re turn new I n t e g e r (0) ;

I3 =new I n t e g e r (((I n t e g e r) I [0]) . i n t V a l u e () % ((I n t e g e r) I [1]) . i n t V a l u e ()) ;
I [0] = new I n t e g e r (((I n t e g e r) I [1]) . i n t V a l u e ()) ;
I [1] = new I n t e g e r (I3 . i n t V a l u e ()) ;

}
}

}
p u b l i c s t a t i c void main (S t r i n g [] Z1) {

System . ou t . p r i n t ((S t r i n g) O b f u s c a t o r . g e t 0 (
new O bj e c t [] { (S t r i n g) new O bj ec t [] {

”\u00AB\u00CD\u00AB\u00CD\uFF84\u2A16\u5D68\u2AA0\u388E\u91CF\u5326\u5604 ”
} [0] })) ;

System . ou t . p r i n t l n (((I n t e g e r) g e t 0 (new O b j e c t []
{ (I n t e g e r) new O bj e c t [] { new I n t e g e r (1 0 0) , new I n t e g e r (1 0) } [0] ,
(I n t e g e r) new O b j e c t [] {

new I n t e g e r (1 0 0) , new I n t e g e r (1 0) } [1] })) . i n t V a l u e ()) ;
}

}
� �

Figure 5: Obfuscation example.

9

2. basic block splitting (a bogus branch protected by an opaquely false predicate [15] (q + q ∗ q) mod 2! = 0 is
inserted);

3. string encoding (the string "Answer:" is encoded into an unintelligible string which gets decoded at runtime);

4. scalar promotion (integer variables are converted to java.lang.Integer boxed integers);

5. signature unification (every method in the program is given the same Object[] signature, where possible);

6. name obfuscation (gcd is renamed get0).

It is obvious that many obfuscating transformations add an non-trivial amount of overhead. It may therefore well
be the case that while a certain sequence of transformations would obliterate a particular watermark, the resulting
de-watermarked program would be too slow or too large to have any value to the attacker. The goal of software wa-
termarking research is to design marking algorithms that will be robust against semantics-preserving transformations
that add an acceptable (to the attacker) amount of overhead. This is similar to the situation in image watermarking
where obliterating a watermark by blurring the image beyond recognition is not considered a viable attack.

The main problem with Easter Egg watermarks is that they seem to be easy to locate. There are even several web-
site repositories of such watermarks [43]. Unless the effects of the Easter Egg are really subtle (in which case it will
be hard to argue that they indeed constitute a watermark and are not the consequence of bugs or random programmer
choices), it is often immediately clear when a watermark has been found. Once the right input sequence has been
discovered, standard debugging techniques will allow us to trace the location of the watermark in the executable and
then remove or disable it completely.

Data structure watermarks have some nice properties. In particular, since no output is ever produced it is not
immediately evident to an adversary when the special input sequence I has been entered. This is in contrast to Easter
Egg watermarks, where, at least in theory, it would be possible to generate input sequences at random and wait for some
“unexpected” output to be produced. Furthermore, since the extraction routine is not shipped within an application
that has been watermarked using a data structure watermark (it is linked in during watermark extraction), there is little
information in the executable itself as to where the watermark may be located.

2.2 Software Watermarking Algorithms
Many simple watermarking algorithms have been based on reordering language constructs to embed the watermark.
For example, by reordering the branches of an m-branch case-statement we can encode log2(m!)≈ log2(

√
2πm(m/e)m) =

O(m logm) watermarking bits:
� �

swi t ch (E) {
c a se 1 : { · · ·}
c a se 5 : { · · ·}
c a se 9 : { · · ·}

}
� �

⇒
� �

sw i tc h (E) {
c ase 5 : { · · ·}
c ase 1 : { · · ·}
c ase 9 : { · · ·}

}
� �

A similar idea is used in the first published static code watermarking algorithm, due to Davidson and Myhrvold [19].
The idea is to embed a watermark by rearranging the order in which the basic blocks of a control-flow graph (CFG)
are laid out in the executable. See Figure 6(a) which shows how a watermark is encoded in the basic block sequence
〈B5,B2,B1,B6,B3,B4〉. Like all other algorithms based on reordering this one is trivial to attack by randomly reorder-
ing the basic block layout of the program.

Qu and Potkonjak [51] propose to embed the watermark in the register allocation of a program. Like all software
watermarking algorithms based on renaming structures of the program this algorithm is very fragile. Watermarks
typically do not even survive decompiling and then recompiling the program. This algorithm also suffers from a low
bit-rate [42].

Stern et al. [55] present an algorithm which uses a spread-spectrum technique to embed the watermark. The
algorithm embeds the watermark by changing the frequencies of certain instruction sequences, replacing them by
different but semantically equivalent sequences. A codebook gives equivalent instruction sequences that can be used
to manipulate code frequencies. This algorithm is resilient to semantics-preserving transformations that only affect

10

the high-level structure (such as the class-hierarchy and call-graph) of a program. However, it can be defeated by
obfuscations that modify data-structures and data-encodings and many low-level optimizations [53]. See Figure 6(b).

Moskowitz [39] describes a data watermarking method in which the watermark is embedded in an image (or other
digital media such as audio or video) using one of the many media watermarking algorithms. This image is then stored
in the static data section of the program. See Figure 6(c).

Arboit’s [6] algorithm embeds the watermark by adding special opaque predicates to the program. Extraction is
done by pattern-matching on the opaque predicates, and hence attacks by pattern-matching are easily constructed.

Monden’s algorithm [37, 36] adds a bogus method to the application. The bogus method is guarded by an always-
false predicate, where the predicate may be generated from a programmer’s assertion statement. The watermark is
encoded steganographically in the opcodes and operands of the static code in the bogus method.

Pieprzyk [49] describes a digital-rights management scheme for software, with two alternative methods for wa-
termarking. The first alternative is to embed the watermark signal in the choice of synonyms for short sequences of
instructions, similarly to Stern et al. [55]. Pieprzyk notes that this method is weak against adversaries who make a
“random selection of variants for each instruction.”

Venkatesan’s [56] algorithm constructs a CFG whose topology embeds the watermark number. This watermark
CFG is attached to an existing CFG by adding bogus control-flow edges using opaque predicates. In order to be able
to extract the watermark, basic blocks that belong to the watermark graph are marked. See Figure 6(d).

Cousot and Cousot [17] describe a watermarking process, in which the watermark is recognizable by a static
analysis of program semantics in a secret model. The embedding key is a series [n1,n2, ...,ni] of relatively prime
positive integers. The watermark c is any integer in the range 0..Πini −1. It is embedded as a series of residues ci =
c mod ni, computed in loops, where these ci are constant in the secret semantic model used for watermark recognition.
In the standard execution model, the values ci are non-constant and may closely resemble the pseudorandom variates
used in stochastic numerical computations such as Monte Carlo estimation algorithms. The watermark recognition
process is essentially the static analysis done by an optimising compiler to recognize constant assignments in loops.
This is a promising method in static data watermarking, however an attacker may be able to recognize the watermark
data in commonly-occurring programs, because of its use of unusually complex literal constants. In a survey of 600
Java programs, we found that 92% of all literal integers are 2k or 2k +1, so the watermarking method of Cousot and
Cousot would be non-stealthy in such programs. We see promise in this method, because it is not difficult to devise
a method to hide arbitrarily-complex literal constants in secret, non-standard semantics for commonly-occuring code
sequences in Java. The secret detection semantics for the Cousot and Cousot watermark must, however, remain simple
if it is to be persuasive evidence in favour of the embedded watermark. Otherwise the attacker may construct an
alternative secret semantics which fraudulently detects an arbitrary, non-existent watermark.

Many of these algorithms have been implemented within the SandMark framework.
Palsberg et al. [46] present a dynamic watermarker based on the CT algorithm. In this simplified implementation,

the watermark is not dependent on a key input sequence, but is constructed unconditionally. The watermark value is
represented as a planted planar cubic tree (PPCT) graph. Queries applied to the PPCT can be used as opaque predicates
for obfuscation or tamperproofing. The CT algorithm was found to be practical and robust.

2.3 Tamperproofing Watermarks
Our experience with obfuscation tells us that all static structures of a program can be successfully scrambled by
obfuscating transformations. And, in cases where obfuscation is deemed too expensive, inlining and outlining [14],
various forms of loop transformations [7] and code motion are all well-known optimization techniques that will easily
destroy static code watermarks.

Moskowitz [39] describes how their software watermarking method (which embeds the watermark within an image
included with the application) can be tamperproofed. The idea is to also embed an “essential” piece of code within
the image. This code is occasionally extracted and executed, making the program fail if the image (and hence the
watermark) has been tampered with (for example by the StirMark [48] suite of image transforms). Unfortunately,
generating and executing code on the fly is unusual and unstealthy behavior for most applications. See Figure 6(c).

A further complication is the difficulty of tamperproofing code watermarks against these types of semantics-
preserving transformations. This is particularly true in Java, since, for security reasons, Java programs are not able to
inspect their own code. In other words, in Java we cannot write pif (instruction #99 != "add") die()q.
Even in languages like C where this is possible, such code would be highly unusual (since it examines the code rather

11

goto B1

· · · · · ·

if (e) goto B2

· · · · · ·

goto B3

· · · · · ·
goto B2

· · · · · ·
goto B7

· · · · · ·

⇒
· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·
goto B2

· · · · · ·

if (e) goto B6

B0

B7

· · · · · ·
if (e) goto B6
goto B5

if (e) goto B3

B0

B3

B4

B1

B2

B3

B4

B5

B6

B7

B2

B1

B6

B5
CodeBook =

push α ⇔
push α
push β
pop

, add⇔
push 1

mul

add

push 1
push 2

push 9
push 5
pop
sub

mul
add

push 1
mul
add

sub

push 9
push 7

push 3
push 4
pop
add

push 1
push 2

push 9
push 7

push 3
add

push 9
sub

mul
add add

sub

⇒

(a) (b)

(c)

class Main {

const Picture C = for(i=0;i<10;i++)

}

}

int secret (int a) {

a += i*a;

return a;

Copyright 2003, C. Collberg

· · ·
Code R = Decode(C);
Execute(R);

}

(d)

� �

i n t gcd (i n t x , i n t y){
whi le (x%y != 0){

t =x%y ; x=y ; y= t ;}
re turn y ;

}
� �

⇒

+ +
� �

void watermark () {
i f (t rue)

re turn
e l s e

re turn
}

� �

⇐

� �

i n t gcd (i n t x , i n t y){
whi le (x%y != 0){

watermark();
t =x%y ; x=y ; y= t ;}

return y ;
}

� �

⇑
√

√ √

PF

Figure 6: Watermarking algorithms. (a) Stern [55], (b) Davidson-Myhrvold [18], (c) DICE [39], (d) Venkatesan [56].

than the data segment of the executing program) and unstealthy.

12

Application
Original

annotate

p1:mark()

p2:mark()

Application
Annotated

p3:mark()

p1
......

Trace
Execution

p3

trace

embed

p1
......

Trace
Execution

p3

p1:mark()

p2:mark()

Application
Annotated

p3:mark()

n2=new T()
n3=new T()
n2.left=n3
.....

n4=new T()
n3.right=n4

Watermarked
Application

p3:

p1:

I0, I1, · · ·
⇓

⇒⇒

⇑
W

⇒⇒

⇒ ⇒

⇓

Figure 7: Overview of how the CT algorithm watermarks an application. First, the user adds annotation points
(mark()-calls) to the application. These are locations where watermarking code may be inserted. Secondly, the
application is run with a secret input sequence, I0, I1, . . . and the trace of mark()-calls hit during this run is recorded.
Finally, code is embedded into the application (at certain mark()-call locations) that builds a graph GW at runtime.
The topology of GW embeds the watermark W .

3 The CT Algorithm — Basic Implementation
The Collberg-Thomborson watermarking algorithm (henceforth, CT) is a dynamic algorithm. The idea is that rather
than embedding the watermark directly in the code of the application, code is embedded that builds the watermark
at runtime. The algorithm assumes a secret key K which is necessary to extract the watermark. K is a sequence of
inputs I0, I1, . . . to the application. As seen in Figure 2, the watermark (a graph structure) is built by the application
only when the user runs it with the special input I0, I1, Figure 3 shows a simple example of a what a program may
look like after having been watermarked.

In the SandMark implementation of CT, watermark embedding and extraction runs in several steps (See Figure 7):

Annotation Before the watermark can be embedded the user must add annotation (or mark) points into the application
to be watermarked. These are calls of the form

� �

mark () ;
S t r i n g S = . . . ;
mark (S) ;
long L = . . . ;
mark (L) ;

� �

The mark() calls perform no action. They simply indicate to the watermarker locations in the code where (part
of) a watermark-building code can be inserted. The argument to the mark() call can be any string or integer
expression that (directly or indirectly) depends on user input to the application.

Tracing When the application has been annotated the user performs a tracing run of the program. The application is
run with the chosen secret input sequence, I . During the run one or more annotation points will be hit. Some of
these points will be the locations where watermark-building code will later be inserted.

13

Embedding During the embedding stage the user enters a watermark, a string or an integer. A string is converted
to an integer. From this number a graph is generated, such that the topology of the graph embeds the number.
The graph is converted to Java bytecode that builds the graph. The relevant mark()-calls are replaced with this
graph-building code.

Extraction During watermark extraction the application is again run with the secret input sequence as input. The
same mark()-locations will be hit as during the tracing run. Now, however, these locations will contain code
for building the watermark graph. When the last part of the input has been entered, the heap is examined for
graphs that could potentially be watermark graphs. The graphs are decoded and the resulting watermark number
is reported to the user.

We will next consider these tasks in detail.

3.1 Annotation
The CT watermark consists of dynamic data-structures. This means that the code inserted in the application will look
like this:

� �

Watermark n1 = new Watermark () ;
Watermark n2 = new Watermark () ;
n1 . edge = n2 ;

. . .
� �

Hence, we should prefer mark locations that

• allocate objects and manipulate pointers, and

• directly depend on user input.

We should avoid mark locations that

• are hot-spots, and

• are executed non-deterministically.

In other words, mark()-calls should be added to locations where the resulting watermark code will be fit in (is
stealthy), will not affect performance, and will be executed consistently from run to run, depending only on user
actions.

For example, the following code is undesirable since Math.random() may generate different values during
different runs of the program:

� �

i f (Math . random () < 0 . 5) {
. . .
mark () ;

}
� �

Similarly, if thread scheduling, network activity, processor load, etc. can affect the order in which some locations are
executed, these locations are not valid annotation points and should be avoided.

3.2 Tracing
SandMark makes heavy use of Java’s JDI (Java Debugging Interface) framework. During tracing and extraction
SandMark starts up the user’s application as a subprocess running under debugging. This allows SandMark to
set breakpoints, examine variables, and step through the application – all the operations that can be done under an
interactive debugger. During tracing we are interested in obtaining a trace of the mark()-calls that are hit while the

14

� �

import j a v a . awt . e v e n t . ∗ ;
import j a v a x . swing . ∗ ;
p u b l i c c l a s s B ut ton implements A c t i o n L i s t e n e r {

s t a t i c void P (i n t i) {
L0 :mark (i) ;

}
s t a t i c void Q(i n t i) {

L1 :mark (i) ;
i f (i < 2) P (i) ;

}
p u b l i c void a c t i o n P e r f o r m e d (Ac t i on Eve n t e) {

L2 :mark () ;
Q (3) ;

}
p u b l i c s t a t i c void main (S t r i n g a rgv []) {

Q (1) ;
Q (2) ;
JFrame jw = new JFrame () ;
J B u t t o n b = new J B u t t o n (” w00t ! ”) ;
b . a d d A c t i o n L i s t e n e r (new B ut t on ()) ;
jw . g e t C o n t e n t P a n e () . add (b) ;
jw . pack () ; jw . show () ;

}
}

� �

Value Method Location Thread Stack
A© 1 Q L1 1 〈main,Q〉
B© 1 P L0 1 〈main,Q,P〉
C© 2 Q L1 1 〈main,Q〉
D© /0 aP L2 2 〈aP〉
E© 3 Q L1 2 〈aP,Q〉

Figure 8: An example Java program annotated for tracing and the generated tracepoints. The method
actionPerformed is abbreviated aP. The corresponding trace forest is shown in Figure 18.

user enters their secret input. We also want to know the argument to the mark()-call and the stack trace at the point
of the call. During extraction we use JDI to examine the objects on the heap to look for watermark graphs.

At the end of tracing run we have gathered a list of TracePoints which represent the mark()-calls that were hit
during the trace. Each TracePoint contains three pieces of information:

1. the location in the bytecode where the mark()-call was located;

2. the value of the expression e that the user supplied as an argument to the mark(e)-call, or /0 if a parameterless
mark()-call was hit;

3. a list of the stack-frames active when the mark()-call was hit.

Figure 8 shows an example application and the corresponding list of trace points.
Not all locations generated during the tracing run can be used to build the watermark graph and some may have to

be removed. An annotation point 〈value, location〉 is valid if

1. there is exactly one trace point at location, or

15

2. there are multiple trace points at location, but they all have unique values.

For example, consider the following mark()-points:

〈 /0,L0〉
〈1,L1〉
〈1,L1〉
〈10,L2〉
〈11,L2〉
〈12,L2〉

〈 /0,L0〉 is valid, because it is the only mark()-point at location L0. 〈1,L1〉 is not valid because there are two identical
annotation values at this location. If we were to insert watermark-building code at this location we would not be
able to tell the difference between the first and the second time we arrive. 〈10,L2〉,〈11,L2〉,〈12,L2〉 are valid because
the values are unique. If there is one unique value at a location, this mark()-call is said to be LOCATION-based,
otherwise it is VALUE-based.

3.3 Embedding
Once the application has been traced we can start embedding the watermark. The input to this phase is tracing
information, a watermark W to be embedded, and a jar-file containing the classfiles in which to embed the mark. The
embedding is divided into five phases:

1. Generate a graph G whose topology embeds W .

2. From G generate an intermediate code C that builds this graph.

3. Translate the intermediate code C into a Java method M that, when executed, will build G.

4. Finally, based on the tracing information, replace one of the mark()-calls with a call to the M-method. The
remaining mark()-calls are removed.

The result is a new jar-file which when executed with the special input sequence will execute the method M, and,
consequently, build the watermark graph G on the heap.

In Section 5 we will extend the embedding method such that the watermark graph is split into several pieces and
inserted at various mark()-locations.

3.4 Constructing the Graph
An ideal class of watermark graphs should

1. have a root node from which all other nodes are reachable to prevent pieces of the graph from being garbage
collected,

2. have a high bit-rate so that a large watermark will result in a small graph,

3. have low out-degree to resemble common data-structures such as lists and trees,

4. have some error-correcting properties such that minor changes to the graphs by an attacker, or minor failures
during extraction, will not prevent the graph from being extracted, and

5. have some internal structure that makes the graph easy to tamper-proof.

We do not expect to find a single class of graphs which simultaneously optimizes all these criteria. Instead, we
are developing a library of algorithms for building watermark graphs with different sets of properties. Depending on a
user’s particular requirements (high bitrate, high resilience to attack, high stealth, etc.) this will allow an appropriate
graph (or combination of graphs) to be found. Currently, SandMark contains an implementation of four of the five
classes of watermark graphs illustrated in Figure 9.

16

90 1 2 3 4 5 6 7 8

(a) Permutation
3 ·64 +2 ·63 +3 ·62 +4 ·61 +1 ·60

(b) Radix

Preamble

Foot

Head

0 1 2 3 4 5 6 7 8 9 10

Body

(c) Reducible permutation graph

48:

2:
1:

22:

(d) Parent-pointer

RL

RL

RL

RL

RL

RL

RL

RL

(e) PPCT

Figure 9: Graph encodings. This figure is taken from [10].

3.4.1 Permutation Encoding

A watermark integer W , in the range [0..n−1], may be represented by a permutation of the numbers 〈0, . . . ,n− 1〉.
We use a natural mapping of permutations onto integers, such that (for example) the watermark

1024

is represented by the permutation
π = 〈9,6,5,2,3,4,0,1,7,8〉

We use a singly-linked, circular list data structure to represent a permutation. We call this structure a Permutation
Graph. See Figure 9(a). Each element i of the list has two pointers. Its data pointer refers to the element π(i) to which
i is mapped by the permutation π. It also has a list pointer referring to element (i+1) mod n.

The dynamic bitrate of a Permutation Graph is the number (lgn!) of watermark bits represented by an n-element
list, divided by the number of bytes (an + b) required to represent this list in computer memory. To embed a non-
negative watermark integer w, we use n = min{k : k! > w} list elements. Using the first term of Stirling’s approxima-
tion, we have n = m/ lgm +O(m/ lg lgm), where m = dlg(w + 1)e is the number of bits in w. We conclude that the
dynamic bitrate r(m) = (lgm)/a+O(lgm/ lg lgm) is a slowly increasing function of m.

The coefficient a in our dynamic bitrate expression is a small integer whose exact value will depend on implemen-
tation details. At minimum, a must be 16 bytes on a 32-bit computer architecture, because each list element contains
two 4-byte pointers. If list elements are dynamically allocated, then the dynamic storage allocator will require at least

17

one additional pointer field for each allocated object, and a would be “rounded up” to 16 bytes in such implementa-
tions. The list-overhead coefficient b is another small integer whose value is irrelevant in the asymptotic limit, even
though it will be important when m is small.

The static bitrate is the number of watermark bits, divided by the number of bytes of code required to build the
watermark. In a straightforward implementation, there would be an overhead of b′ code bytes to create the list header,
plus a′ code bytes per list element. Thus the static bitrate will have the same asymptotic form (with different constants)
as the dynamic bitrate. This is true of all our watermark-encoding methods, so we will not treat dynamic bitrates again
in this section. However in Section 7 we analyse our experimental data to estimate the constants governing static and
dynamic bitrates for each of our encoding methods.

Permutation Graph watermarks have a modest resilience to attacks on its pointer fields. Any change to one of its
list pointers will disrupt its circular-list property. Any change to one of its data pointers will disrupt its permutation
property. We summarise these observations by saying that Permutation Graphs are single-error detecting.

3.4.2 Radix Encoding

Figure 9(b) illustrates a Radix Graph in a circular linked list of length n. The data pointer field encodes a base-n digit
in the length of the path from the node back to itself. A null-pointer encodes a 0, a self-pointer a 1, a pointer to the
next node encodes a 2, etc. Note that this is the same data structure as a Permutation Graph, however Radix Graph
watermarks have higher bitrate and less error-detection capacity, because their data pointers are less constrained.

A Radix Graph of length n can represent any integer in the range 0 . . .(n+1)n −1. The list requires an+b words,
so its dynamic bit-rate, as a function of n, is (n−1) lg(n+1)/(an+b)≈ (lgn)/a. For n = 511, if a = b = 8 bytes, we
can hide m = 8×511 = 2040 bits in 2048 bytes of storage. This is a dynamic bitrate of almost exactly one watermark
bit per byte of data structure. Smaller dynamic bitrates would be observed if a were larger than 8 bytes, or if n
were smaller than 511 (due to the increasing importance of the overhead term b and the convexity of the lgn term).
Somewhat larger bitrates would be observed for larger n.

The constants in the static data rate is more difficult to estimate, since these will depend heavily on the encoding. As
an example, we will consider Java bytecode. Allocating a node and initializing two pointer fields may be accomplished
with a 24-byte sequence of bytecodes. To hide a 2040-bit watermark, we must build a 255-element list. This requires
24×255 = 6120 bytes of straight-line bytecode, plus a few dozens of additional bytes to construct the list header, for
a static bit-rate of 0.33 hidden bits per codebyte.

3.4.3 Parent-Pointer Trees

All our watermark embedding methods can be described as enumerations of graphs [26]. The idea is to let the water-
mark number n be represented by the index of the watermark graph G in some convenient enumeration. This requires
us to have effective algorithms to

1. given n, generate the w:th graph in the enumeration, and

2. given G, extract its index w in the enumeration.

Both operations must be efficient, since we expect n to be large. This rules out many classes of graphs due to the
intractability of sub-graph isomorphism.

Several classes of graphs, in addition to Permutation Graphs and Radix Graphs, allow efficient enumeration and
indexing. For example, we can let G be an oriented “parent-pointer” tree, in which case it is enumerable by the
techniques described in Knuth [32, Section 2.3.4.4]. Figure 9(d) illustrates these trees.

We construct an index w for any enumerable graph in the usual way, that is, by ordering the operations in the
enumeration. For example, we might index the n-node parent-pointer trees in “largest subtree first” order, in which
case the path of length m−1 would be assigned index 1. Indices 2 through an−1 would be assigned to the other trees
in which there is a single subtree connected to the root node. Indices an−1 +1 through an−1 +an−2 would be assigned
to the trees with exactly two subtrees connected to the root node, such that one of the subtrees has exactly n−2 nodes.
The next an−3a2 = an−3 indices would be assigned to trees with exactly two subtrees connected to the root node, such
that one of the subtrees has exactly n−3 nodes.

The number an of parent-pointer trees with n nodes is asymptotically (for c ≈ 0.44 and 1/α ≈ 2.956) an =
c(1/α)n−1/n3/2 +O((1/α)n/n5/2). Thus we can encode an arbitrary 1024-bit integer w in a graphic watermark with

18

1024/ lg2.956 ≈ 655 data pointers. This might require as little as 2620 bytes on a 32-bit architecture, if these data
pointers were added to objects that were allocated by the original unwatermarked program. (These data pointers
would, however, slow the de-allocation processes because it would prevent any dead objects from being de-allocated
until all its children objects in the watermark tree were also dead.) The dynamic bit-rate of a Parent Pointer Tree
watermark is thus expected to be 1024/2620 ≈ 0.4 hidden bits per data byte. This is about half the bitrate of Radix
Graphs. It is approximately the same bitrate as Permutation Graphs, but not all single errors in data pointers can be
detected in a Parent-Pointer Tree. Because Parent-Pointer Trees are inferior to Permutation Graphs in bitrate, and are
no better in resiliency, Parent Pointer Trees have not been a high priority for implementation in SandMark.

In Section 4 we discuss the bitrates and error-correcting properties of the more complex graphs illustrated in
Figures 9(e) and 9(c).

3.5 Generating Intermediate Code
We could, of course, generate Java code directly from the graph components. However, it turns out to be advantageous
to insert one intermediate step. From the watermark graph we generate a list of intermediate code instructions, much
in the same way a compiler might generate an intermediate representation of a program, in anticipation of code
generation and optimization. In a compiler the intermediate code separates the front-end from the back-end, improving
retargetability, and also provides a target-independent representation for optimizing transformations. Similarly, our
intermediate representation provides

1. retargetability, to allow future generation of code for other languages; and

2. transformability, i.e. the ability to optimize or otherwise transform the intermediate code prior to generating
Java code.

In fact, in our implementation we start by generating straight-forward intermediate code and then run several transfor-
mations over the code to optimize it.

Given the graph in Figure 10(a) we would generate the intermediate code in Figure 10(b). Nodes are named
n1,n2, etc. The n=CreateNode() instruction creates a new node n. The AddEdge(n

edge−→ m) instruction adds an
edge from node n to node m. Since the graphs are multi-graphs the out-edges are named edge1, edge2, etc. The
instruction SaveNode(n,L) is used to store the root node n in a global storage location L, such as a hash table,
vector, etc. This ensures the liveness of every node so that the graph will not be reclaimed by the garbage collector. As
we will in Section 6.1, we can often do away with these global pointers by passing root nodes as method arguments.
This is much stealthier since most programs have few global variables but many method parameters.

To generate intermediate code from a graph G we perform a depth-first search from the root of the graph. CreateNode()-
instructions are generated from each node, in a reverse topological order. We issue an AddEdge(n

edge−→m)-instruction
as soon as the instructions m=CreateNode() and n=CreateNode() have both been generated.

The complete set of intermediate code instructions is given in Table 1. These will be discussed in more detail in
conjunction with the splitting of graphs into multiple pieces.

3.6 Generating and Inserting Java Code
Generating Java code from the intermediate representation is relatively straight-forward. We use the BCEL library to
generate a bytecode class Watermark. From the intermediate code in Figure 10(b) we would generate the Java code
in Figure 10(c).

The chosen mark()-location is replaced by a call to Watermark.Create(). A final obfuscation pass over the
watermarked application will inline the call, rename the watermark class, etc., to prevent attacks by pattern-matching.

To insert the call to Watermark.Create() two cases must be considered, depending on whether the mark()-
call is LOCATION-based or VALUE-based. A LOCATION-based mark()-call is simply replaced by a call

� �

Watermark . C r e a t e () ;
� �

A VALUE-based mark(expr)-call is replaced by the call

19

4

2

1

3

(a)

� �

c r e a t e ()
n4= CreateNode ()
n2= CreateNode ()

AddEdge (n2
edge1−→ n4)

AddEdge (n4
edge2−→ n2)

n3= CreateNode ()

AddEdge (n2
edge2−→ n3)

n1= CreateNode ()

AddEdge (n1
edge1−→ n2)

AddEdge (n1
edge2−→ n3)

SaveNode (n1 , Array)
� �

� �

p u b l i c c l a s s Watermark {
p u b l i c Watermark edge1 , edge2 ;
p u b l i c s t a t i c Watermark [] a r r a y ;

p u b l i c s t a t i c void C r e a t e () {
Watermark n4=new Watermark () ;
Watermark n2=new Watermark () ;
n2 . edge1=n4 ;
n4 . edge2=n2 ;
Watermark n3=new Watermark () ;
n2 . edge2=n3 ;
Watermark n1=new Watermark () ;
n1 . edge1=n2 ;
n1 . edge2=n3 ;
a r r a y [1] = n1 ;

}
}

� �

(b) (c)

Figure 10: (a) shows a watermark graph, (b) the corresponding intermediate code, and (c) the resulting Java code.

� �

i f (expr == v a l u e)
Watermark . C r e a t e () ;

� �

Code is also inserted to create the hashtables, arrays, vectors, etc. that are used to store watermark graph root nodes.

3.7 Extraction
To extract the watermark the watermarked application is run as a subprocess under debugging, again using Java’s JDI
debugging framework. The user enters their secret input sequence I0, Ii, . . . exactly as they did during the tracing phase.
This causes the method Watermark.Create() to be executed and the watermark graph to be constructed on the
heap. When the last input has been entered it is the extractor’s task to locate the graph on the heap, decode it, and
present the watermark value to the user.

There may, of course, be an enormous number of objects on the heap and it would be impossible to examine them
all. To cut down the search space we rely on the observation that the root node of the watermark graph will be one of
the very last objects to be added to the heap. Hence, a good strategy is to examine the heap objects in reverse allocation
order. Unfortunately, JDI does not yet provide support for examining the heap in this way.

An elegant and efficient approach would be to modify the constructor for Java’s root class java.lang.Object
to include a counter:

20

sm$array:

Buffer

last Heap

Figure 11: A view of memory during extraction. A circular linked buffer holds the last allocated objects. The extractor
examines the objects in reverse allocation order and extracts the subgraph reachable from each object. This is decoded
into the watermark.

� �

package j a v a . l a n g ;
p u b l i c c l a s s O bj ec t {

p u b l i c s t a t i c long ob jCount = 0 ;
p u b l i c long a l l o c T i me ;
p u b l i c O b j e c t () {

a l l oc T i m e = objC ount ++;
}

}
� �

Since every constructor must call java.lang.Object.<init> (the class constructor) this means that we have
assigned an allocation order to the objects on the heap at the cost of only an extra add and assign per allocation.

We’ve shied away from this approach, however, since it would require modifying the Java runtime library. Also,
it is conceivable that some Java compilers may optimize away calls to java.lang.Object.<init> under the
assumption that this constructor does nothing.

Instead, we rely on a more heavyweight but portable solution. Using JDI we add a breakpoint to every constructor
in the program. Whenever an allocation occurs we add a pointer to the new object to a circular linked buffer. This
way, we always have the last 1000 (say) allocated objects available. This is illustrated in Figure 11. The downside is a
fairly substantial slowdown due to the overhead incurred by handling the breakpoints.

To extract the watermark graph we consider each object on the circular buffer in reverse allocation order, extracting
the reachable subgraph. Since every watermark graph has a root from which every node is reachable we are guaranteed
to eventually find the graph. From the graph the watermark number is extracted, by the algorithm in Figure 12.

4 Improving Resilience
To properly design and evaluate a watermarking algorithm it is essential to precisely define an attack model. This has
been a failing of most previous work on software watermarking. In this paper we will assume that the watermarked
program is too large for manual inspection by the adversary. In other words, it is infeasible for the adversary to
read the (decompiled) source to locate and destroy the watermark code. Rather, we want to protect the watermarked
program against class attacks — the construction of automated methods of destroying the watermark. For example,

21

� �

fo r each graph codec C do
f or each node n on t h e b u f f e r , i n r e v e r s e a l l o c a t i o n o r d e r do

G = heap graph wi t h r o o t n , edges [e 1 , e 2 , \ l d o t s , e k] ;
fo r each p a i r (ei,e j) of edges i n [e1,e2, . . . ,ek] do

G′ = s ubgraph of G wi t h edges l a b e l e d (ei,e j) ;
i f watermark de cod ing w = C(G′) s u c c e e d s t h e n

y i e l d w
� �

Figure 12: Watermark extraction algorithm. We assume that all graph codecs generate graphs with outdegree two,
which is the case in the SandMark system. Since an adversary might add extra outgoing edges to the graph nodes we
try all possible sugraphs of outdegree two. k is the outdegree of G. In cases where the user knows which graph codec
was used during embedding, the outermost loop is removed.

if a particular code transformation can be shown to destroy a watermark then it is an easy task for an adversary to
construct a program that will destroy every watermark in every program.

One nice consequence of our approach is that many translating, optimizing, and obfuscating transformations will
have no effect on the heap-allocated structures that are being built. There are, however, other techniques which
can obfuscate dynamic data, particularly for languages with typed object code, like Java. There are four types of
obfuscating transformations that we would like to be resilient against. To confuse the extractor an adversary can

1. add extra pointers to the nodes of linked structures (Figure 13(a)) to make it hard for the extractor to identify the
real graph edges within many extra bogus pointer fields;

2. rename and reorder instance variables (Figure 13(b));

3. add levels of indirection, for example by splitting nodes into several linked parts (Figure 13(c));

4. add extra bogus nodes pointing into our graph, preventing us from finding the root.

Figure 14 illustrates a combination of such attacks.
With the exception of renaming and reordering, these attacks can have some very serious consequences for the

memory requirement of an adversary’s de-watermarked program. For example, splitting a node costs 12 bytes per
allocated node (one 4-byte pointer cell plus approximately 8 bytes of overhead for current Java implementations).
Furthermore, since we are assuming that an adversary will not know in which dynamic structure our watermark is
hidden, he is going to have to apply the transformations uniformly over the entire program in order to be certain the
watermark has been obliterated. In other words, programs with high allocation rate are likely to be resilient to these
types of attacks, since the de-watermarked program will have a much higher memory requirement than the original
one.

4.1 De-watermarking by Field Reordering
A simple way to protect against field reordering is to consider every order of the fields during watermark extraction.
This could, however, lead to an increased false positive rate. A better approach is to choose an unlabeled class of
graphs for which the order of outgoing edges do not affect the watermark value. Reducible Permutation Graphs and
Planted Plane Cubic Trees have this property. Unfortunately, as we will see these graphs have a lower bit-rate than
Permutation Graphs and Radix Graphs.

4.1.1 Reducible Permutation Graph

Figure 9(c) shows a reducible permutation graph (RPG) [10]. An RPG is a reducible flow graph with a Hamiltonian
path consisting of four pieces :

A header node The root node of the graph having out-degree one from which every other node in the graph is reach-
able. Every control-flow graph has such a node.

22

class T {
int a;
T car;
T cdr;

}

T⇒
class T {

int a;
T car;
T bogus1;
T cdr;
T bogus2;

}

cdr:

car:

a: 55

cdr:

car:

a: 43

bogus2:

car:

a: 55

cdr:

bogus1:

bogus2:

car:

cdr:

bogus1:

a: 43

⇓T

(a) Add bogus pointer fields to all nodes of type T.

class T {
int a;
T car;
T cdr;

}

T⇒
class T {

T F1;
int F2;
T F3;

}

cdr:

car:

a: 43

cdr:

car:
a: 55

F1: F1:

F2: 55 F2: 43
F3: F3:

⇓T

(b) Rename and reorder fields in all nodes of type T.

class T {
int a;
T car;
T cdr;

}
n = new T;

T⇒

class T {
int a;
T1 bogus;

}
class T1 {

T car;
T cdr;

}
n = new T;
n.bogus = new T1;

a: 55

bogus: cdr:

car:

bogus:

a: 43

cdr:

car:

cdr:

car:

cdr:

car:
a: 55 a: 43

⇓T

(c) Add a level of indirection by splitting all nodes of type T in two.

Figure 13: Obfuscation attacks against graphic watermarks.

The preamble The rest of the graph is only reachable from the header node through all preamble nodes. Thus, any
node from the body can have an edge to any node in the preamble, and the graph is still reducible.

The body Edges among the body, from the body to the preamble, and from the body to the footer node encode a
permutation that is its own inverse.

A footer node A node with out-degree zero that is reachable from every other node of the graph. Every control-flow
graph has such a node, representing the method exit.

Every node of an RPG has one outgoing “list edge” and one outgoing “permutation edge”. Thus each node can be
represented by a data structure with two pointers per element.

There is a one-to-one correspondence between self-inverting permutations and isomorphism classes of RPGs. We
have developed a low-degree polynomial-time algorithm for encoding any integer w as the RPG corresponding to the

23

XY

XY

XY

XY

XY

3©

B

B

B

B

B

XY

XY

XY

XY

XY

2©P Q

P Q P Q

P Q P Q

1©

⇒ ⇒

⇓

⇐

V
V5©

Y

BX

A

Y

BX

A

Y

BX

A

Y

BX

A Y

BX

A

4©

Y

BX

A

Y

BX

A

Y

BX

A

Y

BX

A Y

BX

A

Figure 14: Example obfuscation attack against the watermark graph in 1©. The adversary renames and reorders node
pointer fields (2©), adds a bogus pointer field B (3©), and splits nodes by adding a bogus pointer field A (4©). Finally,
in 5© bogus pointers into the graph obscure the root node.

21

E

31 2

A

B

C
D

E

3

C

D

A

B

Figure 15: The top-most graph shows a radix encoding of the value 3. The bottom-most graph shows how this
encoding is made more resilient against node-split attacks by turning each node into a 3-cycle and each edge into a
path of length three. For identification purposes nodes have been labeled 1–3 and edges A-E in this figure. Edges on
the spine are shown solid and edges encoding a radix digit are shown dashed.

24

wth self-inverting permutation in this correspondence. We also have an efficient algorithm for decoding w from an
RPG.

An RPG encoding a permutation on n elements has a bitrate of approximately 3
8 lgn−0.62 bits per node, plus or

minus approximately 1
8 lgn bits per node depending on the size of the preamble required for the RPG corresponding

to the watermark w. This is, very roughly, half the bitrate of a Permutation Graph.
Each node in an RPG has exactly one incoming “list edge” and exactly one incoming “permutation edge”. Thus

any single change to an edge pointer will cause some node to have an indegree less than two, and the erroneous edge
can be easily identified and corrected. Thus RPGs can correct single errors.

The preamble of an RPG was designed to make its Hamiltonian unique, which gives RPGs a strong error-correction
ability against adversaries who reordering the pointer fields in node elements. We call such a reordering of pointer
fields an “edge-flip” because it flips the coloring of a node’s outgoing edges.

Permutation Graphs do not have the RPG’s capacity to correct an arbitrary number of edge-flip errors. Indeed,
the watermark in a Permutation Graph may not survive as few as two (carefully or luckily) chosen edge-flips, for a
graph g′ obtained by two edge-flips from a Permutation Graph g(w) may be a legal Permutation Graph encoding a
watermark w′ 6= w.

RPGs are thus preferable to Permutation Graphs, in situations where resilience to attacks is more important than
bitrate.

4.1.2 Planted Plane Cubic Trees

Figure 9(e) shows an example of the class Gn of planted plane cubic trees (PPCT) on n leaf nodes v1,v2, . . . ,vn. PPCT
graphs are enumerated in [24]. Such trees have n− 1 internal nodes and one root node v0, so there are 2n nodes in
each w ∈ Gp. We would represent w by using 2n objects, where each object holds two pointers l and r. this data
structure requires 4n words. A leaf node vi is recognizable by its self-loop r(vi) = vi. The root node v0 can be found
from any leaf node by following l-links. Furthermore, leaf node indices are discoverable in linear time by following
an (n+1)-cycle on l-links: l(vi) = v(i+1) mod (n+1).

PPCTs have a dynamic bitrate of approximately 1 bit per node. Note that this is asymptotically much worse than
the bitrate of our other encoding methods, for it lacks the logarithmic term. The nodes in a PPCT are the same size as
the other encoding methods in SandMark, because they hold two user-addressible pointer fields. If each node takes
16 bytes, then the bit-rate of a PPCT is approximately 1 bit per 16 bytes.

PPCTs have the same edge-flip correction property as RPGs, by the following argument. There is only one (n+1)-
cycle in any PPCT on n leaf nodes, and this cycle is the outercycle linking all of its leaves with its root. This outercycle
can be discovered quite efficiently: in linear time with a depth-first search. The colors (L,R) on the edges in the interior
of the tree can be assigned unambiguously, also in linear time, by maintaining planarity at successively higher levels
in the tree. Thus the correct colors (L,R) can always be recovered, even if these are modified by an adversary.

PPCTs have a local consistency property that could be checked, reasonably stealthily and efficiently, by tamper-
detection code. The idea is to test the PPCT’s planarity locally, for any internal node x, by confirming that the left-most
child of x’s right subtree is l-linked to the right-most child of its left subtree. Any disruption of the PPCT’s planarity
(as may occur when an adversary modifies the PPCT in an attempt to obliterate its watermark) may be detected by
some subsequent planarity test. When such a planarity violation is discovered, this could trigger a ’logic bug’ or an
outright crash in the watermarked program.

4.2 De-Watermarking by Node Splitting
Node-Splitting is an effective attack against our watermark graphs but one which will have serious detrimental effect
on the performance of the de-watermarked program. Even so, Figure 15 shows another representation which, at the
expense of a lower data rate, will increase a graph watermark’s resilience to node-splitting attacks. The idea is to turn
every node into a 3-cycle and every edge into a path of length 3 during embedding. We call such graphs cycled graphs.
During watermark extraction the cycles and paths are contracted back to the original graph. Any node or an edge split
by an adversary will be ignored by this process.

In our SandMark implementation any of our graph encodings can be turned into a cycled graph. The algorithm
for node and edge contractions is shown in Figure 16.

25

� �

whi le t h e r e e x i s t c y c l e s w i t h o u t s u pe r no d e s
r e p l a c e t h e s m a l l e s t c y c l e no t c o n t a i n i n g a s upe rno de
wi t h a new s upe rn ode ;

P : = empty s e t o f edges ;
fo r each s upe rn ode s do

f or each o u t g o i n g edge (s, t0) do
for each s upe rno de c do

i f ∃ pa t h 〈t0, t1, . . . , tn,c〉 such t h a t t1, . . . , tn a r e no t s u p e r n o de s t he n
add (s,c) t o P

remove a l l non−s u p e r n o d e s from t h e graph ;
fo r each edge (s,c) ∈ P do

add an edge (s,c) t o t h e graph ;
� �

Figure 16: Algorithm to contract edges and cycles for cycled graphs.

4.3 De-Watermarking by Bogus Field Addition
The reflection capabilities of Java (and other languages like Modula-3 and Icon) give us a simple way of tamperproof-
ing a graph watermark against many types of attack, including the addition of bogus fields in the graph nodes. Assume
that we have a graph node Node:

� �

c l a s s Node {
p u b l i c i n t a ;
p u b l i c Node car , cd r ;

}
� �

Then the Java reflection class lets us check the integrity of this type at runtime:
� �

F i e l d [] F = Node . c l a s s . g e t F i e l d s () ;
i f (F . l e n g t h ! = 3) d i e () ;
i f (F [1] . ge tType () ! = Node . c l a s s) d i e () ;

� �

Obviously, this type of code is unstealthy in a program that does not otherwise use reflection.
Reflection can also be used to protect against reordering and renaming attacks The idea is to access watermark

pointers through reflection. For example, rather than pO.car=Vq, we let car be represented by the first relevant
pointer in the node O:

� �

F i e l d [] F = Node . c l a s s . g e t F i e l d s () ;
i n t n =0;
fo r (i n t i = 0 ; i<F . l e n g t h ; i ++)

i f (F [i] . ge tType () . i s A s s i g n a b l e F r o m (Node . c l a s s)) {
F [i] . s e t (O , V) ;
break ;

}
� �

Because reflection is unusual in most programs these techniques are of limited usefulness. For this reason, they
have not yet been implemented in the current version of SandMark.

26

INSTRUCTION DESCRIPTION

AddEdge(n
edge−→ m) Add an edge from node n to node m. Since the graphs are

multi-graphs the out-edges are named.
n = CreateNode() Create node n.
CreateStorage(S) Create the global storage structure S.

FollowLink(n
edge−→ m) Return m by following the edge edge from n.

LoadNode(n,L) Load node n from global storage location L.
SaveNode(n,L) Save node n in global storage location L.

Table 1: Intermediate code instructions.

4.4 Future work: Manipulating Graphs
One of our main motivations for using dynamically built graph structures to represent the watermark is that the code
that builds the watermark will be difficult to analyze. The reason is the inherent hardness of alias analysis. However,
current alias analysis algorithms do very well with non-circular data structures (such as linear lists and trees) and
purely constructive code. That is, an algorithm may be successful in analyzing code that builds a linear list, but may
fail if that list is taken apart and reassembled [23].

We could increase our resilience to pattern-matching attacks by exploiting these weaknesses in current alias analy-
sis algorithms. For example, along the special execution path we can not only merge graph components, but also split
components into sub-parts, which are later reassembled.

5 Increasing Watermark Size
While the operations by which the watermark graph is built (news and pointer assignments) are stealthy in themselves,
a large number of such operations concentrated to one place in the code would arouse suspicion. For large watermark
values we therefore split the graph G into several components G0,G1, . . . whose code is spread along the special
execution path. There are several issues to consider:

1. The subgraphs should be of roughly equal size.1

2. The splitting of G should be done in such a way that each subgraph has a root, a special node from which all
other nodes in the graph can be reached. This allows us to store only pointers to root nodes to prevent the
garbage collector from collecting the subgraphs.

3. We should attempt to split G in such a way that the number of edges between subgraphs is minimized. The
reason for this restriction is that the more edges there are between subgraphs, the more Java code we will have
to generate in order to connect the subgraphs into the complete graph G.

We use an algorithm [33] by Kundu and Misra to partition the watermark graphs. Given the graph on the left in
Figure 17(a) it would produce the two graph components G2 and G4 on the right. Figure 17(b) shows the generated in-
termediate code. The main intermediate code instructions are given in Table 1. As before, SaveNode instructions are
used to store the root node of each graph component in a global structure such as a hash table, vector, etc. LoadNode
instructions are used to reload the nodes. We do this to protect against garbage collection, but also so that the graph
components can be connected. Note how root node n2 from graph G2 has been loaded from global storage in order to
connect n1 to n2. Note also how the FollowLink instruction is used to traverse G2 from the root node n2 to get to
node n3, which can then be connected to n1 in G4.

The intermediate code for a subgraph Gi contains instructions connecting Gi to all the previous subgraphs G0, . . . ,Gi−1.
If there is an inter-subgraph edge m

edge−→ n from Gk to Gi (i.e. m is a node in Gk and n is in Gi) we generate

1It is actually not completely clear that this is a reasonable requirement. For stealth reasons it might be better if the components are of random
size. The current implementation, however, splits in equal-size pieces.

27

3

2 4

13

2 4

1

⇒

G2 G4

(a)

� �

c r e a t e (G2)
n3=CreateNode ()
n2=CreateNode ()
SaveNode (n2 , Array)

AddEdge (n2
edge1−→ n3)

AddEdge (n2
edge2−→ n3)

c r e a t e (G4)
n1=CreateNode ()
n4=CreateNode ()
SaveNode (n4 , Hash)

AddEdge (n4
edge1−→ n1)

n2=LoadNode (Array)

AddEdge (n1
edge1−→ n2)

n3= Fol lowLink (n2
edge1−→ n3)

AddEdge (n3
edge1−→ n1)

� �

� �

p u b l i c c l a s s Watermark {
p u b l i c Watermark edge1 , edge2 ;
p u b l i c s t a t i c H a s h t a b l e hash ;
p u b l i c s t a t i c Watermark [] a r r a y ;

p u b l i c s t a t i c void C rea te G2 () {
Watermark n3=new Watermark () ;
Watermark n2=new Watermark ()
Watermark . a r r a y [1] = n2 ;
n2 . edge1=n3 ;
n2 . edge2=n3 ;

}

p u b l i c s t a t i c void C rea te G4 () {
Watermark n1=new Watermark () ;
Watermark n4=new Watermark () ;
Watermark . hash . p u t (

new I n t e g e r (4) , n4) ;
n4 . edge1=n1 ;
Watermark n2= a r r a y [1] ;
n1 . edge1=n2 ;
Watermark n3 =(n2 != n u l l) ?

n2 . edge1 : new Watermark () ;
n3 . edge1=n1 ;

}
}

� �

(b) (c)

Figure 17: (a) shows a watermark graph that has been split into two components. Root nodes have been shaded and
inter-component edges have been dashed. The graphs are identified by their root nodes. (b) shows the intermediate
code for each component and (c) the corresponding Java code.

1. one or more FollowLink()-instructions to reach node m by traversing Gk starting at its root node, and

2. a final AddEdge() instruction to link m to n.

This is done by finding the shortest path from k (the root of subgraph Gk) to m and issuing a FollowLink()-
instruction for each edge on the path.

5.1 Generating Java Code
Table 2 lists possible translations of the intermediate instructions and Figure 17(c) shows the Java class generated from
the intermediate code in Figure 17(b). Method Create G2 builds subgraph G2 and Create G4 subgraph G4. Note,

28

INSTRUCTION JAVA

AddEdge(n
edge−→ m) Generate n.edge = m

CreateNode(n) Generate Watermark n = new Watermark()
CreateStorage(G,S) Generate one of

1. static java.util.Hashtable hash = new
java.util.Hashtable();

2. static Watermark arr = new
Watermark[m];

3. static java.util.Vector vec = new
java.util.Vector(m); vec.setSize(m);

4. static Watermark n1,n2,...;

where m is the number of nodes in the graph and n1,n2,...
are the root nodes of the subgraphs.

FollowLink(n
edge−→ m) Generate

Watermark m = n.edge

or if n can be null at this point, generate one of

1. Watermark m = (n!=null)?n.edge:new
Watermark();

2. try {
Watermark m = n.edge;
// Any code referencing m

} catch (Exception e){};

3. if (n != null) {
Watermark m=n.edge;
// Any code referencing m

}

LoadNode(n,S) Generate one of

1. Watermark n = (Watermark)
Watermark.hash.get(new
java.lang.Integer(k));

2. Watermark n = Watermark.arr[k−1];

3. Watermark n = (Watermark)
Watermark.vec.get(k−1);

4. Watermark n = Watermark.nk

depending on how n is stored. k is n’s node number.
SaveNode(n,L) Generate one of

1. hash.put(new java.lang.Integer(k), n);

2. Watermark.arr[k−1] = n;

3. Watermark.vec.set(k−1, n);

4. Watermark.nk = n

depending on how n is stored. k is n’s node number.

Table 2: Translation from intermediate code instructions to Java.

29

in particular, the statements which link nodes n3 and n1. To get access to G2’s node n3 we follow the edge from G2’s
root node n2 to n3. This will work provided G2 has been created at this point. However, if we are not doing a extraction
run (i.e. the input sequence in not exactly I0, I1, . . .) then G2 may not have been created, and n2 may be null. Table 2
shows several ways to protect against null-pointer exceptions. It is useful to have a whole library of such protection
mechanisms to prevent attacks by pattern matching.

5.2 Future work: Splitting the Watermark Number
There is an alternative approach to increasing the size of the watermark that can be inserted in a given program.
Rather than splitting the graph, we split the watermark number n into several (smaller) numbers n0,n1, . . . ,nk using the
Chinese Remaindering theorem [41]. The numbers are encoded into graphs G0,G1, . . . ,Gk which are embedded along
the special execution path. The problem is that during extraction all the graphs need to be found, which precludes us
from examining only the last few allocated objects as was done in Section 3.7. Instead, we may want to produce k
traces using k special input sequences, and embed each subgraph along one of the resulting special execution paths.
This approach, however, will be more onerous for the user, both during embedding and extraction.

6 Improving Stealth
While our main goal is to protect the watermark from automatic means of destruction, we would also like to protect it
against manual attack whenever possible. If an attacker can construct an automatic analysis tool that will pinpoint the
location of the watermark with some degree of accuracy (for example, with 90% assurance, the watermark is located
within these 10% of the code) it may become feasible for the attacker to manually search the decompiled program
for the watermark code. In this section we will consider three techniques for improving the stealth of our graph
watermarks.

6.1 Avoiding Global Variables
We have so far assumed that the roots of subgraphs are stored in static fields. In Figure 17(b), for example, the roots
of subgraph are stored in global variables array and hash. This is likely to be un-stealthy since programs written in
a modern object-oriented style typically contain only a few globals. Instead, we would like to pass roots in the formal
parameters of methods. This means we are going to have to find paths through the call-graphs from one mark()-call
to the next.

To facilitate finding the right method calls along the special execution path to modify, we use the information
collected during tracing to build a precise call-graph. In the general case, this graph is a forest of directed acyclic
graphs. The root of each DAG represents either the main method (which was invoked by the user), or a method that
was invoked by the Java runtime system in response to an asynchronous event such as the user interacting with the
graphical user interface. There are four kinds of call-graph nodes: ENTER and EXIT nodes represent the entry into
and return from a method, and CALL and RETURN represent the invocation of a method. It should be noted that, in
contrast to the conservative call-graphs built by static analysis tools, our graphs are exact.

Figure 18 shows the trace forest generated from the trace points in Figure 8. Solid lines represent the path actually
taken during tracing. Dashed lines represent paths along which information can be passed as method arguments.

We first need to identify locations in the program where the structures that store subgraph nodes can be created.
We call these Storage Structures. For example, if we want to store subgraph roots in a vector, we need to insert the
code

� �

s t a t i c j a v a . u t i l . Ve c to r vec = new j a v a . u t i l . Ve c to r (m) ;
vec . s e t S i z e (m) ;

� �

at a location where vec can be passed on to all the locations in the program where it is needed. More precisely, the
code can be placed at any call-forest node that dominates all the mark()-nodes being used. This allows us to pass the
storage structures in a method parameter from the point of creation to all the chosen mark()-calls. In a language that
(unlike Java bytecode) supports pass-by-reference parameters a simpler strategy could be used: the storage structure
could simply be created at the same point as the first created graph component. Pass-by-reference parameters can,

30

Q

main

Q

Q

Q

P

P

P

mark(1)

EXIT

CALL

RETURN

ENTER

mark()

mark(3)

aP

aP

aP

Q

Q

Q

Q

aP

aP

main

main

main

Q

Q

Q

Q

P

Q

mark(2)

aP

main

main

Q

mark(1)

A©

B©

D©

E©

C©

Figure 18: The trace forest generated from the trace points in Figure 8.

31

bytecode frequency
aload* 29%

putfield 10%
astore* 8%

new 7%
invokespecial 7%

dup 7%
getstatic 6%

invokevirtual 6%
iconst*,ldc 5%

ifnull 3%
pop 2%

return 2%
getfield 2%
checkcast 1%

goto 1%

Table 3: The distribution of Java bytecode instructions in generated graph-building code.

of course, be simulated in Java bytecode by adding an extra level of indirection, but we believe this would be a less
stealthy solution.

The next question that arises is which of the available mark()-calls should be selected for graph construction.
To allow us to select the most stealthy locations we add weights to the nodes and edges in the call-forest. The
watermarking code that the CT algorithm inserts into a program has approximately the distribution shown in Table 3.
The weight of a method that contains a mark()-call is calculated to be proportional to how similar its code is to this
distribution.

We also have to take into account to which methods it would be allowable to add an extra storage structure
argument, and for which methods it would be stealthy to do so. It is not legal to change the signature of a method
which — directly or indirectly — overrides a method in the Java standard library. For example, we cannot change the
signature of actionPerformed in Figure 8. We must also be careful not to “hide” a method by changing a method
signature such that spurious overloading is introduced into the program. By building the complete inheritance tree of
the program we can compute which are legal signature changes.

The weight of an edge from a CALL-node to an ENTER-node is computed based on the stealthiness of adding a
storage structure argument to the called method. This depends on factors such as the number of arguments the method
has and the types of these arguments. In general, adding yet another argument to a method that already has several
should be good. Also, since we will be adding a pointer argument (a reference to an array, vector, hash table, etc.) it
is probably stealthy if the method already has one or more such parameters.

We then heuristically select the mark()-nodes based on the node weight, the path weight, and the distance
between mark()-nodes. Since we are passing storage structures as formals we need to identify all the methods that
appear in the path between the point of creation and the selected mark()-node. The signature of these methods are
modified accordingly, and all calls to these methods are modified to pass the storage structures as actual arguments in
addition to their existing arguments. Calls to these methods which are not on the path between mark()-calls are also
modified by adding dummy actuals.

6.2 Protecting Against Collusive Attacks
All the calls to the watermark creation methods are inlined. Additionally, the complete watermarked program can be
obfuscated using any sequence of SandMark’s obfuscators, complicating attacks by pattern-matching. One important
advantage of dynamic graph watermarking is that typical obfuscating transformations (reorder statements, split/merge
methods, split/merge classes, etc.) will have no effect on the inserted watermark code. This is in contrast to most other
software watermarking methods where obfuscation after watermark embedding will destroy the mark.

32

SandMark also contains several obfuscation executives, loops that automatically select sequences of obfuscating
transformations in a way that attempts to maximize the amount of confusion and minimize the amount of compu-
tational overhead introduced. The sequences of transformations are generated based on user input (which parts of
the program are security and performance critical), profiling data, measurements of the level of obfuscation that each
transformation incurs (using software complexity metrics), and a seed that initializes a random number generator. This
allows us to obfuscate each differently fingerprinted version of a program using a different sequence of obfuscating
transformations. As a result, collusive attacks become more difficult.

6.3 Protecting Against Pattern Matching
Figure 3 shows how a special class Watermark has been generated which is used to create nodes in the watermark
graph. Obviously, this is not very stealthy. Instead, we search the application to be watermarked for a class that closely
resembles the Watermark class. Ideally, the class should already have one or more fields of the appropriate reference
type.If there are several candidate classes we break ties based on which class has more static instantiations. If there is
no class with enough pointer fields, extra fields are added to the most appropriate class.

6.4 Future work: Avoiding Weak Cuts
An important part of Venkatesan’s watermarking algorithm [56] is to bind the watermark code (in their case, a control-
flow graph) tightly to the application. The reasoning is that segments of weakly connected code are unusual in real
programs and are easy to find using existing graph algorithms. To prevent this attack Venkatesan et al. connect the
watermark code to the application by adding a number of bogus control-flow edges realized by opaque predicates.

Our current implementation of the CT algorithm does not try to connect the graph building code to the application.
If it is indeed the case (as Venkatesan et al. conjecture) that weakly connected code is unusual, this would leave us
open to attacks that attempt to locate weak cuts in the control-flow graphs.

While it is certainly possible to use Venkatesan’s technique to remedy this problem, there are far easier and stealth-
ier methods. Since the structure of the watermark graph is known at each point in the program we can use it as a
source of opaque values. For instance, a literal integer 3 in the application can be replaced by computation that uses
the watermark graph as input to compute the value 3, perhaps as a function of the path length from the root to a leaf.

7 Evaluation
There is no widely accepted method for measuring the strength of a software watermarking algorithm. As a result,
most previous publications in this area contain little or no theoretical or empirical evaluation. While measuring the
data rate of an embedding is relatively straight-forward, measuring stealth and resilience is much harder, since this
requires a model of how an adversary might measure and transform the watermarked program. Future work in this
area will have to develop and validate such models. Stealth, in particular, is an elusive quantity, as any model needs to
be validated using human subjects.

This section contains embryonic evaluation techniques for stealth, data rate, and resilience. While these techniques
have yet to be validated, we believe they are a vast improvement over previous attempts, and form a solid basis for
future study.

7.1 Stealth
Many different definitions of stealth are possible. In this paper we will define two possible measures. We say that
an algorithm exhibits a high degree of steganographic stealth if, given access to a watermarking algorithm A and a
watermarked program Pw, an adversary cannot determine if Pw has been watermarked with A or not. We say that an
algorithm exhibits a high degree of local stealth if, given access to a watermarking algorithm A and a program Pw
known to be watermarked with A, an adversary cannot determine the location of w within Pw.

In practice, a particular algorithm will produce stealthy marks for some host programs, and unstealthy ones for
others. For example, a watermarking algorithm which encodes the watermark in the number of xor instructions in the
program is likely to be unstealthy for most host programs (since xor instructions are unusual in common code), but
stealthy for programs that contain cryptographic and graphic primitives. Our measure of stealth will therefor be based

33

on a universe U of real programs: an algorithm is deemed to have a high degree of stealth if it is stealthy for a large
fraction of the programs in U .

Stealth is also closely related to data rate. For example, using algorithm A, a stealthy embedding of a 4-bit
watermark in program P might be possible, while a 5-bit embedding might not.

Definition 7.1.1 (local stealth) Let A be a watermarking algorithm, b the length (in bits) of a watermark, k a secret
key, U a universe of benchmark programs, and P a program in U. Let LSA,b(P) be 0 if an adversary can locate a b-bit
watermark w embedded in P using A and k, and 1 otherwise. We define the local stealth of A with respect to U and b
as

local stealthU,b(A) =
∑P∈U LSA,b(P)

|U | (1)

Definition 7.1.2 (steganographic stealth) Let A be a watermarking algorithm, b the length (in bits) of a watermark,
k a secret key, U a universe of benchmark programs, and P a program in U. Let SSA,b(P) be 0 if an adversary can
determine that Pb (P watermarked with a b-bit watermark using algorithm A and key k) has been watermarked with
A, and 1 otherwise. We define the steganographic stealth of A with respect to U and b as

stego stealthU,b(A) =
∑P∈U SSA,b(P)

|U | (2)

Depending on the exact definitions of LS and SS we obtain different models of the capability of an adversary.
We can, for example, imagine a worst-case scenario where an adversary decompiles, reads, and learns to understand
an entire program in order to locate redundant watermark code. Or, we can imagine a scenario where an adversary
constructs a class attack which computes static statistics of a program from which a heuristic determines if the program
contains a watermark or not.

7.1.1 Experimental Setup

We collected a universe of 622 Java jar-files from the Internet. The programs range in size from 6 to 40858 methods.
We conjecture that since these programs come from a variety of sources, were written by a large number of program-
mers, are both applets and applications, and are of a wide range of sizes, they, in fact, form a reasonable random
sampling of real Java programs.

For each jar-file a set of instruction windows was computed by sweeping a peephole of size 1-4 instructions over
the instruction stream. The frequency of each window (the number of times it occurred in each jar-file) was recorded.

Prior to computing the windows, similar instructions were put into equivalence classes. This prevents anomalies re-
sulting from different applications being compiled with different compilers, using different code-generation strategies.
For example, to push the value 2, one compiler might generate iconst 2, while another might generate iconst
2. Therefore, all iconst instructions were put in the ICONST class, all iload instructions in the ILOAD class, all
integer arithmetic instructions in the IARITH class, all branch instructions in the IF class, etc.

We generated watermark classes (as in Figure 3) for uncycled Radix Graph watermarks of size 4, 16, 32, and
64 bits. The graphs were split into three components. Instructions were put in equivalence classes, and instruction
window frequencies were computed for the generated classes, just as for the downloaded applications. Figure 19
shows that instruction patterns involving aload and astore instructions are very common in the graph building
code.

To simulate the embedding of a graph watermark in an application, the window frequencies of the watermark class
were added to the frequencies of each application. It is important to note that this simulation is only approximate.
First of all, in an actual embedding some windows in the application would be broken up by the inserted watermarking
code. Also, before and/or after an actual embedding we would typically apply code obfuscation to increase stealth.
However, since our implementation is not completely automatic (it requires the user to annotate the code and then run
it with a secret input sequence to produce a trace), it is impractical to produce a more accurate set of windows.

7.1.2 Steganographic Stealth

For the purpose of this paper we only computed steganographic stealth. It will be the subject of future research to
compare all known software watermarking algorithms (many of them implemented within SandMark) with respect
to different measures of stealth.

34

0 5 10 15 20

pattern occurences

PUSH anewarray
ALOAD areturn

PUSH aaload
PUSH ALOAD

ALOAD putstatic
nop return

putstatic ALOAD
invokespecial return

ALOAD invokespecial
anewarray ASTORE

ICONST ALOAD
ICONST aaload

putfield return
getstatic PUSH

ALOAD aastore
aaload ASTORE
putfield getstatic

ASTORE new
ASTORE getstatic

aastore ALOAD
getstatic ICONST

nop ALOAD
putfield nop
putfield new

putfield ALOAD
ALOAD getfield

nop ASTORE
aconst_null nop
getfield GOTO

nop aconst_null
GOTO nop

invokespecial ASTORE
DUP invokespecial

new DUP
ALOAD IF
IF ALOAD

ASTORE ALOAD
ALOAD ALOAD
ALOAD putfield

pa
tt

er
n

0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%
0.42%

0.85%
0.85%
0.85%
0.85%

1.27%
1.27%
1.27%
1.27%
1.27%
1.27%

1.7%
1.7%

2.12%
2.12%

2.55%
3.82%
3.82%
3.82%
3.82%
3.82%
3.82%

4.68%
4.68%
4.68%

5.95%
5.95%

7.65%
8.93%
8.93%

Figure 19: Instruction window frequencies generated for a 32-bit CT watermark. The window size is two instructions.

35

0 200 400 600

applications

0

20

40

60

80

100
%

window size = 1
window size = 2
window size = 3
window size = 4

Figure 20: Steganographic stealth evaluation. For each of the 622 applications in our benchmark universe, the graph
shows the fraction of instruction windows which occur in the embedded 32-bit CT watermark code, but which do not
occur in the application itself.

We define

SSA,b(P) =

{

1, if |window types that occur in a b-bit watermark but not in P|
|window types that occur in Pb|

< δ
0, otherwise

(3)

Intuitively, SSA,b(P) = 1 if both P and Pb contain identical sets of window types, and 0 if none of the windows that
occur in CT code occur in P.

Figure 20 shows that if we set δ = 0.1, it would be stealthy to embed a 32-bit watermark in 395 out of the 622
applications in our benchmark universe.

7.2 Data Rate
Figure 21 shows the runtime size of the different graph structures as a function of the size of the watermark.

We used linear regressions to estimate the parameters a, b of the best-fit equation S(m) = am +b for each of our
encoding methods. Here m is the number of bits in the watermark integer w, that is, m = dlg(w + 1)e when w is

36

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

200

400

600

800

1000

1200
si

ze
(b

yt
es

)

PPCT graph heap size
reducible permutation graph heap size
permutation graph heap size
radix graph heap size

Figure 21: Sizes of the graph as a function of the size of the watermark.

any non-negative integer. As noted below, all our estimated parameters are in good agreement with the theoretical
expectations for dynamic bitrate we developed in earlier sections.

As expected, the PPCTs have the lowest bitrate. Our regression line is Sppct(m) = 17m +127. We had expected
a bitrate of 16 bytes per bit, not the 17 bytes per bit of this equation, however this expectation was based on an
asymptotic approximation that ignored low-order terms. The R2 metric for this regression is 0.999, indicating that all
our observations are very accurately predicted by this equation, and implying that the low-order terms in the bitrate
expression for PPCTs are almost negligible.

Our theoretical analysis predicted that the bitrates of our other three methods would be slowly increasing functions
of the number of bits m in the watermark. This was reflected in our experimental data, however the nonlinearity is so
slight over the range of our experimentation that it is almost imperceptible in our plots.

Our regression line for the Reducible Permutation Graph is SRPG(m) = 9.3m + 104, showing that RPGs have
roughly twice the bitrate of PPCTs. We see a modest amount (R2 = .970) of unexplained variance. A tiny amount
of this unexplained variance is the expected nonlinearity, but the majority is clearly visible as “noise” in Figure 21.
We believe this apparent noise is due to the dependence of the size of the preamble of an RPG, on the value of the
watermark w being encoded as an RPG: two watermarks w with the same number of bits can have differing sizes of
RPGs. Our asymptotic analysis indicated that the RPG size would vary by +/- 33% for any given number of bits m,
however this was an asymptotic upper bound and our experiments indicate that the variability is perhaps half of this
for m in the range of our measurements.

Our regression lines for Permutation Graphs and Radix Graphs are similar, but with Radix Graphs having slightly
higher bitrate, in accordance with our theory. We find SPG(m) = 4.4m +84 and SR(m) = 3.4m+ 67, with R2 = .991
in both cases. The unexplained variance in this regression is almost entirely attributable to the slight nonlinearity that
was predicted by our theory.

We conclude that PGs and RGs have somewhat more than twice the bitrate of RPGs, and that RPGs have about
twice the bitrate of PPCTs. None of our methods required more than 1.3 KB of dynamically allocated storage to
embed a 64-bit watermark.

Figure 22 shows the size of the generated bytecode for each of our encoding methods. We fit regression lines to this
dataset to estimate the static bitrates of our watermarking methods. As expected, the static bitrates are in proportion to
the dynamic bitrates: 21 codebytes per watermark bit for PPCTs, 12 for RPGs, 6.3 for PGs, and 4.9 for Radix Graphs.
Each regression line had a modest additive “overhead” term of between 77 and 150 codebytes.

37

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

500

1000

si
ze

(b
yt

es
)

PPCT graph bytecode size
reducible permutation graph bytecode size
permutation graph bytecode size
radix graph bytecode size

Figure 22: Sizes of the graph building bytecode as a function of the size of the watermark.

The amount of bytecode necessary to build a graph of a particular type of n nodes and m edges can differ due to
the structure of the graph. In particular, the size can depend on the number of edges between low-numbered nodes.
This is due to the fact that there are two kinds of JVM store instructions: a one-byte instruction is sufficient to store
into low-numbered local variables, but a two-byte instruction is necessary to store into high-numbered locals. This
explains the non-monotonic nature of the radix graph curve in Figure 22.

Figure 23 shows the size of the generated bytecode as a function of k, the number of components into which the
graph is split. Our statistical analysis, with a generalized linear model, revealed that the average increase in bytecode
size was 22(k− 1)%. Thus, for example, the 4.9 codebytes per watermark bit of the Radix Graph method becomes
approximately 6 codebytes per watermark bit if the Radix Graph is built up in two components (which are subsequently
merged) rather than in a single component.

The observed linear dependence on k is easily explained: the more components the graph is split into, the more
extra code needs to be generated to merge the components together.

Watermarking with many small components is probably more stealthy than using a single component. However if
k is very large, then the total amount of watermarking code may become large enough that an attacker may be able to
recognize some frequently-repeated patterns.

7.3 Resilience
SandMark currently contains approximately forty code obfuscators. They perform a wide variety of transformations
on code and data, such as merging methods, splitting classes, splitting arrays, changing the signature of methods,
turning scalars into objects, etc. None of these transformations prevent extraction of a watermark inserted by the CT
algorithm, except for the NODESPLITTER transformation, described in Section 4.2. Using cycled rather than plain
graphs counters this attack. However, as shown in Figure 24, this resilience comes at a significant cost: the dynamic
data rate is reduced by a factor of nine, and the static data rate is reduced by a factor of seven.

Figure 25 shows the overhead of applying multiple node-splittings to the SpecJVM benchmark suite. These results
show that on many applications an attacker can easily apply one or two node-splits without having to worry about per-
formance overhead. The variance is high, however. Applying two node-splits makes _228_jack a 16% slower and
_227_mtrt 286% slower. Therefore, for less performance critical applications it may in many cases be worthwhile
to use cycled graphs, if the lower data rate can be tolerated.

38

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

200

400

600

800
si

ze
(b

yt
es

)

1 component
2 components
3 components
4 components
5 components

Figure 23: Size of the bytecode for building a Radix Graph, as a function of the number of components into which the
graph is split.

The BLOAT [44] bytecode optimizer is included in the SandMark system. It also has no effect on the success of
watermark extraction.

8 Discussion
Because software watermarking is a new field, many fundamental issues have yet to be resolved. From a practical point
of view, the most important question is what constitutes a reasonable threat-model. In this paper we have identified
several types of threats:

1. Distortive attacks by semantics-preserving transformations such as translation, optimization, and obfuscation.

2. Statistical attacks which attempt to locate a watermark by identifying anomalies in the distribution of instructions
or computations.

3. Collusive attacks which attempt to locate a fingerprint by comparing several differently fingerprinted copies of
a program.

4. Cropping attacks which remove a located watermark or extract an individual module from a watermarked appli-
cation.

5. Additive attacks which insert new bogus watermarks into an already watermarked program.

None of the methods we have presented are immune to all types of attacks. Easter Egg watermarks and dynamic
graph watermarks are highly resilient against distortive attacks, but, by their very nature, they watermark complete
applications, not individual modules. Hence, cropping a particularly valuable module from an application for illegal
reuse is likely to be a successful attack against these methods.

Static watermarks, on the other hand, are easily duplicated many times in an application and can thus be made
to protect individual modules or even parts of modules. Unfortunately, static watermarks are highly susceptible to
distortive attacks.

39

2^4 2^6 2^8 2^10 2^12 2^14 2^16 2^18 2^20 2^22 2^24 2^26 2^28 2^30 2^32 2^34 2^36 2^38 2^40 2^42 2^44 2^46 2^48 2^50 2^52 2^54 2^56 2^58 2^60 2^62 2^64

watermark

1000

2000

3000

4000

5000

si
ze

(b
yt

es
)

cycled radix graph heap size
bytecode size of cycled radix graph with 1 component
bytecode size of cycled radix graph with 2 components
bytecode size of cycled radix graph with 3 components
bytecode size of cycled radix graph with 4 components
bytecode size of cycled radix graph with 5 components

Figure 24: Bytecode size, and runtime heap size, for cycled radix graphs.

Whether a statistical attack is successful or not will depend on the nature of the watermark, and the nature of the
application. Dynamic graph watermarks are stealthy in typical object-oriented programs which tend to create large
and complex heap structures. They would be very unstealthy, and hence susceptible to statistical attacks, in programs
that are primarily numerical in nature. Davidson’s [19] method (in which a serial number is encoded in the order of
basic blocks) is also prone to statistical attacks since the resulting control flow graphs tend to appear convoluted and
sub-optimal.

It is interesting to note that the problems we face in software watermarking are often quite different from those that
arise in watermarking media. The reason is the fluidity of software, which allows us to make quite sweeping changes
to the text of a program without changing its behavior. For example, it is quite difficult to protect against a collusive
attack on an image fingerprint, since, by their very nature, all fingerprinted copies must appear identical. Software
watermarks do not face this problem. We can easily protect against collusive attacks by applying a different set of
obfuscating transformations to each distributed copy of an application. Thus, comparing several fingerprinted copies
of the same application is unlikely to reveal the location of the fingerprint, since the text of each distributed copy will
appear completely different.

For similar reasons, distortive attacks are a less serious threat to media watermarks than to software watermarks.
A distortive attack on a media object is restricted to making imperceptible changes, whereas an obfuscation attack on
a program is only restricted to preserving its semantics.

8.1 SandMark and JavaWiz

The first implementation based on the CT algorithm was JavaWiz [3]. This section contrasts the SandMark imple-
mentation with that of JavaWiz.

The JavaWiz implementation is unkeyed. In the SandMark implementation, a particular input sequence serves
as a key for embedding and is required for watermark extraction. User annotation of the source program is required to
make the watermark input-dependent.

Both implementations embed an arbitrary bit string as the watermark, treating it as a single large integer. JavaWiz
requires the input of an integer; SandMark accepts either an integer or an arbitrary text string.

JavaWiz encodes the watermark in a Planted Plane Cubic Tree (PPCT). SandMark offers a choice of four encod-
ings, including PPCT. SandMark also offers an option to use a ”cycled graph” encoding (of any of its representations)

40

original 1 split 2 splits 3 splits 4 splits

number of node splits

5

10

15

20

ch
an

ge

_201_compress
_202_jess
_209_db
_222_mpegaudio
_227_mtrt
_228_jack

Figure 25: Overhead of applying sequence of node-splittings to the SpecJVM benchmark suite. The javac bench-
mark was excluded since it currently fails on the NODESPLITTER obfuscation.

as a defense against node-splitting attacks.
SandMark generates several code fragments which are inserted at user-specified locations. Code generation re-

quires some care to allow the segments to be executed out of order. JavaWiz constructs the graph in a single sequence.
JavaWiz uses a user-specified class for graph nodes. SandMark attempts to deduce one automatically.
Both implementations require access to portions of the source code of the target application: SandMark for

annotating, and JavaWiz for modification.
Both implementations rely on features of the Sun reference implementation of the Java language. SandMark uses

JDI tracing facilities as part of both the embedding and recovery stages. JavaWiz uses the heap dump facility to
recover a constructed watermark.

Both implementations generate relatively straightforward code under the assumption that it will be subsequently
obfuscated.

9 Summary
Software watermarking embeds an identifying value in a program. The ideal watermark is easily extractable with a
key but difficult to detect otherwise. It imposes little program overhead and is robust against a wide variety of program
transformations.

Most software watermarks are static: They are applied to, and detected in, an executable binary file. In this paper
we have described the CT algorithm, where a dynamic watermark is encoded by a graph that is built during program
execution. Graph construction is driven by a specific input sequence that serves as the key. A dynamic watermark is
much harder to detect than a static watermark and is also much more robust against transformations such as obfuscation
and optimization.

The CT watermarking scheme has been implemented in the SandMark package, a large collection of tools for
modifying Java programs. The SandMark implementation provides several options for configuring the watermark,
including a choice of graph encodings. User annotation of the target program specifies the dependence on program
input and the locations for code insertion. Incorporation of watermarking as part of SandMark allows obfuscation
after modification.

41

We have explored tradeoffs among graph encodings and watermark sizes and evaluated their effects on code size
and memory requirements. We have measured execution-time overhead and found a real but not impractical increase.
We have presented a model for measuring the stealth of a software watermark and found that the code introduced by
the CT algorithm is stealthy for a large fraction of real Java programs.

We tested the CT watermark’s resilience against SandMarkś suite of obfuscators, and found it invulnerable to all
but node splitting. This somewhat costly obfuscation is in turn overcome by use of a more redundant graph encoding.

The SandMark package in which CT has been implemented can be downloaded from sandmark.cs.arizona.
edu.

Acknowledgments: We thank Edward Carter, Andrew Huntwork, Kamlesh Kantilal, and Jasvir Nagra for imple-
mentation assistance.

References
[1] BCEL, February 2004. http://jakarta.apache.org/bcel.

[2] DynamicJava, February 2004. http://koala.ilog.fr/djava.

[3] JavaWiz, February 2004. http:www.cs.purdue.edu/homes/madi/wm/.

[4] D.J. Albert and S.P. Morse. Combating software piracy by encryption and key management. IEEE Computer,
17(4):68–73, April 1982.

[5] Ross J. Anderson and Fabien A.P. Peticolas. On the limits of steganography. IEEE J-SAC, 16(4), May 1998.

[6] Geneviève Arboit. A method for watermarking Java programs via opaque predicates (extended abstract). In The
Fifth International Conference on Electronic Commerce Research (ICECR-5), 2002. http://citeseer.
nj.nec.com/arboit02method.html.

[7] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high-performance com-
puting. ACM Computing Surveys, 26(4):345–420, December 1994.

[8] Brenda S. Baker and Udi Manber. Deducing similarites in java sources from bytecodes. In In Proc. of Usenix
Annual Technical Conf., 1998.

[9] W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data hiding. IBM Systems Journal, 35(3&4):313–
336, 1996.

[10] Christian Collberg, Edward Carter, Stephen Kobourov, and Clark Thomborson. Error-correcting graphs. In
Workshop on Graphs in Computer Science (WG’2003), June 2003.

[11] Christian Collberg, Ginger Myles, and Andrew Huntwork. SANDMARK — A tool for software protection re-
search. IEEE Magazine of Security and Privacy, 1(?), August 2003.

[12] Christian Collberg and Clark Thomborson. Software watermarking: Models and dynamic embeddings. In
Principles of Programming Languages 1999, POPL’99, San Antonio, TX, January 1999.

[13] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transformations. Technical
Report 148, Department of Computer Science, University of Auckland, July 1997. http://citeseer.nj.
nec.com/collberg97taxonomy.html.

[14] Christian Collberg, Clark Thomborson, and Douglas Low. Breaking abstractions and unstructuring data struc-
tures. In IEEE International Conference on Computer Languages, ICCL’98, Chicago, IL, May 1998.

[15] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and stealthy opaque
constructs. In Principles of Programming Languages 1998, POPL’98, San Diego, CA, January 1998.

[16] Compaq. FreePort Express. hhttp://www.support.compaq.com/amt/tools/migrate-cover.
html, February 2004.

42

[17] Patrick Cousot and Radhia Cousot. An abstract interpretation-based framework for software watermarking. In
ACM Principles of Programming Languages, 2004.

[18] R.L. Davidson and N. Myhrvold. Method and system for generating and auditing a signature for a computer
program. US Patent 5,559,884, Assignee: Microsoft Corporation, 1996. http://www.delphion.com/
details?pn=US05559884__.

[19] Robert L. Davidson and Nathan Myhrvold. Method and system for generating and auditing a signature for a
computer program. US Patent 5,559,884, September 1996. Assignee: Microsoft Corporation.

[20] Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler techniques for code compaction.
ACM Transactions on Programming Languages and Systems, 22(2):378–415, March 2000.

[21] Saumya Debray, Robert Muth, Scott Watterson, and Koen De Bosschere. ALTO: A link-time optimizer for the
Compaq Alpha. Software — Practice and Experience, 31:67–101, January 2001.

[22] Saumya Debray, Benjamin Schwarz, Gregory Andrews, and Matthew Legendre. PLTO: A link-time optimizer
for the Intel IA-32 architecture. In Proc. 2001 Workshop on Binary Rewriting (WBT-2001), September 2001.

[23] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis for heap-directed
pointers in C. In POPL’96, pages 1–15, St. Petersburg Beach, Florida, 21–24 January 1996.

[24] I. P. Goulden and D. M. Jackson. Combinatorial Enumeration. Wiley, New York, 1983.

[25] M. H. Halstead. Elements of Software Science. Elsevier North-Holland, 1977.

[26] Frank Harary and E. Palmer. Graphical Enumeration. Academic Press, New York, 1973.

[27] Warren A. Harrison and Kenneth I. Magel. A complexity measure based on nesting level. SIGPLAN Notices,
16(3):63–74, 1981.

[28] Ralf C. Hauser. Using the Internet to decrease Software Piracy - on Anonymous Receipts, Anonymous ID Cards,
and Anonymous Vouchers. In INET’95 The 5th Annual Conference of the Internet Society The Internet: Towards
Global Information Infrastructure, volume 1, pages 199–204, Honolulu, Hawaii, USA, June 1995.

[29] Sallie Henry and Dennis Kafura. Software structure metrics based on information flow. IEEE Transactions on
Software Engineering, 7(5):510–518, September 1981.

[30] A. Herzberg and G. Karmi. On software protection. In 4th Jerusalem Conference on Information Technology,
Jerusalem, Israel, April 1984.

[31] Amir Herzberg and Shlomit S. Pinter. Public protection of software. ACM Transactions on Computer Systems,
5(4):371–393, November 1987.

[32] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley,
Reading, MA, USA, third edition, 1997.

[33] Sukhamay Kundu and Jaydev Misra. A linear tree partitioning algorithm. SIAM Journal of Computing, 6(1):151–
154, March 1997.

[34] Tim Maude and Derwent Maude. Hardware protection against software piracy. Communications of the ACM,
27(9):950–959, September 1984.

[35] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(4):308–320, December
1976.

[36] A. Monden, H. Iida, K. Matsumoto, Katsuro Inoue, and Koji Torii. A practical method for watermarking Java
programs. In 24th Computer Software and Applications Conference, 2000.

43

[37] Akito Monden, Hajimu Iida, Ken ichi Matsumoto, Koji Torii, and Yuuji Ichisugi. Watermarking method for
computer programs. In Proceedings of the 1998 Symposium on Cyptography and Information Security (SCIS’98
- 9.2A), January 1998. ”In Japanese”.

[38] Ryoichi Mori and Masaji Kawahara. Superdistribution: the concept and the architecture. The Transactions
of the IEICE, 73(7), July 1990. http://www.virtualschool.edu/mon/ElectronicProperty/
MoriSuperdist.html.

[39] Scott A. Moskowitz and Marc Cooperman. Method for stega-cipher protection of computer code. US Patent
5,745,569, January 1996. Assignee: The Dice Company.

[40] John C. Munson and Taghi M. Kohshgoftaar. Measurement of data structure complexity. Journal of Systems
Software, 20:217–225, 1993.

[41] Hirofumi Muratani. A collusion-secure fingerprinting code reduced by chinese remaindering and its random-
error resilience. In Information Hiding: 4th International Workshop, IHW 2001, pages 303–315, Pittsburgh, PA,
April 2001.

[42] Ginger Myles and Christian Collberg. Software watermarking through register allocation: Implementation,
analysis, and attacks. In International Conference on Information Security and Cryptology, 2003.

[43] David Nagy-Farkas. The Easter egg archive. http://www.eeggs.com, February 2004.

[44] Nathaniel Nystrom. BLOAT – the Bytecode-Level Optimizer and Analysis Tool. http://www.cs.purdue.
edu/s3/projects/bloat, February 2004.

[45] E. I. Oviedo. Control flow, data flow, and program complexity. In Proceedings of IEEE COMPSAC, pages
146–152, November 1980.

[46] Jens Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma, Qiuyun Shao, and Y. Zhang. Experience with software
watermarking. In Proceedings of ACSAC’00, 16th Annual Computer Security Applications Conference, pages
308–316, 2000. http://citeseer.nj.nec.com/323325.html.

[47] Fabien A.P. Peticolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on copyright marking systems. In Second
Workshop on Information Hiding, Portland, Oregon, April 1998.

[48] Fabien A. P. Petitcolas. Stirmark 3.1. http://www.cl.cam.ac.uk/˜fapp2/watermarking/
stirmark, February 2004.

[49] Josef Pieprzyk. Fingerprints for copyright software protection. In Proceedings of the Second International
Workshop on Information Security, ISW’99, pages 178–. Springer, 1999. LNCS 1729.

[50] Todd A. Proebsting and Scott A. Watterson. Krakatoa: Decompilation in Java (Does bytecode reveal source?).
In Third USENIX Conference on Object-Oriented Technologies and Systems (COOTS), June 1997.

[51] Gang Qu and Miodrag Potkonjak. Analysis of watermarking techniques for graph coloring problem. In Proceed-
ings of the 1998 IEEE/ACM international conference on Computer-aided design, pages 190–193. ACM Press,
1998.

[52] G. Ramalingam. The undecidability of aliasing. ACM TOPLAS, 16(5):1467–1471, September 1994.

[53] Tapas Sahoo and Christian Collberg. Software watermarking in the frequency domain: Implementation, analysis,
and attacks. Technical Report TR04-07, Department of Computer Science, University of Arizona, March 2004.

[54] Sergiu S. Simmel and Ivan Godard. Metering and Licensing of Resources - Kala’s General Purpose Approach.
In Technological Strategies for Protecting Intellectual Property in the Networked Multimedia Environment, The
Journal of the Interactive Multimedia Association Intellectual Property Project, Coalition for Networked In-
formation, pages 81–110, MIT, Program on Digital Open High-Resolution Systems, January 1994. Interactive
Multimedia Association, John F. Kennedy School of Government.

44

[55] Julien P. Stern, Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater. Robust object watermarking:
Application to code. In Information Hiding, pages 368–378, 1999.

[56] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph theoretic approach to software water-
marking. In 4th International Information Hiding Workshop, Pittsburgh, PA, April 2001.

45

A An Example

Figure 26: Screenshot of SandMark recognizing the watermark "WILDCATS" in a tic-tac-toe application. The user
has entered the secret input sequence (clicking X-O-X along the diagonal) The bottom pane shows the recognized
graph.

46

