
AλgoVista—A Tool for Classifying Algorithmic Problems and
Combinatorial Structures

Christian S. Collberg∗, Todd A. Proebsting†

Technical Report TR04-09

April 28, 2004

Abstract
AλgoVista is a web-based search engine that assists programmers to classify algorithmic problems and combi-

natorial structures. AλgoVista is not keyword based but rather requires users to provide — in a very simple query
language — input⇒output samples that give a rough description of the behavior of their needed algorithm. AλgoVista

also allows algorithm designers to advertise their results in a forum accessible to programmers and theoreticians alike.
AλgoVista’s search mechanism is based on a novel application of program checking, a technique developed as an

alternative to program verification and testing.
The current AλgoVista database consists of over 300 problem descriptions including problems on graphs, trees,

matrices, vectors, sets, numbers, and geometric objects.
AλgoVista can be searched textually as well as visually. A user creates a visual query by simply drawing it on

the canvas of a web browser. Visual queries are parsed into their textual counter-part by an algorithm that relies on
user input to resolve ambiguities.

AλgoVista operates at http://algovista.cs.arizona.edu.

1 Introduction
AλgoVista is a web-based, interactive, searchable, and extensible database of problems, algorithms, and combinatorial
structures designed to bring together applied and theoretical computer scientists. Programmers can query AλgoVista to
look for relevant theoretical results, and theoretical computer scientists can extend AλgoVista with problem solutions.

Unlike most other search engines, AλgoVista is not keyword-based. Keyword-based searching fails exactly in
those situations when we are in the most need for accurate search results, namely when we are searching in a new and
unfamiliar domain. For example, a programmer looking for an algorithm that solves a particular problem on graphs
will not get any help from a keyword-based search engine if she does not know what the problem is called. A Google
keyword search for pgraph algorithmsq, for example, returns more than 1.2 million hits that the user has to browse
manually.

Instead, AλgoVista is searched using a query-by-example technique. The user provides one or more simple

input⇒output

examples that give a (usually fuzzy and incomplete) description of the problem she is looking for. AλgoVista will
match this description against the problem specifications in its database and return links to relevant web resources.

This query-by-example technique turns out to be remarkably successful: when looking for information on partic-
ular graph algorithms, for example, AλgoVista often returns the requested results in a few seconds.1

∗Department of Computer Science, University of Arizona, Tucson, AZ 85721. collberg@cs.arizona.edu
†Microsoft Research, One Microsoft Way, Redmond, WA. toddpro@microsoft.com
1Note that AλgoVista is a database of problem descriptions and that the input⇒output examples described here are used to query this database.

Previous work has attempted to use input⇒output examples to generate problem solutions automatically, which is a much harder problem. We
discuss this difference further in Section 10.

1

Graph([a,b,c,d],[a−−/3b,a−−/2d,a−−/1c,

c−−/1b,b−−/1d,d−−/4c])==>5

0
3
1
2

3
0
1
1

1
1
0
4

2
1
4
0

==>5

http://...
http://...

Transformation Database

...
mutation graph2matrix (graph G)

return ...

parse

algovista.cs.arizona.edu

checklet TSP (matrix M==>int V)

....
links http://...

if (...) reject

if (...) accept

Problem Specification Database

��
��
��
������������������������������������

���
���
���
���
���
�

���
���
���
���
���
�

⇓

⇑

⇑

⇑

A©

B©

D©

E©

C©

Figure 1: Overview of AλgoVista processing a query. The user enters the query by drawing it in an applet in a standard
web browser. This graphical query is parsed into its textual counterpart and transfered to the AλgoVista server for
processing. The query may go through a sequence of transformations before it is matched against the executable
specifications in AλgoVista database. Finally, results in the form of a set of links to relevant web resources is returned
to the user. Figure 2 shows an expanded view of the user’s browser after results have been returned.

2

Figure 2: The AλgoVista graphical user interface running inside a standard web browser. The top right frame is an
applet into which the user can enter a graphical query. The applet also displays the textual and English language
queries corresponding to the graphical one. The bottom frame shows the result of the search.

3

1.1 Interacting with AλgoVista

To show how a user would typically interact with AλgoVista and how the search engine would field a query we will
consider a simple example.

Consider a situation where a programmer is looking for an algorithm that “computes the shortest path through
all the cities on a map.” If the programmer is unfamiliar with graph theory terminology in general or the Traveling
Salesman Problem in particular, she would find it difficult to locate any information about this problem on the Web.
AλgoVista instead allows the user to search without any knowledge of specialized terminology — all that is required
is that she can draw an instance of the problem she is looking to classify.

The AλgoVista search engine is accessed through a standard web browser, at http://algovista.cs.arizona.
edu. AλgoVista can be searched using both a textual and a visual query language, but for the moment we will only
consider visual queries. The visual user interface shown in Figure 2 has a main drawing window in which the user
can enter her query. Query primitives include nodes and edges (to construct graphs, trees, and lists), matrices, vectors,
booleans, numbers, and geometric objects. In our example, the user has formulated a query by drawing a weighted
graph and indicating that the function she is looking for should map this graph to the number 5.

Figure 1 shows the sequence of events that takes place during the search:

1. At A© the user has started to enter her query. In this example an edge-labeled graph is being drawn by dragging
nodes from the template canvas onto the main drawing canvas.

2. At B© the visual query is finished and the user has clicked the SEARCH button. The query asks which function
maps the labeled graph on the left of the ==>-arrow to the number 5 on the right. The AλgoVista client analyzes
the drawing and translates it into an equivalent textual query which is displayed in the query window.

3. Since there may be more than one way to interpret the drawing the client attempts to explain to the user how
the query was parsed by a) drawing convex hulls around those elements of the drawing that the visual parser
has decided belong together, and b) translating the textual query into English prose which is displayed in the
English query window. If the user is unhappy with the resulting query she can press the PARSE button to cycle
through all the possible visual parses.

The convex hulls and the English prose query are not used as part of the search process, they merely aim to help
the user understand the query they have just entered.

4. At C© the textual query is sent to the AλgoVista server for processing.

5. The AλgoVista server contains a large number of executable problem specifications (called checklets) against
which queries should be matched. However, the user and the checklet may use different representations of
the same query. For this reason, AλgoVista contains a set of query transformations which can make up for
representational differences by transforming a query before it is being matched against the checklets in the
database. At D©, the linked representation of the graph is translated into an adjacency-matrix representation.

6. At E© the mutated query is matched against the problem specifications in the database. In this case, the query
matches the Traveling Salesman Problem.

7. Finally, links to information about this problem are returned and displayed in the user’s browser. The result
returned by the server consists of a classification of the problem, links to well-known web resources which
describe the problem, links to implementations, and a search-the-web-button which invokes a standard keyword-
based search engine (such as Google) with a list of keywords the server has determined to be relevant. Figure 2
shows an expanded view of the browser at the end of the query process.

It is important to note that the programmer could have entered any legal instance of the TSP problem. Furthermore,
she could have expressed the input graph as an adjacency matrix, could have mapped the graph to a list of the nodes
traversed, could have mapped the graph to the subgraph that makes up the tour, etc.

The main advantage of AλgoVista’s use of query-by-example over standard keyword-based search is that it allows
the user to express her query in whatever terms are most natural to her. A programmer who has never heard the term
Traveling Salesman or who has no background in the fundamentals of graph theory can still search AλgoVista by
drawing an example describing the function she is looking for.

4

1.2 Applications of AλgoVista

Before we continue our description of AλgoVista’s query languages and the algorithms used to search its problem
specification database, we will briefly consider a few more examples in order to motivate the need for a specialized
search engine for computer scientists. We will see how AλgoVista is particularly helpful when one is attempting to
classify a problem outside ones own area of expertise and therefore has no knowledge of the relevant terminology.

Example 1: Suppose Bob is trying to write a program that identifies the locations for a new franchise service.
Given a set of potential locations, he wants the program to compute the largest subset of those locations such that no
two locations are close enough to compete with each other. It is trivial for him to compute which pairs of locations
would compete, but he does not know how to compute the feasible subset. He starts by trying to come up with an
example of how his program should work:

• If there are three locations a,b,c and a competes with b and c, then the best franchise locations are b and c.

If Bob is unable to come up with his own algorithm for this problem he might turn to one of the search-engines on the
web. But, which keywords should he use? Or, Bob could consult one of the algorithm repositories on the web, such
as http://www.cs.sunysb.edu/~algorith, which is organized hierarchically by category. But, in which category
does this problem fall? Or, he could enter the example he has come up with into AλgoVista by drawing the query

a

b

c

=⇒ b c

The query expresses:

“If the input to my program is two relationships, one between a and b and one between a and c, then the
output is the collection [b,c].”

Another way of thinking about this query is that the input is a graph of three nodes a, b, and c, and edges a-b and
a-c, but it is not necessary for Bob to know about graphs. AλgoVista returns to Bob a link directly to http://

www.cs.sunysb.edu/~algorith/files/independent-set.shtmlwhich contains a description of the Maximal

Independent Set problem. From this site there are links to implementations of this problem.
Example 2: Suppose that Bob is writing a simple DNA sequence pattern matcher. He knows that given two

sequences 〈a,a, t,g,g,g,c, t〉 and 〈c,a, t,g,g〉, the matcher should return the match 〈a, t,g,g〉, so he enters the textual
query

([a,a,t,g,g,g,c,t],[c,a,t,g,g]) ==> [a,t,g,g]

into AλgoVista which (within seconds) returns the link http://www.nist.gov/dads/HTML/longestcommn.html

to a description of the Longest Common Subsequence problem.
Example 3: AλgoVista is also able to classify combinatorial structures. Given the following query

c
f

e

a

b

AλgoVista might respond with:

“This looks like a bipartite graph. http://www.nist.gov/dads/HTML/bipartgraph.html has more
information about this structure.”

Example 4: Suppose Bob is studying for a High School geometry test. He cannot remember what the term is for
“two circles with a common center.” So, he selects AλgoVista’s cartesian grid and draws this simple figure:

5

In return he receives a link to http://mathworld.wolfram.com/ConcentricCircles.html where he can read
more about Concentric Circles.

1.3 Organization
The remainder of this paper is organized as follows. In Section 2 we introduce program checking, the theoretical
framework on which AλgoVista is built. In Section 3 we describe AλgoVista’s textual query language. In Section 4
we show that in order for a user query to match the entries in the AλgoVista database they may need to be transformed
by a series of query transformations into several different representations. In Section 5 we describe an efficient search
algorithm. In Section 7 we describe the visual query language and how it is parsed. In Section 6 we describe how
checklets, the problem specifications that make up the AλgoVista database, are constructed. In Section 8 we describe
certain security issues. In Section 9 we evaluate the effectiveness of our keyword-less search strategy and the efficiency
of our algorithms. In Section 10 we present some related work, in Section 11 we present future research directions,
and in Section 12 we summarize our results.

2 The AλgoVista Checklet Database
The problem specifications in the AλgoVista database are executable and are called checklets. A checklet typically
takes a user query input⇒output as input and either accepts or rejects. If the checklet accepts a query it also returns a
description of the problem it checks for and links to relevant web resources. Figure 3 shows three simple checklets.

Figure 3 (a) shows a checklet for the sorting problem. It takes two integer arrays as argument, the unsorted input
array and the sorted output array. The checklet accepts if the output array is sorted and contains the same elements
as the input array.

Figure 3 (b), is a particularly interesting checklet for topological sorting. Any acyclic graph will typically have
more than one topological order. It is therefore not possible for the checklet to simply run a topological sorting
procedure on the input graph and compare the resulting list of nodes with the output list given in the query. Rather, the
checklet must, as shown in Figure 3 (b), first check that every node in the input graph occurs in the output node list,
and then check that if node f comes before node t in the output list then there is no path t ; f in the input graph.

AλgoVista checklets can also classify combinatorial structures. Figure 3 (c) shows a checklet that checks if the
input graph is biconnected, by first executing a depth first search during which the articulations points of the graph are
found. The checklet accepts if the graph has no articulation points.

Appendix A lists some of the more than three-hundred checklets currently in the database.
Checklets are implemented in Java. In Section 6 we will discuss in more detail how AλgoVista checklets are

constructed.

2.1 Program Result Checking
AλgoVista can be seen as a novel application of program (result) checking, an idea first introduced by Manuel
Blum [7]. The idea behind program checking is simply this. Suppose we are concerned about the correctness of
a procedure P in a program we are writing. We intend for P to compute a function f , but we are not convinced it does
so. We have three choices:

1. We can attempt to prove that P≡ f over the entire domain of P.

2. We can test that P(x) = f (x), where x is drawn from a reasonable domain of test data.

3. We can include a result checker CP
f with the program. For every actual input x given to P, the result checker

checks that P(x) = f (x).

6

For example, a result checker for a sorting routine would be a piece of code at the end of the routine that checks that
the resulting array is indeed in sorted order and contains the same elements as the input array.

It is typical to require CP
f and P to be independent of each other; i.e. they should be programmed using very

different algorithms. We also want the checker to be efficient. To ensure that these conditions are met, it is generally
expected that a result checker CP

f should be asymptotically faster than the program P that it checks. That is, we expect
that if P runs in time T then CP

f should run in time o(T).
Much work [28, 29, 8, 32, 9, 23] has gone into the study of efficient checkers for a variety of problem classes, and

AλgoVista checklet writers can leverage this work. It is interesting to note that for many problems it is much more
efficient to check the correctness of the solution than to compute the solution. For example, sorting takes O(n logn)
time but checking the correctness of the sorted result can be done in almost linear time. The fact that checklets can be
very efficient is part of the reason for AλgoVista’s fast query times.

2.2 System Overview
Figure 4 gives an overview of the AλgoVista system architecture. The client is an applet running inside a standard
Web browser. The user can enter either a visual query or a textual query that gets translated into a textual one. The
resulting query is transfered to the server and processed by one of several search algorithms. In the most basic search
algorithm the query is submitted to every checklet in the database and the response of every accepting checklet is
returned:

function search (query)

q ← parse(query)

responses ← {}
for every checklet c in the database do

if c accepts the query with response r then
responses ← responses ∪ {r}

return responses

In Section 4 we will show a variant of this algorithm where a query may also undergo a set of representation trans-
formations prior to being submitted to the checklets. These transformations try to compensate for the fact that user
queries and checklets may use different data representations for the same problem. In Section 5 we explore more
sophisticated algorithms that speed up search times significantly.

Figure 4 also shows that AλgoVista is a communal and extensible database. Arbitrary users can upload new check-
lets into the database, thereby extending it with new problem classifications and references to web-based resources.
We will discuss this further in Section 8.

3 The Query Language
The AλgoVista query language was designed to be as simple as possible, while still allowing users to describe complex
algorithmic problems. The language primitives include integers, floats, booleans, lists, tuples, matrices, atoms, links,
and geometric objects (points, lines, circles, ellipses, arcs, and polygons). Links are (directed and undirected) edges
between atoms that are used to build up linked structures such as graphs and trees. Table 1 shows the concrete syntax
of the query language.

For example, p(1,true)q is a pair consisting of an integer and a boolean, p[2,3,5,7]q is a vector of integers, and
p[2,3;5,7]q is a 2×2 matrix. Atoms, such as pxq, are one-letter identifiers that are used to represent nodes of linked
structures such as graphs and trees. They can carry optional node data of arbitrary type: pa/56q, pa/[3,4]q. Links
between nodes can be directed (pa->bq) or undirected (pa--bq), and can carry optional edge data, as in pa->/56 bq.

These simple primitives can be combined to produce complex queries. For example, the query

[a->b,b->c]==>[a->a,a->b,a->c,b->b,b->c,c->c]

asks which function maps

the directed graph

a

b c to the directed graph

a

b c

7

primitive syntax examples
map Sin==>Sout (1,2)==>3

int (0..9)+ 123

float (0..9)∗ .(0..9)+ 123.456

boolean true | false true

pair (S1,S2) (1,2)

vector [S1,S2, · · ·] [1,2,3,2]

set {S1,S2, · · ·} {1,2,3}
matrix [S1,1,S1,2 · · · ;S2,1,S2,2 · · · ; · · ·] [1,2;3,4]

atom |b|...|z[/S] a, b/5

dedge atom->[/S] atom a->b, c->/5 d

uedge atom--[/S] atom a--b, c--/4 d

graph graph([atom,...],[uedge,...]) graph([a,b],[a--b])

digraph digraph([atom,...],[dedge,...]) digraph([a,b],[a->b,b->a])

dag dag([atom,...],[dedge,...]) dag([a,b,c],[a->b,a->c,b->c])

tree tree([atom,...],[dedge,...]) tree([a,b,c],[a->b,a->c])

list list([atom,...],[dedge,...]) list([a,b,c],[a->b,b->c])

point <float,float> <2.1,3.0>

line line(point,point) line(<2.1,3.0>,<1.1,4.0>)

circle circle(point,float) circle(<2.1,3.0>,2.3)

ellipse ellipse(point,float,float) ellipse(<2.1,3.0>,2.3,3.4)

arc arc(point,point,point) arc(<2.1,3.0>,<1.1,3.3>,<2.2,1.0>)

polygon polygon[line,line,...] polygon[line(<2.1,3.0>,<1.1,3.3>),...]

grid grid[G1,G2, · · ·] grid[<2.1,3.0>,line(<2.1,3.0>,<1.1,4.0>)]

Table 1: The AλgoVista concrete query syntax. The Sα:s represent arbitrary query terms. The Gi:s represent arbitrary
geometric objects. All Gi:s must be attached to a cartesian grid. Circles and ellipses take a center point argument as
well as one or two radii, respectively. Shaded rows represent syntactic components which are internal to AλgoVista,
and not lexically realized.

8

T
	
INTEGER
 = �

T
	
FLOAT
 = �

T
	
true
 =

T
	
false
 =

T
	
S1 ==> S2
 = Map(T

	
S1
 ,T

	
S2
)

T
	
(S1 , S2)
 = Pair(T

	
S1
 ,T

	
S2
)

T
	
[S1,S2, · · ·]
 = if T

	
S1
 = T

	
S2
 = · · · then

Vector(T
	
S1
) else⊥

T
	
[S1,1,S1,2 · · · ,S1,n; · · · ;Sm,1,Sm,2 · · ·Sm,n]
 = if T

	
S1,1
 = T

	
S1,2
 = · · · then

Matrix(m,n,T
	
S1,1
) else⊥

T
	
atom/S
 = Node(T

	
S
)

T
	
atom -> /S atom
 = DEdge(T

	
S
)

T
	
atom -- /S atom
 = UEdge(T

	
S
)

T
	
graph([A1, · · · ,An], [E1, · · · ,Em])
 = if T

	
A1
 = T

	
A2
 = · · ·= Node(α)

and T
	
E1
 = T

	
E2
 = · · ·= UEdge(β) then

Graph(α,β) else⊥
T
	
digraph([A1, · · · ,An], [E1, · · · ,Em])
 = if T

	
A1
 = T

	
A2
 = · · ·= Node(α)

and T
	
E1
 = T

	
E2
 = · · ·= DEdge(β) then

Digraph(α,β) else⊥
T
	
grid[G1,G2, · · ·]
 = Grid()

Table 2: Type assignments.

(Transitive closure). The query

([3,7],[5,1,6]) ==> [5,1,6,3,7]

asks what function maps the lists [3,7] and [5,1,6] to the list [5,1,6,3,7] (List append).
The recursive structure of the grammar allows queries to be deeply nested, although this is fairly uncommon. For

example, the query

[a->/[1]b,a->/[3,4]c] ==> [1,3,4]

looks for an algorithm that maps a tree to a list of integers, where each tree edge is labeled with a set of integers.
Table 3 gives some example queries.

3.1 Query Types
In Section 4 we will introduce query transformations, operations that map queries to queries with different represen-
tations, while maintaining semantic equivalence. Furthermore, in Section 5 we will present a search algorithm that
makes extensive use of pre-computation to speed up searching. This algorithm relies on queries, checklets, and query
transformations all being typed. Table 2 shows the type assigments that map the primitives of the concrete syntax of
Table 1 into types.

For example, the query p([1,2],[3,4])==>[4,6]q has the type

pMap(Pair(Vector(�),Vector(�)),Vector(�))q
and the query p([a/3,b/2,c/1],[a->b,a->c])q has the type

pPair(Vector(Node(�)),Vector(DEdge(/0)))q.

Type expressions also allow variables, written α,β,γ. These are used to describe the signatures of polymorphic
checklets and transformations, as in the generic sorting checklet in Figure 3(a).

AλgoVista’s type system is actually somewhat richer than the type assignments above would indicate. Special
internal types Set, Linked, Graph, Digraph, DAG, Tree, and List have been introduced to make searching more
efficient. For example, a checklet writer can declare a setUnion checklet either using the Vector type

9

QL query Query explanation
1© [3, 5, 7, 8] ==> 23

Query result: 〈Vector reduction.〉
2© [a->b,b->c,c->a] What kind of graph is this:

a

b c
?

Query result: 〈Strongly connected graph〉
3© [m,a,d,a,m]

Query result: 〈Palindrome sequence〉
4© [a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c] List of edges representation.

Query result: 〈Topological sort〉
5© [0,0,1,1;0,0,1,0;0,0,0,0;0,1,1,0] ==> [1,4,2,3] Adjacency matrix representation.

Query result: 〈Topological sort〉
6© [a->[c,d],b->[c],c->[],d->[c,b]] ==> [a,d,b,c] List of neighbors representation.

Query result: 〈Topological sort〉
7© [n,k,l,i]==>[i,k,l,n]

Query result: 〈Sorting〉
8© [a--/3 b,a--/2 d,a--/1 c,c--/1 b,b--/1 d,d--/4 c] ==> 5

Query result: 〈Traveling Salesman Problem〉
9© [(3,8),(2,4)] ==> (-26,28)

Query result: 〈Complex multiplication〉

9© grid[circle(<2,2>,1),line(<2,4>,<3.8,1>)]

Query result: 〈Tangent of a Circle〉

Table 3: Example AλgoVista queries.

10

checklet setUnionA (input ⇒ output)

signature Map(Pair(Vector(α),Vector(α)),Vector(α))
· · ·

or using the Set type

checklet setUnionB (input ⇒ output)

signature Map(Pair(Set(α),Set(α)),Set(α))
· · ·

Both will work equally well, but setUnionB’s signature hints to the search engine that it will fail for any inputs that
are not sets (i.e. vectors that have duplicate elements). For example, the search engine would hand off the query

p([1,2],[2,2,3])==>[1,2,3]q

to setUnionA but not to setUnionB since [2,2,3] is not a set. Similarly, a checklet that declares that it takes a DAG
as input will never be handed a graph with a cycle. Note that an AλgoVista user has to learn no special syntax to
use these types. Rather, the query transformations that will be introduced in Section 4 and Appendix B take care of
transforming queries from general types (such as Vector) to more specific types (such as Set) when this is legal.

Devising type assignments for geometric queries has proven not to be as straight-forward as for the other syntactic
elements. One possibility is a very precise type system where every different collection of geometric elements yields
a different type signature. For example, the grid

could get the type

pGrid([Circle(),Circle(),Line()]q

or, possibly,

pGrid([Circle(),Line()]q

However, we would not want to be too precise. This would, for example, lead to the queries

==> 4 ==> 8

(that look for algorithms that count the number of points in the plane) to have different signatures. For these reasons,
for geometric queries we have chosen a single, weak type: every cartesian grid gets the same type Grid(), regardless
of the elements on the grid. Since we currently only have a small number of geometric checklets in our database, this
serves our current purposes well. As the database grows, geometric queries may start to take a long time to service,
and a more precise type system may be warranted.

4 Query Transformations
Early on in the design of AλgoVista we realized that there is often a representational gap between a user’s query and
the checklet that is designed to match this query. For example, there are any number of reasonable ways for a user to
express a topological sorting query, including representing the input graph as a list of edges, an adjacency matrix, or a
list of neighbors. These queries are shown in Figure 3 4©– 6©. The corresponding topological sorting checklet, on the
other hand, might expect the input graph only in a matrix form.

This problem appears even for very simple queries. For example, in the query

11

p([3,7],[5,1,6])==>[5,1,6,3,7]q

the user was looking for information about the 〈List append〉 problem but gave the input pair of lists in the “wrong”
order.

AλgoVista provides a set of query transformations that will automatically convert queries between common repre-
sentations. For example, given the topological sorting query in Figure 3 4©, AλgoVista would automatically produce
the queries in Figure 3 4©– 6©, all of which would be matched against the checklets in the checklet database. Similarly,
the query

p([3,7],[5,1,6])==>[5,1,6,3,7]q

would be transformed into

p([5,1,6],[3,7])==>[5,1,6,3,7]q

allowing it to be accepted by the ListAppend checklet. We will refer to the transformed query as a query mutation.
The search algorithm from Section 2 has to be extended to accommodate the transformation of queries. The

exhaustive search algorithm in Figure 5 generates all possible mutations of the incoming query (by applying any
combination of query transformations to it) and submits these to every available checklet. In Section 5 we will present
an alternative algorithm that uses extensive pre-computation to speed up the search.

Appendix B lists the transformations currently in use by the search engine. For example, the Int2Flt transforma-
tion promotes a integer to a float and the FlipPair transformations swaps the elements of a pair. These transforma-
tions will form the basis for future examples, and are illustrated in Figure 6.

List2VectorB and many other transformations in Figure B are concerned with transforming between different
representations of various linked structures.

4.1 A Query Transformation Example
Consider a user who wants to submit a query containing the list of integers p[5,1]q. There are several ways to represent
this list, and our user decides on a linked-list representation with edge-weights:

a b c
15

.

In our textual query language this would be expressed as

p[a->/5b,b->/1c]q.

However, a particular checklet might expect the list of integers to be given in a vector representation:

p[5,1]q.

Figure 7 shows how AλgoVista’s transformation engine would transform the original linked representation to the
vector representation (using the transformation List2VectorB). Further transformations will turn the original query
into pairs of integers, booleans, and reals. The basic AλgoVista search algorithm in Figure 5 would hand off all twelve
query mutations to all the checklets in the checklet database.

5 Query Optimization
In Figure 5 we described a straight-forward algorithm that employs exhaustive search to submit every possible mutation
of a query to every checklet in the checklet database. Obviously, with dozens of transformations and hundreds of
checklets this procedure will be prohibitively expensive.

To see how type-analysis can help us speed up the search, consider a situation where we have two checklets
FloatExp and FloatAdd FloatExp checks for real exponentiation and FloatAdd checks for real addition, We also
have two transformations Int2Flt and FlipPair where Int2Flt promotes an integer to a real and FlipPair com-
mutes a pair. These are illustrated in Figure 6.

Suppose the input query is p(2.0,2)==>4.0q. This input has a signature of

12

Map(Pair(� , �), �),

and therefore can be tested immediately against the FloatExp checklet. Similarly, by applying the Int2Flt trans-
formation, the query can be transformed into p(2.0,2.0)==>4.0q, which matches the signature of FloatAdd, and
therefore can be submitted to that checklet.

It is trivial to determine that the query ptrue==>1q (which has the type Map(, �)) cannot match any of our
(current) checklets, regardless of which transformations are applied. Still, the algorithm in Section 2 would apply all
possible combinations of transformations to ptrue==>1q and submit any generated query mutation to every checklet
in the database.

We will next show how precomputing viable transformations can speed up searching by eliminating any such
useless transformations.

5.1 Fast Checking by Precomputation
Whenever a new checklet is added to the database, AλgoVista generates a new search procedure ST ,C automatically.
This procedure is hardcoded to handle exactly the set of transformations T which are available in the database of
transformations, and the set of checklets C which are currently available in the checklet database. ST ,C is constructed
such that given an input query q whose type is T

	
q
 , ST ,C will apply exactly those combinations of transformations

to q that will result in viable mutated queries. A query is viable if it is correctly typed for checking by at least one
checklet.

In other words, AλgoVista’s optimized search procedure ST ,C will never perform a useless transformation, one
that could not possibly lead to a mutated query correctly typed for some checklet.

In order to apply transformations and to test checklets efficiently, AλgoVista determines the signature of an input
query upon its arrival. Given the query’s signature, AλgoVista knows exactly which, if any, checklets to test, and
which, if any, transformations to apply. Furthermore, AλgoVista knows the exact signature of each newly-generated
query because it knows the input query signature and how the transformation will transform the signature. For example,
AλgoVista knows that applying the FlipPair transform to

Map(Pair(� , �), �)
will yield

Map(Pair(� , �), �).

This observation yields a very simple, but highly optimized architecture that applies transformations and tests checklets
based on signatures, in which there is one function per signature responsible for all the operations that affect queries
of that signature. Each function has three parts: verifying the originality of the query, testing all matching checklets,
and generating isomorphic queries by applying transformations. All generated queries are simply handed off to the
function that handles their signature.

For the given checklets and transformations above, the function that handles the signature Map(Pair(� , �), �)
would look like this:

set FI F AlreadySeen;

function FI F(query Q) {
if Q in FI F AlreadySeen then return;

insert Q into FI F AlreadySeen;

Check if the FloatExp-query accepts Q;

Apply Int2Flt (whose signature is
Map(� , �)) to Q, yielding Q′ (whose
signature is Map(Pair(� , �), �));

Call FF F(Q′);
}

13

The set FI F AlreadySeen prevents the same query mutation from being produced more than once, as in this exam-
ple:

(1,2)==>3
FlipPair⇒ (2,1)==>3
FlipPair⇒ (1,2)==>3
FlipPair⇒ (2,1)==>3

⇒ ···
The only non-trivial aspect of the generated function is knowing which transformations can be applied to a given

signature, and where. For instance, given the query signature,

Map(Pair(Pair(� , �),Pair(� , �)))
it is possible to apply the FlipPair transformation at any of the three Pairs in the query—even the nested ones.

In addition to the signature-specific functions, it is also necessary to generate a large decision tree that determines
the signature of the original query before that query is dispatched to the appropriate function.

5.2 The Query Signature Graph
Figure 8 is a graphical representation of the functions that would be generated for the checklets and transformations in
our running example. The nodes depict the signature-bound functions and the edges show transformations from one
signature to another. The shaded nodes are those nodes that have associated checklets.

To construct this query signature graph we start with those signatures accepted by checklets — they are trivially
acceptable. Then, for all of those signatures, we apply the inverted transformations wherever possible. I.e., at each step
of this process we determine those signatures that are one transformation away from the given acceptable signature.
By repeatedly applying these inverted transformations, all acceptable query transformations can be discovered and the
graph can be constructed.

There is, however, one unfortunate complication to this architecture. Consider the following example:

[a->b,b->c]
Vector2VectorPair⇒ ([a,b,c],[a->b,b->c])
Vector2VectorPair⇒ ([a,b,c],([a,b,c],[a->b,b->c]))
Vector2VectorPair⇒ ([a,b,c],([a,b,c],([a,b,c],

[a->b,b->c])))

⇒ ···
In this particular example, the query p[a->b,b->c]q (representing a linked list 〈a,b,c〉) is transformed into p([a,b,c],[a->b,b->c])q.
This is the standard AλgoVista representation of a linked structure, a pair of a node-list and an edge-list. However, the
Vector2VectorPair transformation can be re-applied to the edge-list in the transformed query, ad infinitum.

As it turns out, with any sufficiently rich set of transformations, it is always possible to generate an infinite number
of signatures.

To avoid this problem, and to bound the number of signatures, we put a limit on the number of transformations
that will be applied to any query. Typical values for this limit is four to six. This would seem to limit the usefulness
of precomputed search, but in practice this is not so. First of all, the exhaustive search algorithm in Section 2 is still
available to those users who are willing to trade a longer response-time for a more complete response. Secondly, very
deep chains of transformations will often transform a query beyond recognition, resulting in spurious query results
that have little meaning to the user.

The generation of the decision tree and all of the signature-specific functions is done automatically at checklet
upload-time by a small Icon program [19].

5.3 Simple Indexed Checking
Figure 9 shows a third search algorithm, a simple extension of the exhaustive algorithm. The idea is to create an
index mapping a particular query signature to the list of checklets that have this signature. search(Q) generates the
same set of mutations of Q as the exhaustive algorithm does, but only applies these to checklets with the appropriate
signature. As we will see in Section 9, this simple algorithm often performs well in practice.

14

6 Checklet Construction
To extend the AλgoVista database with new problem classifications, a user downloads a checklet template, modifies
and tests it, and uploads the new checklet into the server where it is added to the checklet database. The template is a
Java class consisting of four methods that the user should fill in: Description() gives a short title of the problem,
ProtoExamples() provides a list of accepting example queries, and References() gives links to web resources for
the problem. The main method is Check()which takes a parsed query as input and returns true if the query could be
an instance of the problem the checklet checks for.

Figure 10 shows a simple sorting checklet that runs in expected linear time.
Figure 11 shows a checklet that classifies Eulerian graphs. It suffices to check that the graph is undirected, con-

nected, and that each node is of degree 2. The only difference between a checklet that classifies a problem and a
checklet that classifies a combinatorial structure lies in their input arguments: the former takes an input⇒output struc-
ture as argument, whereas the latter only takes the combinatorial structure itself. In fact, it is possible to write checklets
to classify any mathematical object, as long as it can be expressed in AλgoVista’s query language. It would, for ex-
ample, be easy to add checklets to AλgoVista that classify mathematical constants, much as Plouffe’s Inverter [25]
does.

6.1 Checking hard problems
Much research has gone into the search for efficient result checkers for many classes of problems. In some cases,
efficient result checkers are easy to construct. For example, let P(x) return a factor of the composite integer x. This
is generally thought to be a computationally difficult problem. However, checking the correctness of a result returned
by P is trivial; it only requires one division. On the other hand, let P(x) return a least-cost traveling salesman tour of
the weighted graph x. Checking that a given tour is actually a minimum-cost tour is as expensive as finding the tour
itself.2

For example, consider the following query:

a

c

=⇒

b

d

3

2

1

1

1

4

a d b c a

p[a--/3b,a--/1c,a--/2d,b--/1c,b--/1d,c--/4d]==>[a,d,b,c,a]q.

A TSP checklet would have to compute a minimum cost tour of the graph and compare this to the cost of the tour
suggested by the query. The checklet should accept only if the costs are the same. For even moderately large graphs
this would be prohibitively expensive.

Instead, for hard problems we are often satisfied writing relaxed checklets. These are checklets that “cheat”, either
in order to run faster or to avoid having to implement a complex algorithm. For example, instead of computing a
minimum cost tour, a TSP checklet could use a quick-and-dirty approximation algorithm and accept whenever the cost
of the user’s tour is “close enough” to the cost of this approximate tour. A tour based on the minimum spanning tree
of the graph, for example, is within a factor of 2 of optimal and can be computed in Θ(V 2) time [14].

Of course, a relaxed checklet trades precision for efficiency: it accepts more often than it should. This is often a
reasonable trade-off since – like all search engines – we expect AλgoVista to sometimes return false positives.

If fact, we can think of a hierarchy of progressively more relaxed TSP checklets, starting with the most expensive
and exact algorithm, and ending with one that will always accept the input⇒output query:

1. Accept only if the output forms a minimum cost tour of the input graph.

2Note that this optimization formulation of TSP is different from the decision problem normally found in textbooks. In the decision problem
TSPd = 〈G,k,T 〉 we are asked to verify that the tour T is a hamiltonian cycle of G with cost of most k. This can certainly be done in polynomial
time. In the optimization problem TSPo = 〈G,T 〉, on the other hand, we are asked to verify that T is a minimum cost tour of G, which is hard.

15

2. Accept only if the output tour has a cost that is close enough to that of an approximate MST-based
tour of the input graph.

3. Accept only when the output forms a hamiltonian cycle of the input graph.

4. Accept only when the input is a weighted complete graph and the output is a list of nodes.

5. Accept always.

Another point on this spectrum is spot-checking [17], a recent development in result checking that allows hard prob-
lems to be checked probabilistically.

Just as checklet writers can cheat with relaxed checklets, AλgoVista users can cheat by submitting relaxed queries.
From a user’s point of view they would like to submit the simplest (least specific) query possible that will produce the
answer they are looking for, and just a few false positives. For example, the user would be very pleased if their relaxed
query p[a--/1b]==>[a,b,a]q was specific enough to return TSP and only a few “wrong” hits.

Point 4 in the list above is an interesting case which we call signature search, and which is supported by AλgoVista.
If a user enters the query p[a--/1b]==>[a]q in signature search mode they will receive a list of all problems in the
database which map a weighted undirected graph to a list of nodes. If only a few problems have this signature such
relaxed queries can be very effective as well as extremely fast to compute. We will discuss this further in Section 11.1.

It is worth noting that the queries that users submit to AλgoVista are almost always extremely short. Therefore,
in many cases checklets do not have to worry about being efficient; the simplest, most straight-forward algorithm will
often be adequate.

6.2 Query variations
Most problems come in different flavors, and AλgoVista needs to contain checklets for all of them. A user looking for
the TSP problem could enter the query above, but they might just as well enter

a

c

b

d

3

2

1

1

1

4

=⇒ 5

p[a--/3b,a--/1c,a--/2d,b--/1c,b--/1d,c--/4d]==>5q.

(i.e., “the length of a minimum tour of this graph is 5”), or

a

c

b

d

3

2

1

1

1

4

=⇒

c

a

b

d

1

2

1

1

p[a--/3b,a--/1c,a--/2d,b--/1c,b--/1d,c--/4d]==>

[a--/1d,d--/1b,b--/1c,c--/2a]q.

and so forth.
Certain query variations are taken care of by AλgoVista itself, through its transformation engine. For example,

AλgoVista will automatically convert graphs between different data representations, such as list of edges, adjacency
matrix, and adjacency lists. As a result, if the TSP checklet expects its input graph in the form of an adjacency matrix
but the user submits a query using a list of edges representation, the transformation engine would automatically make
the appropriate conversion and the checklet would still accept. For cases when the built-in transformations are not
enough, the checklet writer has to provide the appropriate variations.

16

6.3 Checking problems on reals
Checklets that operate on floating-point numbers present their own set of problems concerning floating-point equality.
For example, which, if any, of the queries

p2.0⇒ 1.4142135623q,
p2.00000⇒ 1.4140q, and

p2.0⇒ 1.0q

should a floating-point square root checklet accept? In all cases, the right hand side is an approximation of
√

2, but
just how accurate should the approximation be in order to be acceptable to the checklet? Checklets can, of course,
define their own equality primitives, but AλgoVista provides a default heuristic that works well in most situations:
floating-point comparisons are done in the minimum precision of any floating-point number in the input query. Hence,

p2.0⇒ 1.4142135623q

will accept (since 1.41421356232 = 1.9999999997≈ 2.0 when comparing with a precision of one decimal digit), but

p2.00000⇒ 1.4140q

will not (since 1.41402 = 1.999396 6≈ 2.0000 when comparing with four digits’ precision).
For example, in the checklet below, the standard AλgoVista function Float.equals() will compare s and t*t

in the minimum of the precisions of s and t:
� �

p u b l i c c l a s s F l t S q r t extends F l o a t F l o a t {
· · ·
p u b l i c boolean Check (

double s , double t ,
i n t s p r e c , i n t t p r e c) throws Throwable {

re turn F l o a t . e q u a l s (s , t ∗ t , s p r e c , t p r e c) ;
}

}
� �

7 Visual Queries
The textual query language described in Section 3 is extremely simple. However, our experience has been that many
casual users of the AλgoVista search engine do not take the time to study the available documentation to be able to
produce correct queries. The following examples are some actual queries from our query log.

Many users will start by entering a few keywords, thinking that, like most other search engines, AλgoVista is
keyword based:

pcreate heapq

pquadratic knapsack problemq

pcomputer scienceq

In spite of the simplicity of the query language many queries are still ill formed:

p(1)==>3 q

p(1,2,3,4,5)==>3 q

p()------>()q

pa + b = cq

parray => heapq

Some queries just make very little sense at all:

p7,5,5,6,9,1 Sort these numbersq

pHow to implement the dijkstra’s algorithm in java??q

17

Occasionally, someone will do a “vanity search” to see if their name is in the database:

pviet anh nguyenq

One user even drew a pictorial query using ASCII graphics:

*

/ \

/ \

/ \

* *

/ \ /

/ \ /

* * *

From these examples and others like it in our query logs, we have drawn the conclusion that for a specialized
search engine such as AλgoVista to become successful its user interface has to be so simple and self-explanatory
that virtually no user training is necessary. For this reason we designed a visual query language and a graphical user
interface that allows users to draw their queries rather than enter them textually.

The design of the visual query language and the user interface is based on the following principles:

1. Give the user complete freedom in drawing her query, because no web user will take the time to learn complex
visual grammars.

2. When there is more than one possible parse of a visual query let the user herself choose the appropriate one.
The user will have no desire to learn any semantic constraints that may have been embedded in the interface.

3. Make each visual query a learning experience. The user may not have the time or patience to read the documen-
tation describing the textual query language, but we can force them to learn it surreptitiously by showing them
the textual query corresponding to each visual query.

4. Provide plenty of example queries that the user can learn from, modify, and experiment with.

7.1 The Visual Query Language
AλgoVista’s visual query language is closely modeled on its textual counterpart. A user constructs a query by dragging
primitive elements from a template region on the user interface (Figure 2) onto the drawing canvas. Atoms are modeled
by named circles, links by the obvious lines and arrows, booleans, matrices, and the ==>-arrow by themselves, and
numbers are entered by clicking and typing. Geometric queries are entered by drawing circles, ellipses, points, lines,
and polygons directly on a Cartesian grid. There are, however, no obvious visual counterparts to the pairs and element-
lists of the textual language. These are instead inferred from the positioning of the visual elements.

For example, instead of entering a traveling salesman query textually:

[a--/3 b,a--/2 d,a--/1 c,c--/1 b,b--/1 d,d--/4 c] ==> 5

it could instead be drawn like in Figure 2. The textual query is inferred from the drawing, and the English prose query
is derived from the textual query.

Recursive queries could be handled in a variety of ways. Many graph editors parse node and edge labels by
proximity; that is, a graphical element is inferred to be the label of a node a if it is “close enough” to a. This puts a
heavy burden on the parser as well as on the casual user who needs to have some understanding of the principles under
which the parser operates.

We have instead opted for a much more lightweight solution: if the user double-clicks on an atom or link a new,
simpler, drawing window opens up, allowing the user to enter the sub-drawing. This strategy has the advantage of
both being simple to implement and trivial to explain to the user. It is now easy to create arbitrarily complex queries,
where, for example, the nodes of a graph could be labeled with lists of trees, whose edges are labeled with. . . . See
Figure 12 for an example.

18

7.2 Parsing Visual Queries
Because of the limited set of graphical elements that AλgoVista supports, parsing visual queries is relatively straight-
forward. The ==>-arrow separates inputs from outputs, which means that anything to the left of the arrow is an element
of the input, anything to the right belongs to the output.

As we have seen, recursive queries are created by the user explicitly opening up atoms and links (by double-clicking
on them) and drawing the label in a sub-editor pane. This limited amount of structure editing greatly simplifies parsing,
since it is always clear if an element is the label of an atom or link, rather than a free-standing element.

The main challenge in parsing visual queries is that grouping of elements is not always evident from the drawing.
Consider the queries in Figure 13. There are four connected components and it is unclear from the query which of
those, if any, form sub-groups. For example, the nodes u, s, and t could form a (dis-connected) graph, or s and t

could form one graph and u another.
Many visual parsers use proximity to infer element grouping. In a web-situation where many casual users will

visit a site for only a minute or two, there simply is no time to explain what heuristics the parser employs. So, again,
we prefer a lightweight and user-centric solution. We will simply guess the user’s intentions, and then report back
what that guess was. In this case, the parser’s first guess (shown at the top left of Figure 13) was that each connected
component is a unique argument in the query. It indicates this by drawing a convex hull (red lines) around each
component.

If, however, the user’s intentions were different, she can simply ask the parser to produce a different parse, by
clicking on a PARSE-button one or more times. This will cycle through all the different possible parses of the query,
each described visually (using convex hulls), formally (using a textual AλgoVista query), and informally (using En-
glish prose). For example, it could be that the user had planned for the node u to belong to a three-node graph (bottom
left of Figure 13) or for the two integer elements to be part of a pair (top right of Figure 13), or for u and 456 to form
a pair (bottom right of Figure 13).

In most cases there are few possible parses and it is immediately clear to the user which is the one she is looking
for. To cut down the number of possible parses we can exploit the fact that, as described in Section 3.1, AλgoVista

queries are typed. During parsing we may find that certain groupings of elements do not typecheck, in which case we
never present them to the user.

The above discussion is summarized by the algorithm in Figure 14. parse generates a sequence of possible
interpretations of the graphical elements on the canvas. We first separate the input from the output elements, and
then construct a set of connected components for each. We then generate all possible type-correct queries by merging
adjacent connected components. Finally, each query is translated to English and presented to the user, along with the
textual query and a convex hull around each component.

8 Security Issues
To the best of our knowledge, AλgoVista is the first web site to allow arbitrary users to upload executable code into
its database. Obviously, there are a number of security issues that have to be addressed.

Figure 15 shows some examples of hostile checklets. Figure 15 (a) shows an overly general checklet evil1 that
was uploaded in an attempt to promote someone’s web site. Regardless of the input query, evil1 will always accept
and return a link to the bogus site. Checklet evil2 in Figure 15 (b) launches a denial-of-service attack by stealing
as many CPU cycles or as much memory as possible. Checklet evil3 in Figure 15 (c) attempts to compromise the
security of the AλgoVista server by reading from or writing to the local file system.

AλgoVista checklets are written in Java and are executed with the same security privileges as Java applets. This
allows us to rely on Java’s built-in security features to prevent checklets from compromising the security of the
AλgoVista server.

Denial-of-service attacks [21] are more difficult to deal with. While time-outs are used to stop checklets from
stealing too many CPU cycles, Java provides no straight-forward way to limit the dynamic memory allocation of a
process. Some recent results (for example, Binder [5]) implement resource accounting using bytecode modification,
but this is not yet common place.

It is unclear whether there are any strong technical means to prevent attacks by overly general checklets. The same
problem plagues keyword search engines such as AltaVista where unscrupulous users will

“submit pages with numerous keywords, or with keywords unrelated to the real content of the page” [1].

19

in order to promote their own web-pages. Currently, we require every checklet to provide a list of accepting examples:

checklet intAdd ((int a, int b) ⇒ int c)

examples (0,0)==>0, (5,6)==>11

if (a+b)=c then accept · · ·
When a checklet is uploaded the AλgoVista server ensures that

a) the checklet accepts every one of the example queries it has provided, and

b) the checklet only accepts a small fraction of all the example queries provided for all other checklets in the coop.

While not foolproof, these policies provide a reasonable level of security.

9 Evaluation
In order to be useful a search engine should

1. be simple to use,

2. have a reasonable response time,

3. return results that are “useful” to the user, and

4. return few false positive results.

Obviously, AλgoVista is not as easy to use as a keyword-based search engine, since queries have to be expressed in a
semi-formal manner. As we will see below, most AλgoVista queries can be answered in a few seconds. “Usefulness”
is a more difficult property to measure. In case of AλgoVista we could define it as “the ability to compute relevant
results that the user could not have found using other, simpler, search tools.” In other words, is the extra effort on the
part of the user to formulate input==>output queries worth the trouble? So far, we have performed no formal surveys
of actual users’ experience with the system.

9.1 Query Times
Table 4 shows the search times for some typical queries. The times were collected by running each query five times and
averaging the wall clock times of the last four runs. The reason for discarding the first measurement is that Java start-up
times are quite significant and unpredictable. Furthermore, in web applications such as this one, programs are typically
pre-loaded into (a large) primary memory and queries are fielded without any disk accesses. The measurements were
collected on ...

Timing measurements. Times are in seconds. Anomalous measurements are due to rounding errors and inadequate
timer resolution. The measurements were collected on a lightly loaded Sun Ultra 10 workstation with a 333 MHz
UltraSPARC-IIi CPU and 256 MB of main memory, running AλgoVista on Sun JDK 1.2.1.

For each algorithm, Table 4 gives five columns that show the mutation level, the number of transformations ex-
ecuted during the search, the the number of generated mutations, the number of checklets executed, the number of
generated query results, and the average wall clock time of the query, in milliseconds.

From Table 4 we can draw the conclusion that, even though the precomputed search will in general execute fewer
transformations and checklets than the other algorithms, in practice the indexed algorithm is faster. This is due to the
large size of the internal tables used by the precomputed algorithm. For exampple, Table 5 shows that, for mutation
level 5, almost 22MB are used to store the signature graph. This graph is realized as a two-dimensional integer
array. Such arrays are stored non-contiguously on the heap in Java, and thus exhibit poor locality. We believe that
using standard table compression techniques as well as recoding the table indexing part of AλgoVista in a lower level
language such as C, would improve performance significantly.

We expect that as the system grows with more checklets and query transformations, the performance of the pre-
computed search algorithm will exceed that of the other algorithms. The reason is that the worst-case execution time
of the exhaustive and indexed algorithms for a query Q is

O(#mutations(Q)×#checklets)

20

Exhaustive Indexed Precomputed
M ET GM EC GR WT ET GM EC GR WT ET GM EC GR WT

((1,2),(3,4))==>(4,6)

1 10 1 360 2 34 10 1 41 2 6 15 20 58 2 49
2 90 45 16116 2 893 90 45 727 2 98 182 84 361 3 180
3 618 1727 153579 3 † 2258 1727 42114 3 2886 539 100 425 3 1131
4 5662 62150 143569 1 † 5662 62370 146614 3 † 682 100 425 3 5082
5 5662 62370 143121 1 † 5662 62274 147639 3 †

(1,2)==>3

1 5 1 360 3 33 5 1 39 3 6 6 4 57 3 41
2 31 10 3579 3 193 31 10 142 3 18 28 8 98 4 102
3 119 44 15687 4 810 119 44 498 4 83 31 8 98 4 313
4 119 44 15687 4 819 119 44 498 4 79 31 8 98 4 1068
5 119 44 15687 4 817 119 44 498 4 82

Graph([e,d,c,a,b],[e--a,e--d,c--d,c--b,a--b])

1 32 13 4490 18 326 32 13 67 18 102 0 1 13 8 75
2 32 13 4490 18 326 32 13 67 18 102 0 1 13 8 96
3 32 13 4490 18 328 32 13 67 18 105 0 1 13 8 252
4 32 13 4490 18 327 32 13 67 18 99 0 1 13 8 857
5 32 13 4490 18 329 32 13 67 18 97

[e--a,e--d,c--d,c--b,a--b]

1 49 20 6905 18 453 49 20 232 18 111 0 1 1 0 37
2 49 20 6905 18 460 49 20 232 18 111 8 3 3 0 63
3 49 20 6905 18 454 49 20 232 18 111 8 3 3 0 220
4 49 20 6905 18 458 49 20 232 18 111 8 3 3 0 835
5 49 20 6905 18 460 49 20 232 18 110

[n,k,l,i]==>[i,k,l,n]

1 3 1 360 2 37 3 1 21 2 6 0 1 12 2 41
2 12 6 2150 2 126 12 6 116 2 19 3 2 22 2 77
3 12 6 2150 2 124 12 6 116 2 21 3 2 22 2 285
4 12 6 2150 2 163 12 6 116 2 19 3 2 22 2 1073
5 12 6 2150 2 125 12 6 116 2 19

Table 4: Timing results of the three proposed search algorithms on some representative queries. M=mutation level,
ET=number of executed transformations, GM=number of generated mutations, EC=number of executed
checklets, GR=number of generated results, WT=wall clock time (milliseconds), †=search timed out after
20 seconds.

21

level table sizes (bytes) checklet signatures query signatures
1 15,990 83 552
2 96,676 83 2,469
3 488,862 83 9,949
4 4,621,228 83 39,495
5 21,555,016 83 159,318

Table 5: Table sizes for the precomputed search algorithm, and the number of unique query and checklet signatures
for different mutation levels.

while the execution time of the precomputed search algorithm is

O(#viable mutations(Q)),

where we expect
#viable mutations(Q)� #mutations(Q).

9.2 The Visual Interface
AλgoVista’s textual interface and its underlying database engine have been operational for some time. The design of
the graphical interface was initiated by the fact that our query logs indicated that users had trouble forming correct
textual queries. We have yet to perform a formal usability study so we cannot conclusively say whether users will
favor one interface over another. Our own experience with the graphical interface, however, has allowed us to make
the following observations:

1. For large, disconnected, inputs, the number of possible parses grows exponentially. For example, consider the
following query, which a user might have entered to look for information about palindromes:

m a d a m

This query generates a large number of parses, making it time consuming for the user to navigate to the desired
one. For most queries this is not an issue, since they tend to contain a small number of connected components.
For queries with many components, the textual search interface often works better. For example, the following
is an unambiguous palindrome query:

[m, a, d, a, m]

2. Generally, a query is easy to express if the query language provides the appropriate primitives. For example,
since AλgoVista provides node and link primitives it is straight-forward to create queries involving graphs. On
the other hand, classifying three-dimensional problems in the Computational Geometry domain is difficult, since
AλgoVista currently only supports two-dimensional geometric queries.

10 Related Work
A number of web sites, for example the CRC Dictionary [6], Skiena’s Stony Brook Algorithms Repository [30], and
the Encyclopedia of Mathematics [34], already provide encyclopedic information on algorithms, data structures, and
mathematical results. These sites typically classify and organize algorithms hierarchically. Like all encyclopedias,
however, they are of no use to someone unfamiliar with the terminology of the field they are investigating.

AλgoVista provides an alternative mode of searching these repositories (to which we link heavily). Most impor-
tantly, we allow users to express their problem in their own terms, as an example of its required behavior. We then

22

attempt to match this behavior (through the judicious use of query transformations) against the known behavior of
problems in our database.

More relevant to the present research is Sloane’s On-Line Encyclopedia of Integer Sequences [31]. This search
service allows users to look up number sequences without knowing their name. For example, if a user entered the
sequence p1,2,3,5,8,13,21,34q, the server would respond with “Fibonacci numbers.” It is interesting to note that,
although many of the entries in the database include a program or formula to generate the sequences, these programs
do not seem to be used in searching the database. Similar search services are Plouffe’s Inverter [25] where one can
classify interesting numbers and the Encyclopedia of Combinatorial Structures [24].

MELDEX [27, 2] is an online index of tunes which can be searched by example. A user queries the database by
singing (or humming, or playing) a few notes which are then matched against a database of 9,400 folk songs.

A number of search engines on the web use query-by-example for text documents and bibliographic data. Web-
Bird [33], for example, allows users to enter the URL of a page and it will return “similar documents by following
citation paths that pass through those given documents.” Search engines such as Google have similar features allowing
users to narrow their search results by looking for documents similar to ones the engine has already returned.

Much work has been done on developing systems for classifying and searching for reusable software components.
These tend to use complex semantic classification schemes (for example the LaSSIE [15] system) or, at the opposite
end of the spectrum, simple query-by-keyword.

Inductive Logic Programming (ILP) [4] is a branch of Machine Learning. One application of ILP has been the auto-
matic synthesis of programs from examples and counter-examples. For example, given a language of list-manipulation
primitives (car, cdr, cons, and null) and a set of examples

append([],[],[]).

append([1],[2],[1,2]).

append([1,2],[3,4],[1,2,3,4]).
an ILP system might synthesize the following Prolog-program for the append predicate:

append(A, B, B) :- null(A).

append(A,B,C) :- car(A, X), cdr(A, Y),

append(Y, B, C1),

cons(X, C1, C).

Obviously, this application of ILP is far more ambitious than AλgoVista. While both ILP and AλgoVista produce
programs from input⇒output examples, ILP synthesizes them while AλgoVista just retrieves them from its database.
The ILP approach is, of course, very attractive (we would all like to have our programs written for us!), but has proven
not to be particularly useful in practice. For example, in order to synthesize Quicksort from an input of sorting ex-
amples, a typical ILP system would first have to be taught Partition from a set of examples that split an array in two
halves around a pivot element:

partition(3,[],[],[]).

partition(5,[6],[],[6]).

partition(7,[6],[6],[]).

partition(5,[6,3,7,9,1],[3,1],[6,7,9]).

AλgoVista is essentially a reverse definition dictionary for Computer Science terminology. Rather than looking up
a term to find its definition (as one would in a normal dictionary), a reverse definition dictionary allows you to look up
the term given its definition or an example. The DUDEN [12] series of pictorial dictionaries is one example: to find out
what that strange stringed musical instrument with a hand-crank and keys is called, you scan the musical instruments
pages until you find the matching picture of the hurdy-gurdy. Another example is The Describer’s Dictionary [18]
where one can look up pmixture of gypsum or limestone with sand and water and sometimes hair used primarily

for walls and ceilingsq to find that this concoction is called plaster.
Rekers [26] provides a nice overview of graphical parsing algorithms. They note that most graph parsing algo-

rithms are worst-case exponential. The paper also presents a new multi-stage graph parsing method with separate
phases for determining object locations and spatial relationships, and a final grammar-based rewrite phase. In a web-
based visual interface such complex, and potentially slow, parsing methods are unacceptable.

In [22], a visual interface to a CASE tool is presented, where boolean queries are constructed in a syntax-directed
fashion. Users proceed top-down from a “root” query, iteratively expanding non-terminal nodes until the query is

23

complete.
Novice (as well as expert!) users typically find syntax-directed iterative refinement cumbersome to use. There is a

reason why programmers prefer free-form editors like emacs over syntax-directed ones, even though the latter ensures
that only correct programs can be constructed. For this reason, AλgoVista’s visual interface is a mostly free-form
graph editor, and syntax-directed editing is reserved for recursive edits.

The web ought to present many opportunities for introducing more people to direct-manipulation interfaces. How-
ever, we have found few such examples. Marmotta [10], a graphical front-end to online databases, is an exception.

11 Searching Using Query-By-Example
We are constantly expanding the AλgoVista database of checklets and query transformations. We are also adding new
(non-keyword based) methods of searching for information related to Computer Science. For example, future versions
of AλgoVista will have the ability to search for abstract data-types and data structures by example, and by complexity.
For example, it would be useful to be able to ask:

“show me all data structures that support the operation

p[(a,5),(h,10),(g,2),(f,9)]==>gq

(extract-min) (in O(logn) worst-case time) and the operation

p([(a,5),(h,10),(g,2),(f,9)],h)==>[(a,5),(h,9),(g,2),(f,9)]q

(decrease-key) (in O(1) worst-case time)”

and have AλgoVista return links to information about relaxed heaps [16]. We are also planning to integrate the large
databases of boolean functions used in the VLSI community [3, 11] into AλgoVista. These libraries are typically
searched by hashing or by signature and would fit in well with our current search strategies.

A more long-range goal is to extend AλgoVista to search for combinations of problems. For example, if AλgoVista

knows about sorting and binary search, and is given a query

p(45,[1,6,45,9,33])==>trueq

it should answer

“This looks like an instance of the search problem. You can either solve this in O(n) using a linear

search or if you combine sorting and binary search you can do the search in O(logn) time.”

Unfortunately, program checking does not appear to be strong enough to support this type of query.
We are also interested in applying the ideas developed for AλgoVista — in particular the query-by-example search

engine and the web-based graphical query interface — to areas outside of Computer Science. For this reason we are
working on transforming the current implementation into a generic toolkit that can be easily specialized to different
application domains.

Below we outline three novel query-by-example strategies which are being added to AλgoVista, namely search-
ing checklets by signature, searching the Java APIs by signature, and searching for complex regular expressions by
example.

11.1 Searching Checklets by Signature
A simple variant of AλgoVista looks only at the type signature of a query when trying to match it to checklets. The
signature of each checklet is determined at upload time (a checklet that accepts queries of the type p(1,2)==>3q would
have the signature pMap(Pair(Int,Int),Int)q, for example), and stored with the checklet in the database. When a
user submits a query such as p(1,2)==>3q it is trivial for AλgoVista to determine the type of the query and match it
against the signatures of each of the checklets in the database.

Such quick-and-dirty searches are favored by users because queries are easier to form and the search is much faster.
The disadvantage is that the search is much less precise and may therefore generate many false positive results.

24

There are actually two ways of searching AλgoVista by signature. The easiest one (and the one that most users
would use) is simply to issue an AλgoVista query such as p([1,3],[2,4])==>[1,2,3,4]q, selecting search-by-
signature rather than search-by-value. AλgoVista returns a list of all the problems in the database that map a pair of
integer vectors to an integer vector, for example list-append and list-merge. But, what if we want to look for problems
that map a pair of any two vectors to a vector, regardless of what type of data they contain? AλgoVista will also accept
queries directly in a signature format, such as

Map(Pair(Vector(Any(a)),Vector(Any(a))),Vector(Any(a))).

In this query pAny(a)q represents an arbitrary type which we’ve called “a”. The query will match any problem that
maps a pair of vectors to a vector, as long as all three vectors have the same element types.

11.2 Searching the Java API by Signature
JavaDoc is a standard Java tool which produces HTML from stylized comments in a set of Java classes. The resulting
HTML files essentially constitute a small hierarchical database which can be traversed starting at the top of the class
tree. The standard Java library, for example, can be browsed at http://java.sun.com/products/jdk/1.3/docs/
api.

AλgoVista has the ability to extract from JavaDoc-generated HTML the names and signatures of Java methods, as
well as the HTML labels of each method. This information is then indexed and can be searched by signature from the
AλgoVista homepage.

Searching by signature is remarkably powerful and convenient, particularly when faced with questions such as
I wonder if the Java class library has a method that converts a string to an array of bytes?

Submitting the query

(string)==>byte[]

to AλgoVista will return a link directly to Sun’s documentation for

pjava.lang.String.getBytes()q.

This method could just as well have been declared in java.lang.Byte, and it could just as well have been named
getByteArray or string2bytes, and if it wasn’t for AλgoVista there would be no way for a programmer to locate
this method other than through a more or less random traversal of Sun’s HTML documentation.

AλgoVista has a very simple query language for searching the Java APIs, with a syntax similar to the one used
when classifying algorithmic problems and combinatorial structures. A query consists of a tuple of one or more input
types and one output type:

(typei1 , typei2 , · · · , typein) ==> typeo.

Each type can be

1. the name of a Java built-in type (int, float, etc.),

2. the name of a Java class (String, java.lang.String, etc.),

3. a type followed by a pair of brackets (int[], java.lang.String[], etc.) to indicate an array parameter,

4. * (matching zero or more arbitrary types),

5. ? (matching exactly one arbitrary type), or

6. + (matching one or more arbitrary types).

One small complication arises due to the fact that Java has both static and virtual methods. Consider a method
append that concatenates two strings into a third string. Either of the following two declarations would be possible:

25

static String append (String first, String second) {
return first + second;

}

String append (String second) {
return this + second;

}
In the static case both arguments are explicit (the call pappend("1st","2nd")q would append the strings "1st"

and "2nd"), while in the virtual case the first string argument is implicit in this (a corresponding call would be
p"1st".append("2nd")q. In AλgoVista we treat virtual methods as if they were static, i.e. we make this an explicit
parameter. This allows a user to enter the query

(string,string)==>string

when searching for an append method without having to know if the actual method is static or virtual.

11.3 Searching for Regular Expressions by Example
While many regular expressions are straight-forward to construct, others are definitely non-trivial for novice as well
as experienced programmers. Consider, for example, the following RE which matches Uniform Resource Identifiers

(URIs):

^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?.

An AλgoVista user, on the other hand, only has to submit a query consisting of a random URL, such as http:
//algovista.com and AλgoVista will respond

“This looks like a URI which can be matched by the regular expression
^(([^:/?#]+):)?(//([^/?#]*))?([^?#]*)(\?([^#]*))?(#(.*))?,”

12 Summary
AλgoVista provides a unique resource to programmers to enable them to discover descriptions and implementations
of algorithms without knowing theoretical nomenclature. It is important to note that while AλgoVista does not solve
all problems for all programmers all of the time, it does solve some problems for which there are no other available
resources. For example, if a programmer is looking for information related to Fibonacci Heaps, then a Google keyword
query pfibonacci heapq is the best and simplest strategy. However, if this programmer is in need of a priority queue
but is unaware of this term, then there is no way for her to form an accurate keyword-based query. It should, however,
be possible for the programmer to form an AλgoVista query by providing an example of how a priority queue would
work on a particular input.

In fact, the inspiration for the design of AλgoVista came from personal experiences the authors had being unable
to classify problems and combinatorial structures:

1. Working on the design of graph-coloring register allocation algorithms, the second author showed his theoreti-
cian colleague Sampath Kannan the following graphs:

t

s

t

s

t

s

t

s

t

s

t

ss

t

“Do these graphs mean anything to you?” Todd asked.

“Sure,” Prof. Kannan replied, “they’re series-parallel graphs.”

This was the beginning of a collaboration which resulted in a paper in the Journal of Algorithms [20].

26

2. In a similar episode, the first author showed his theoretician colleague Clark Thomborson the following graph-
transformation:

⇒

“Do you know what I am doing here?” Christian asked.

“Sure,” Prof. Thomborson soon replied, “you’re shrinking the biconnected components of the underlying graph.”

This result became an important part of a joint paper on software watermarking [13].

It is our hope that AλgoVista will prove to be a useful “virtual theoretician” that working programmers can turn to
with a problem, quickly sketch it out — visually or textually depending on the nature of the problem — and quickly
receive a useful answer.

It is our belief that there are many cases when query-by-keyword is inadequate and where query-by-example is
much more intuitive and fruitful. For example, Google keyword queries are language sensitive; queries in languages
other than English will only return a fraction of the information available on the web. It is also our belief that —
because of the nature of the web and the people who use it — complex formal query languages will never become
popular. An interesting alternative is graphical query interfaces such as the one developed for AλgoVista. The generic
query-by-example toolkit that we are currently developing based on the AλgoVista system will hopfully make it easy
to construct such interfaces for a variety of domains.

Acknowledgments: Will Evans pointed out the relationship between checklets and program checking. Dengfeng
Gao, Jessica Miller, Travis Singleton, Zhanwen Li, Gregg Herres, Ursula McDuffee, Zhen Wang, Matthew Johnson,
Thaddeus Dombrowski, Kelly Heffner, and Gergely Kota worked on AλgoVista’s graphical interface and implemented
most of the checklets in the current database. Sean Davey implemented the Java API signature search algorithm.
Stephen Kobourov provided much helpful discussion. We thank them all.

References
[1] AltaVista – Adding pages or URLs to the index. http://www.altavista.com/cgi-bin/query?pg=addurl.

[2] David Bainbridge. Meldex: A web-based melodic index search service. Computing in Musicology, 11:223–230,
1998. Melodic Comparison: Concepts, Procedures, and Applications.

[3] Luca Benini and Giovanni De Micheli. A survey of boolean matching techniques for library binding. Design
Automation of Electronic Systems, 2(3):193–226, 1997.

[4] Francesco Bergadano and Daniele Gunetti. Inductive Logic Programming – From Machine Learning to Software
Engineering. MIT Press, 1995. ISBN 0-262-02393-8.

[5] W. Binder, J. Hulaas, A. Villazn, and R. Vidal. Portable resource control in Java: Application to mobile agent
security. Electronic Notes in Theoretical Computer Science, 63, 2002.

[6] Paul E. Black. Algorithms, data structures, and problems – terms and definitions for the CRC dictionary of
computer science, engineering and technology. http://hissa.ncsl.nist.gov/~black/CRCDict.

[7] Manuel Blum. Program checking. In Somenath Biswas and Kesav V. Nori, editors, Proceedings of Foundations
of Software Technology and Theoretical Computer Science, volume 560 of LNCS, pages 1–9, Berlin, Germany,
December 1991. Springer.

27

[8] Manuel Blum. Program result checking: A new approach to making programs more reliable. In Svante Carlsson
Andrzej Lingas, Rolf G. Karlsson, editor, Automata, Languages and Programming, 20th International Collo-
quium, volume 700 of Lecture Notes in Computer Science, pages 1–14, Lund, Sweden, 5–9 July 1993. Springer-
Verlag.

[9] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of the ACM, 42(1):269–
291, January 1995.

[10] Fabrizio Capobianco, Mauro Mosconi, and Lorenzo Pagnin. Progressive http-based querying of remote databases
within the Marmotta iconic VQS. In VL’95, 1995.

[11] Jovanka Ciric and Carl Sechen. Efficient canonical form for boolean matching of complex functions in large
libraries. In Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages
610–617. IEEE Press, 2001.

[12] Michael Clark and Bernadette Mohan. The Oxford–DUDEN Pictorial English Dictionary. Oxford University
Press, 1995. ISBN 0-19-861311-3.

[13] Christian Collberg and Clark Thomborson. Software watermarking: Models and dynamic embeddings.
In POPL’99, San Antonio, TX, January 1999. http://www.cs.arizona.edu/~collberg/Research/

Publications/CollbergThomb%orson99a.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill, 1990.

[15] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Ballard. LaSSIE: A knowledge-based software infor-
mation system. In Proceedings of the 12th International Conference on Software Engineering, pages 249–261,
1990.

[16] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan. Relaxed heaps: an alternative to
fibonacci heaps with applications to parallel computation. Commun. ACM, 31(11):1343–1354, 1988.

[17] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Vishwanathan. Spot-checkers.
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-98), pages 259–268, New
York, May 23–26 1998. ACM Press.

[18] David Grambs. The Describer’s Dictionary. W. W. Norton & Company, 1995. ISBN 0-393-31265-8.

[19] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice Hall, Englewood Cliffs,
NJ, 2 edition, 1990.

[20] Sampath Kannan and Todd A. Proebsting. Register allocation in structured programs. Journal of Algorithms,
29(2):223–237, November 1998.

[21] Zheng YL Leiwo J. A method to implement a denial of service protection base. In INFORMATION SECURITY
AND PRIVACY, volume 1270 of LNCS, pages 90–101, Berlin, Germany, 1997. Springer.

[22] Hui Liu. A visual interface for querying a CASE repository. In VL’95, 1995.

[23] Mehlhorn and Naher. From algorithms to working programs: On the use of program checking in LEDA. In
MFCS: Symposium on Mathematical Foundations of Computer Science, 1998.

[24] Stéphanie Petit. Encyclopedia of combinatorial structures. http://algo.inria.fr/encyclopedia.

[25] Simon Plouffe. Plouffe’s inverter. http://www.lacim.uqam.ca/pi.

[26] J. Rekers and A. Schür. A graph grammar approach to graphical parsing. In VL’95, 1995.

[27] David Bainbridge Rodger J. McNab, Lloyd A. Smith and Ian H. Witten. The new zealand digital library MELody
inDEX. D-Lib Magazine, May 1997. http://www.dlib.org/dlib/may97/meldex/05witten.html.

28

[28] Ronitt Rubinfeld. Batch checking with applications to linear functions. INFORMATION PROCESSING LET-
TERS, 42(2):77–80, May 1992.

[29] Ronitt Rubinfeld. Designing checkers for programs that run in parallel. ALGORITHMICA, 15(4):287–301, April
1996.

[30] Steven S. Skiena. Who is interested in algorithms and why? Lessons from the Stony Brook algorithms repository.
In Worskop on Algorithm Engineering, WAE’98, 1998.

[31] Neil J. A. Sloane. Sloane’s on-line encyclopedia of integer sequences. http://www.research.att.com/

~njas/sequences/index.html.

[32] Hal Wasserman and Manuel Blum. Software reliability via run-time result-checking. Journal of the ACM,
44(6):826–849, November 1997.

[33] Webbird. http://ai.iit.nrc.ca/II_public/WebBird/resQueryByExample.html.

[34] Eric Weisstein. Encyclopedia of mathematics. http://www.treasure-troves.com/math.

29

A The AλgoVista Database of Problem Descriptions
3-Colorable Graph, A Basis for the Null Space of the Matrix, A Binomial Tree, Absolute value, Achromaitc Number problem, Ackerman’s Function,

Activity-Selection Problem, Addition of Polynomials, Addition of Rational Numbers, Addition of two n-D vectors, A directed Graph and its longest path,

Adjugate Matrix, All pairs shortest path, Altitude Of A Triangle, Altitude of Trapizoid, A mapping from a Graph to a set representing the Max-Cut

problem, A mapping identifying a directed graph and its longest path, An Acute Angle, Angle Bisector, Angle of a Regular Polygon, Angle Sum Formula of

a Regular Polygon, Angle Sum of a Polygon, Annulus, A pair containing a graph and its max cut set, Arbitrated Digraph, Arc cosine, Area of a Circle, Area

of a Rectangle, Area of a Trapezoid, Area of a Triangle, Area of Parallelogram, Area of Triangle, Arithmetic Sequence, Articulation points, A Symmetric

Graph, Average number, Average number of a list of floating point numbers, Average number of a list of integers, AVL Tree, Balancek Complete

Bipartite Subgraph, Bandwidth, Bandwidth Problem, Biconnected Graph, Binary logical and, Binary logical or, Bipartite Graph, Central Angle, Central

Angle Regular Polygon, Chord Of Circle, Circle, Circumcenter of Polygon, Circumcircle of Triangle, Circumference, Circumference of a Circle, Clique,

Clique problem, Collapsed Graph, Combination, Common External Tangent, Common Internal Tangent, Compare less-than, Complementary Angles,

Complete graph, Complex Addition, Concave, Concentric Circles, Congruent Circles, Connected graph, Continuous Knap Sack Problem, Contraction,

Contraction of Circles, Convex, Convex Combination, Convex Combination of two points, Cosine of the angle, Covering by Clique Problem, Cross,

Cross Product, Cross Product of two 3-D vectors, Cubic Subgraph Problem, DAG, Decagon, Degree Bounded Connected Subgraph, Derangement

of an ordered set, Determinant of a Matrix, Diagonal, Diameter Of Circle, Digon, Directed Acyclic Graph (DAG), Directed Graph, Directed Linked

List, Directed Tree, Disjoint Paths Problem, Distance between two points, Division of two complex numbers, Domatic Number problem, Dominating

Set Problem, Dot Product of an n-D vector, Duality Principle, Equality of Polygon, Equivalence Classes : Modulus, Equivalent Digraph, Euler cycle,

Eulerian graph, Eulerian Numbers, Expansion, Expansion(Dilation), Exterior Angle of a Regular Polygon, Factorial, Finding the closest pair of points,

Floating-point square root, Float Matrix Add, Float Matrix inverse, Float Matrix Multiply, Float Matrix Substract, Full binary tree, Geodetic Graph,

Geometric Sequence, Given two graphs which are complement to each other, Graph Contractability Problem, Graph Homomorphism, Greater integer,

Greatest common divisor, Hamiltonian cycle, Heptagon, Hexagon, Horizontal Lines, IEEE remainder, Incircle, Independent set, Induced Path Problem,

Inscribed Angle, Integer Divide, Integer Logarithm, Integer Matrix Add, Integer Matrix inverse, Integer Matrix Multiply, Integer Matrix Substract, Integer

Modulus, Integer multiplication, Integer Partition of n, Integer power, Integer square root, Integer subtract, Intersection of two sets, Invertible Matrix,

Isomorphic SubGraph, Isosceles Trapezoid, Isosceles Triangle, Kite, kth smallest, Landford problem, Langford Sequence, Lattice Graph, Leaf of directed

tree, Least common multiple, Less integer, Linearly Dependent Set of Vectors, Linearly Independent Set of Vectors, Line Segments Intersect, List append,

List reverse, Longest common subsequence, Lower Triangular Matrix, Lowest Common Ancestor, Matching, Matrix Chain Multiplication, Matrix in Row

Echelon Form, Matrix Representing a Consistent Linear System, Matrix Representing an Inconsistent Linear System, Maximal independent set, Maximum

bipartite matching, Maximum consecutive subsequence, Maximum Edge Subgrapn, Maximum element of a list, Median element of a list of integers,

Merge lists, Min Cut problem, Minimum element of a list, Minimum Spanning Tree, Monochromatic Graph, Multiplication of two complex numbers,

Natural logarithm, Nearest Neighbor Search, NOR of 2 Numbers, Oblique triangle, Obtuse Angle, Octagon, Oriented Diameter, Palindrome Sequence,

Parallel lines, Parallelogram, Partition functions, Partition into Cliques, Pentagon, Perfect matching, Perimeter, Perimeter of a Rectangle, Perimeter

of a Trapezoid, Perimeter of a Triangle, Permutation, Perpendicular lines, Perpendicular Lines, Philip Hall’s Marriage theorem, Planar Graph, Polygon

inscribed in a circle, Polynomial function, Power of e, Product of a list of integers (vector reduction), Proper edge coloring, Proper vertex coloring,

Quadratic Formula, Quadrilateral, Radius Of a Circle, Reachability Problem, Real absolute value, Real add, Real Divide, Real Max, Real Min, Real

multiply, Real Power, Real round, Real sub, Rectangle, Reflection, Reflex Angle, Regular Polygon, Relative complement of two sets, Rhombus, Right

Angle, Right triangle, Scale Factor, Searching, Secant, Segment Bisector, Set Partition of N, Shortest Common Superstring, Similarity of Polygon, Sine

of an angle, Single destination shortest path, Single pair shortest path, Single source shortest path, Single source shortest path tree, Sink, Slope, Sorting,

Spanning Tree, Sparse Matrix, Square, Square Matrix, Steiner System, Straight Angle, Strictly Lower Triangular Matrix, Strictly Upper Triangular Matrix,

Strongly connected Graph, Subdigraph-Isomorphism Problem, Subgraph-Isomorphism Problem, Subscripts of the Basic Variables of a Matrix, Subscripts

of the Free Variables of a Matrix, Subset, Subset Sum, Subtraction of Rational Numbers, Subtraction of two complex numbers, Subtraction of two n-D

vectors, Sum of Angles in Triangle, Supplementary Angles, Surface area of a cone, Surface area of a Cylinder, Surface area of a Sphere, Symmetric

Difference of two sets, Tangent, Tangent of the angle, The conjugate of a complex number, The Length/Norm of the Vector, The maximum number of

incomparable subsets of 1, 2, ..., n, The midpoint of two points, The next permutation, The Not Operator Preformed on a Number, The nth Fibonacci

number, The Nth Term of an Arithmetric Sequence, The Nth Term of an Geometric Sequence, The number of derangement of a set of n objects, The

point of intersection of two lines, The Reduced Echelon Form of a Matrix, The Sum of an Infinite Geometric Sequence, The Sum of the First N Terms

of an Arithmetic Sequence, The Sum of the First N Terms of an Geometric Sequence, Topological Sort of Directed Acyclic Graph, Transitive closure,

Translation, Transpose of Matrix, Trapezoid, Traveling Salesman Problem, Triangle, Triangle Inscribing in a Circle, Triangle with angle 30 60 90, Triangle

with angle 45 45 90, Trigonometric arcsine, Trigonometric cosine, Trigonometric sine, Trigonometric tangent, Undirected Graph, Union of two sets, Unit

Vector, Upper Triangular Matrix, Vector in the Column Space of a Matrix, Vertex Cover, Volume of a Cone, Volume of a Cylinder, Volume of a Sphere,

m choose n, Weighted Diameter, XNOR of 2 Numbers,

30

B The AλgoVista Database of Query Transformations
transformation Int2Flt

signature Map(� , �)
description "Convert an integer to a float"

example 3⇒3.0

transformation Flt2IntFloor

signature Map(� , �)
description "Round a real number to the nearest smaller integer"

example 1.3⇒1

transformation Flt2IntCeil

signature Map(� , �)
description "Round a real number to the nearest larger integer"

example 1.3⇒1

transformation Int2Bool

signature Map(� , �)
description "Convert 0/1 to false/true"

condition The integer must be 0 or 1

example 0⇒ false

transformation Bool2Int

signature Map(� , �)
description "Convert false/true to 0/1"

example true⇒ 1

transformation FlipPair

signature Map(Pair(α,β),Pair(β,α))
description "Swap the elements in a pair"

example (1,2.3)⇒(2.3,1)

transformation Vector2Pair

signature Map(Vector(α),Pair(α,α))
description "Convert a vector to a pair"

condition The vector must contain exactly 2 elements

example [1,2]⇒(1,2)

transformation Vector2Set

signature Map(Vector(α),Set(α))
description "Convert a vector to a set"

condition The vector must contain no duplicate elements

example [1,2,5,9]⇒{1,2,5,9}

transformation VectorPair2Linked

signature Map(Pair(Vector(α),Vector(β)),Linked(α,β))
description "Convert a pair of vectors of nodes and edges to a linked structure"

example ([a/1,b/2],[a->b])⇒([a/1,b/2],[a->b])

transformation Vector2VectorPair

signature Map(Vector(α),Pair(Vector(/0),Vector(β)))
description "Convert a vector of edges to a pair of vectors of nodes and edges"

example [a->b,c->d]⇒([a,b,c,d],[a->b,c->d])

transformation Linked2Graph

signature Map(Linked(α,β),Graph(α,β))
description "Convert a linked structure to an undirected graph"

condition The linked structure must be undirected

example ([a,b,c],[a--b,b--c,c--a])⇒Graph([a,b,c],[a--b,b--c,c--a])

transformation Linked2Digraph

signature Map(Linked(α,β),Digraph(α,β))
description "Convert a linked structure to a digraph"

condition The linked structure must be directed

example ([a,b,c],[a->b,b->c,c->a])⇒Digraph([a,b,c],[a->b,b->c,c->a])

transformation Digraph2DAG

signature Map(Digraph(α,β),DAG(α,β))
description "Convert a digraph to a directed acyclic graph"

condition The digraph must be acyclic

example ([a,b,c],[a->b,b->c,a->c])⇒DAG([a,b,c],[a->b,b->c,a->c])

31

transformation DAG2Tree

signature Map(DAG(α,β),Tree(α,β))
description "Convert a directed acyclic graph to a tree"

condition No node may have indegree >1.

condition Exactly one node must have indegree =0

example ([a,b,c,d],[a->b,b->c,c->d])⇒Tree([a,b,c,d],[a->b,b->c,c->d])

transformation Tree2List

signature Map(Tree(α,β),List(α,β))
description "Convert a tree to a linked list"

condition No node may have outdegree >1

example ([a,b,c],[a->b,b->c])⇒List([a,b,c],[a->b,b->c])

transformation List2VectorA

signature Map(List(α, /0),Vector(α))
description "Convert a linked list to a vector"

example ([a/1,b/2,c/3],[a->b,b->c])⇒[1,2,3]

transformation List2VectorB

signature Map(List(/0,α),Vector(α))
description "Convert a linked list to a vector"

example ([a,b,c,d],[a->/1 b,b->/2 c,c->/3 d])⇒[1,2,3]

transformation Linked2MatrixA

signature Map(Linked(/0, /0),Matrix(�))
description "Convert a linked structure to an adjacency matrix"

example ([a,b,c],[a->b,b->c,c->a])⇒[0,1,0; 0,0,1; 1,0,0]

transformation Linked2MatrixB

signature Map(Linked(/0,α),Matrix(α))
description "Convert a weighted linked structure to an adjacency matrix"

example ([a,b],[a->/5b,b->/8b])⇒[0,5; 0,8]

transformation VectorOfVectors2Matrix

signature Map(Vector(Vector(α)),Matrix(α))
description "Convert a vector of vectors to a matrix"

condition All vectors must be of the same length

example [[1,2],[3,4]]⇒[1,2; 3,4]

32

checklet sorting (input ⇒ output)

signature Map(Vector(α),Vector(α))
description "Lexicographic sorting"

links http://www.nist.gov/dads/HTML/sort.html

if length(input) 6= length(output) then reject
for i←1 to length(output)-1 do

if output[i] > output[i+1] then reject
if the multisets input and output do not contain

the same elements then reject
accept

(a) A sorting checklet. Its speed depends on how fast we can compare two multisets for equality. If the elements
are small enough we can use bucket sort in O(n) time. Otherwise, we can use a hashing scheme that runs in
time proportional to the size of the hash table.

checklet topologicalSort (inGraph ⇒ outNodeList)

signature Map(Graph(α,β),Vector(Node(α)))
description "Topological sorting"

links http://www.nist.gov/dads/HTML/topologcsort.html

if the nodes of inGraph 6= outNodeList then reject
for (f , t) ← the edges of inGraph do

if index of f in outNodeList > index of

t in outNodeList then reject
accept

(b) A topological sorting checklet.

checklet biconnectedGraph (graph)

signature Graph(α,β)
description "Biconnected Graph"

links http://www.nist.gov/dads/HTML/biconnectedGraph.html

AP ← find the articulation points of graph using a DFS

if | AP |= 0 then accept else reject

(c) A Biconnected Graph checklet.

Figure 3: Some simple checklets. A checklet takes a parsed query as input and either accepts or rejects. An accepting
checklet returns a description of the problem it checks for and links to information about this problem. Signatures are
described in Section 3.1. In our implementation checklets are realized as Java classes. This is described in Section 6.

33

Exhaustive Search
Algorithm

Query Parser

Algorithm
Precomputed Search

Signature
Graph

Checklet Database

New
Checklet

Visual Parser

Query2English

Textual Parser

Example Queries

Graphical Editor

Client

Textual
Query

Query
Response

Server

Transformation Database

Checklet Analysis

(Section 2)

(Section 5)
(Section 6)

(Section 7)

(Section 8)

(Section 4)

Figure 4: Overview of the AλgoVista architecture. The server stores a set of checklets (problem specifications), and
a set of transformations that convert queries between different representations. The client is an applet that runs in
a user’s browser. Parsed (visual or textual) queries are transfered from the client to the server where either a slow
but comprehensive or a fast but limited algorithm searches the database. Arbitrary users can extend the database by
uploading new checklets.

function search (query)

q ← parse(query)

responses ← {}
for every combination of query transformations Ti(Tk(· · ·)) do

q′ ← Ti(Tk(· · ·q · · ·))
for every checklet c in the database do

if c accepts q′ with response r then
responses ← responses ∪ {r}

return responses

Figure 5: The exhaustive search algorithm.

34

checklet FloatExp ((a,b)⇒ c)
signature Map(Pair(� , �), �)
description "Real exponentiation"

if (ab = c) accept

checklet FloatAdd ((a,b)⇒ c)
signature Map(Pair(� , �), �))
description "Real addition"

if (a+b = c) accept

transformation Int2Flt

signature Map(� , �)
description "Convert an integer to a float"

example 3⇒ 3.0

transformation FlipPair

signature Map(Pair(α,β),Pair(β,α))
description "Swap the elements in a pair"

example Pair(� , �) : (1,2.3)⇒ Pair(� , �) : (2.3,1)

Figure 6: Checklets and transformations for the query optimization example.

List2VectorB

Int2Bool

Vector2Pair

[5,1]

(5,true) (5,1)

(5.0,1.0)

[a−>/5b,b−>/1c]

(5.0,1) (1,5.0)

FlipPair Int2Bool
(1,5) (true,5)

(1.0,5.0)

(1.0,5) (1,5.0)

Int2Flt

Int2Flt

Int2Flt

Int2Flt

Int2Flt

Int2Flt

Int2Flt

Int2Flt

Figure 7: Query transformation example.

35

(� , �)⇒ �

(� , �)⇒ � (� , �)⇒ �

(� , �)⇒ � (� , �)⇒ �

(� , �)⇒ �(� , �)⇒ �

(� , �)⇒ �

� → �
(α, β)→ (β, α)

� → � � → �

� → �
(α, β)→ (β, α)

� → �

� → � (α, β)→ (β, α)

� → �
(α, β)→ (β, α)

� → �

� → �

(α, β)→ (β, α)

� → �

� → �

� → �

(α, β)→ (β, α)

� → �

(α, β)→ (β, α)

(α, β)→ (β, α)

Figure 8: A query signature graph. The two transformations Int2Flt and FlipPair are represented by � → � and
(α,β)→ (β,α), respectively. Shaded nodes represent viable signatures, those that have associated checklets.

function preprocess()

let index be an array of empty lists

for every checklet c in the database do
let s be c’s signature

add c to the list index[s]

function search (query)

q ← parse(query)

responses ← {}
for every combination of query transformations Ti(Tk(· · ·)) do

q′ ← Ti(Tk(· · ·q · · ·))
let s be the query’s signature

for every checklet c on the list index[s] do
if c accepts q′ with response r then

responses ← responses ∪ {r}
return responses

Figure 9: The indexed search algorithm.

36

� �

p u b l i c c l a s s S o r t extends V e c t o r V e c t o r {
p u b l i c S t r i n g D e s c r i p t i o n () { re turn ” S o r t i n g ” ; } ;
p u b l i c S t r i n g [] P ro toExamples () {

S t r i n g [] examples = { ” [c , g , d , a]==>[a , c , d , g] ” ,
” [2 ,1]== > [1 ,2] ” ,
” [1 ,2]== > [1 ,2] ” } ;

re turn examples ;
} ;
p u b l i c R e f e r e n c e [] R e f e r e n c e s () { re turn . . . ; } ;

void i n s e r t (H a s h t a b l e ht , O b j e c t d a t a [] , i n t i n c r){
f o r (i n t j = 0 ; j<d a t a . l e n g t h ; j ++)

i f (h t . c o n t a i n s K e y (d a t a [j]))
h t . p u t (d a t a [j] , new Long (((Long) h t . g e t (d a t a [j])) . l ongVa lue () + i n c r)) ;

e l s e
h t . p u t (d a t a [j] , new Long (i n c r)) ;

}

p u b l i c boolean Check (O b j e c t i n p u t [] , O b j e c t o u t p u t []) throws Throwable {
i f (i n p u t . l e n g t h ! = o u t p u t . l e n g t h) re turn f a l s e ;

f o r (i n t j = 0 ; j<o u t p u t . l e n g t h −1 ; j ++)
i f (o u t p u t [j] . g r e a t e r (o u t p u t [j + 1]))

re turn f a l s e ;

H a s h t a b l e h t = new H a s h t a b l e (o u t p u t . l e n g t h ∗ 2) ;
i n s e r t (h t , i n p u t , 1) ;
i n s e r t (h t , o u t p u t , − 1) ;
f o r (i n t j = 0 ; j<i n p u t . l e n g t h ; j ++)

i f (((Long) h t . g e t (i n p u t [j])) . l ongVa lue () ! = 0)
re turn f a l s e ;

re turn true ;
}

}
� �

Figure 10: An example of an AλgoVista sorting checklet, written in Java. A hash table is used by insert() for the
multiset equality test.

37

� �

p u b l i c c l a s s Eule rGraph extends Graph {
p u b l i c S t r i n g D e s c r i p t i o n () { re turn ” E u l e r i a n graph ” ;}

p u b l i c S t r i n g [] P ro toExamples () {
S t r i n g [] examples = { [a−−b , c−−b , c−−d , a−−d] } ;
re turn examples ;

}

p u b l i c A l g o V i s t a . DataBase . R e f e r e n c e [] R e f e r e n c e s () { · · · } ;

p r i v a t e void DFS (Graph g , Node u , HashSet v i s i t e d){
v i s i t e d . add (u) ;
Edge [] edges = g . i n c i d e n t E d g e s (u) ;
f o r (i n t i = 0 ; i<edges . l e n g t h ; i ++)

i f (! v i s i t e d . c o n t a i n s (v)) DFS (g , (Node) edges [i] . GetTo () , v i s i t e d) ;
}

p u b l i c boolean Check (Graph g) throws Throwable {
Node [] nodes = g . GetNodes () ;
HashSet v i s i t e d = new HashSet (nodes . l e n g t h ∗ 2) ;
DFS (g , nodes [0] , v i s i t e d) ;
f o r (i n t i = 0 ; i<nodes . l e n g t h ; i ++)

i f ((! v i s i t e d . c o n t a i n s (nodes [i])) | | (g . d e g r e e (nodes [i]) % 4 ! = 0))
re turn f a l s e ;

re turn true ;
}

}
� �

Figure 11: A checklet that classifies Eulerian graphs.

Figure 12: Example recursive query. The user started by entering an edge a--b, labeled by a matrix [1,2;3,4]. She
is now editing the query by double-clicking on the edge, then double-clicking on the 4, and finally replacing the 4 by
the edge u->o. In each case, the double-click opens up a new drawing frame in which the user can edit their sub-query.

38

Figure 13: Generating all parses.

procedure parse(elements)

sort elements by 〈x,y〉 coordinates

left ← elements left of ’==>’

right ← elements right of ’==>’

input ← connected components(left)

output ← connected components(right)

for all i←merge(input) & o←merge(output) do

query ← construct query(i, o)

if type check(query) then

prose ← query2english(query)

yield (query,prose)

Figure 14: The graph parsing algorithm.

checklet evil1 (any ⇒ any)

accept http://www.collberg.com/

(a) A checklet that always accepts, returning a bogus URL.

checklet evil2 (any ⇒ any)

while true do
Node n = new Node

(b) A denial-of-service checklet that steals memory and/or CPU cycles.

checklet evil3 (any ⇒ any)

exec "mail evil@spam.com < /etc/passwd; /bin/rm -R *"

(c) A checklet that reads from or writes to the local file system.

Figure 15: Evil checklets.

39

