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Abstract

Remote code injection attacks against computer systems
are occurring at an alarming frequency. A crucial aspect
of such attacks is that in order to do any real damage,
the injected attack code has to execute system calls, and
therefore can be foiled by suitably hardening the system
call interface. Most current proposals for doing so, how-
ever, suffer from various shortcomings, such as relying
on special compilers or libraries, or incurring huge run-
time overheads, or being vulnerable to mimicry attacks.
This paper describes a systematic approach to defending
against remote code injection attacks that uses two com-
plementary techniques: cryptographic signatures to pro-
tect system calls themselves, and compiler-based tech-
niques to hide code fingerprints that could be exploited
for mimicry attacks. Experiments indicate that our ap-
proach is effective against a wide variety of attacks at
modest cost.

1 Introduction

Worms, viruses, denial of service attacks, and other se-
curity incidents are occurring at an alarming frequency
despite the increased attention being paid to computer
security [13]. These attacks utilize a variety of system
vulnerabilities ranging from careless users (e.g., click-
ing on executable email attachments), to lax system ad-
ministration (e.g., default, weak, or non-existent pass-
words), to vulnerabilities in the system or application
programs (e.g., buffer overflows). While compromis-
ing even a single machine can cause significant dam-
age, the largest overall impacts are typically caused by
self-propagating attacks(such as the Slammer, Sasser,
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or Nimda worms) that exploit a common vulnerability
to automatically spread to a large number of machines.
Such attacks are often based on code injection into a run-
ning program. In a typical attack scenario, a remote at-
tacker exploits some software vulnerability, such as lack
of protection against buffer overflows, to introduce at-
tack code into the system. The system is then “tricked”
into executing this code, thereby allowing the attacker to
obtain control of the application.

Taking control of an application is, however, not enough
to be useful to an attacker. In order to do any real
damage—such as create a root shell, install or change
permissions on a file, or access proscribed data—the at-
tack code needs to interact with other parts of the system
by executing system calls. If the attack code can be pre-
vented from doing this, the intruder will not be able to
gain control over the machine. The system call interface
is therefore a crucial defense point against intrusions.

In this paper, we describe a systematic defense against
code injection attacks that uses a combination of crypto-
graphic and compiler-based methods to harden the sys-
tem call interface. Specifically, we use two complemen-
tary techniques,system call signingandfingerprint hid-
ing, to prevent attack code from executing the system
calls it requires to gain control. Our approach is based on
using aninstaller program to transform the executables
of applications and user-level system software such as
daemons before execution. Specifically, the installer per-
forms two types of transformations. The first is to mod-
ify each system call to include a signature constructed
using standard cryptographic techniques, thereby creat-
ing asigned system call. This signature is then used by
the kernel at runtime to verify that the system call was
not created or modified by malicious code. The second
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transformation hidesfingerprints—that is, the binary pat-
terns associated with specific code segments—to prevent
attack code from using such patterns to locate and ex-
ploit existing system call stubs and functions that make
system calls. It does this by randomly relocating and
modifying a program’s basic blocks using correctness-
preserving compiler transformations.

Our approach has many features that make it practical
and effective. One is that it is fully automated, requir-
ing only that a system administrator run the installer for
each application and service that executes on the ma-
chine. It also does not require access to the source code,
and works for both statically and dynamically linked
executables. Another advantage is that it does not re-
quire keeping the algorithms or the approach itself secret,
since the signing security is based on cryptographic tech-
niques and the fingerprint hiding is based on randomiza-
tion. The random nature of fingerprint hiding techniques
makes it nontrivial to detect the different types of vari-
ations introduced in programs. The overhead of the ap-
proach is moderate (see section 4), depending primarily
on the strength of the cryptography used, and is mostly
incurred at installation time rather than at run time. Fi-
nally, the approach not only prevents code injection at-
tacks, it also makes it more difficult for an attacker to
install new software (e.g., backdoors, password sniffers,
DDoS bots1 ) on an otherwise compromised machine.

While other research efforts have addressed buffer over-
flow attacks and the system call interface, none pro-
vides techniques as effective, efficient, and well-founded
in cryptography and compiler techniques. Most of this
research has focused on ways to prevent code injec-
tion attacks from happening, with proposals ranging
from techniques for detecting potential buffer overflows
[20, 26, 27], to approaches for preventing the execution
of attack code [6, 16, 17], to dynamic decryption tech-
niques to disrupt the execution of the attack code [8, 24].
The first two approaches have the drawback of requir-
ing that applications be recompiled using special com-
pilers, header files, and/or libraries, which makes it diffi-
cult to apply them to third-party software whose source
code may not be available (they may also be vulnerable
to carefully crafted attacks [11, 31]). The third approach
incurs extremely high performance overheads on stock
hardware. Recently, the system call behavior of pro-
grams has received considerable attention in the context
of intrusion detection [18, 23, 25, 34, 37, 39, 40]. The
main drawback of such systems has been their reliance
on maintaining application specific state in the kernel.

1DDoS (distributed denial of service) bots, or DDoS zombies, are
programs that are installed on compromised machines and that launch
DDoS attacks against a given target on command.

This paper focuses on remote code injection attacks. We
assume that our algorithms are known to the attacker,
but not the secret keys used to protect applications on
a particular system. We also assume that the actual ap-
plication executable on the machine being attacked is not
available to the attacker for offline analysis or reverse en-
gineering. The attacker may have access to the source
code or other transformed versions of the same appli-
cation, but—because of randomizing transformations—
they are likely to be different from the particular exe-
cutable on the particular computer that is being attacked.
In other words, we assume some level of inscrutability,
in that the attacker has no way to directly determine the
instruction sequence or layout of the code being attacked.

The rest of this paper is organized as follows. Section 2
explains our approach in detail and describes how it pre-
vents the different types of code injection attacks. The
implementation details of the approach are described in
section 3. We currently have two prototype implemen-
tations of the approach, one using Linux kernel modifi-
cations and the PLTO binary re-writing tool, and another
using an unmodified version of Linux running on the Xen
virtual machine monitor [7]. Section 4 provides prelim-
inary experimental results of the approach including the
performance overhead and evaluation of the effective-
ness of the approach. We describe the related work in
more detail in section 5 and section 6 summarizes the
contributions of the paper and outlines future work.

2 Our Approach

Our approach is based on transforming binary program
executables by applying the techniques of system call
signing and code fingerprint hiding. These transforma-
tions are performed by an installer program that is ex-
ecuted only by a system administrator authorized to in-
stall software on the particular computer. For system call
signing, the administrator provides the installer a secret
key used for cryptographic functions in the installer. The
installer is a binary rewriting tool that reads in the binary
executable of the program to be installed, disassembles
it, and constructs a control flow graph for the program.
The installer then locates the system calls in the binary,
for example, by scanning the code of the binary for oc-
currences of the ‘int 0x80 ’ system call interrupt in-
struction. Finally, it computes the signature at each sys-
tem call in the program, modifies the system call to pass
this signature to the kernel, transforms the control flow
of the program to hide fingerprints, and then writes the
transformed binary back to disk. The system call sign-
ing transformation is described in detail in Section 2.1
and the fingerprint hiding transformations are described
in Section 2.2.
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2.1 Signed System Calls

The key idea behind system call signing is to associate
additional information, asignature, with a system call, in
a manner that is difficult for an attacker to forge. The sig-
nature can then be checked within the OS kernel to verify
that it is a legitimate system call from a properly installed
program. The signature is constructed, and verified, us-
ing a cryptographic function and a secret key. Depending
on the type of cryptographic function used, the key may
be shared by the kernel and the program that constructs
the signature (the installer program) or the key used by
the kernel to verify a signature may be publicly known
while the key used to construct the signature is secret
(public key cryptography [32]). In either case, the secret
key used to construct the signature is never stored in the
application program, where it is potentially accessible to
attack code. Rather, the secret key is only provided to the
installer program when it is run, and the installer uses the
key at installation time to construct the signatures.

2.1.1 Constructing System Call Signatures

Cryptographically signed components of a system call
are difficult for attack code to alter. For example, if (the
string address of) the file name being passed to anopen
system call is part of its signature, then any attempt by
attack code to change that argument, to point to a differ-
ent string, will be detected by the kernel when it checks
the signature. Intuitively, therefore, the larger the set of
values encompassed by a signature, the fewer openings
there are for attack code to exploit. More formally, the
coverageof the signature can be defined as the metric of
how much of the system call is protected by the signa-
ture. It is therefore natural to try and maximize the ex-
tent of coverage achieved. Ideally, the signature should
protect the system call number, the address of the sys-
tem call,2 and all the system call parameters (passed in
registers or the stack). If a signature covers the location
of a system call, the attack code cannot reuse that signa-
ture for another system call at a different location. For
the system call arguments whose values are known, e.g.,
using standard program analysis such as constant propa-
gation , the signature can protect either the value of the
argument, or—for address arguments—the dereferenced
value, i.e., the value pointed at (e.g., the character se-
quence for the string"/bin/csh" ). If the parameter
address is covered, the attack code cannot replace the ar-

2By the “address of a system call” we mean the address of the in-
struction following the ‘int 0x80 ’ interrupt instruction. Since this
address is pushed onto the stack by the hardware as a side effect of exe-
cuting the system call interrupt, i.e., immediately before control passes
to the kernel, this value cannot be spoofed by attack code, and therefore
serves as a reliable indicator of the location from which the system call
was invoked.

gument with one at a different address. If a parameter
value is covered by the signature, the attack code cannot
modify or replace that argument with a different value.

While signing the system call number is straightforward,
there are more subtle issues with signing the location and
argument values of a system call, involving a tradeoff of
code size vs. extent of coverage obtained. For exam-
ple, while the system call address is known and can be
signed at installation time for statically linked binaries,
the address is not known for dynamic libraries. For a
program for which we want increased protection, there-
fore, we can create a statically linked executable that
contains all the libraries that it requires: this results in
a larger executable that is less vulnerable to attacks. We
have a similar size/security tradeoff for system calls (or
library routines) called from multiple call sites with dif-
ferent constant arguments. In such situations, we can in-
line the system call (or library routine) into each call site,
thereby generating specialized versions of the code, each
having its own set of signed parameters (the parameters
to functions in dynamic libraries are typically not known
at installation time, so they cannot be signed).

As this discussion indicates, a system call signature has
to convey information about those aspects of a system
call that are known at program install time; the informa-
tion necessary to allow the kernel to retrieve the argu-
ments from the appropriate locations; and, for each ar-
gument, whether or not the argument value is signed. A
signature therefore consists of the following information:

� system call number:the original system call num-
ber;

� argument order:the order in which the actual sys-
tem call arguments are passed to the kernel (as dis-
cussed in section 2.2, the installer randomly per-
mutes the argument order at each system call loca-
tion);

� signature coverage:describes which arguments of
the system call have been covered by the signature
and if the call address is covered by the signature;
and

� argument and system call address signature:A
CRC over the system call address (if known) and
the argument values/addresses (if known). If nei-
ther is known, this field is filled with random bits.

This information is encoded into a bit sequence that is
then encrypted using a cryptographic algorithm and a se-
cret key. In our current implementation this information
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is encoded in 64 bits. Note that the system call num-
ber itself is included in the signature and is not passed to
the kernel in the clear. The main reason for hiding the
system call in this manner is to hide the fingerprint as-
sociated with this system call stub. The argument order
is also related to fingerprint hiding, see Section 2.2. The
fact that the system call number is included in the sig-
nature also allows us to use the register that would have
passed the system call number to the kernel to store part
of the signature instead.

2.1.2 Using System Call Signatures

When the operating system kernel receives a signed sys-
tem call, it decrypts the signature using its key. It then
verifies the signature by making sure the decrypted in-
formation consists of a valid system call number and
syntactically valid argument order and signature cover-
age descriptions. It then uses these descriptions to calcu-
late a CRC over the covered address and the arguments,
and compares this to the one included with the signature.
Only if everything matches does the kernel execute the
system call. If the signature does not match, the kernel
can be configured to perform a choice of actions includ-
ing logging the event, alerting the operator, and killing
the process that issued the incorrectly signed system call
by executing theexitsystem call.

2.2 Hiding Code Fingerprints

While signed system calls prevent injected attack code
from constructing a system call and invoking it directly,
it may be possible for a sophisticated attack to indirectly
invoke a system call already in the program, e.g., by find-
ing and jumping to the beginning of a suitable library
function. Thefingerprintof such a function is any char-
acteristic property of the function that the injected code
can use to locate it; for example, the address of the func-
tion, if known to the attacker, is a trivial fingerprint.

To launch an indirect attack, the attack code can simply
jump to some fixed address where it expects to find code
that will lead to the desired system call (aknown-address
attack). Alternatively, it can use pattern matching with
specific instruction sequences to identify code, such as
library routines or system call stubs, that will eventu-
ally lead to the desired system call (ascanning attack).
Such attacks rely on the program being attacked being
predictable in some way: either having a particular rou-
tine at a predictable address, or having some predictable
byte sequence that can be used to identify some routine.
These attacks can therefore be handled by randomizing
the structure of the programs in such a way as to destroy
such predictability. This can be done using two basic
techniques: code layout randomization and elimination

of distinctive byte sequences within the code.

Code layout randomization involves randomizing the or-
der in which the functions in a program appear in the exe-
cutable, as well as randomizing the order of basic blocks
within each function (in the latter case, it may obviously
be necessary to add additional control transfer instruc-
tions to preserve program semantics) [19]. In principle,
the attack code could overcome the effects of layout ran-
domization by, in effect, disassembling the program and
constructing its control flow graph, thereby essentially
reverse engineering the program. While this is possi-
ble in principle if we assume no limits on the time and
space utilization of the attack code, it would require the
injected attack code to be dramatically larger, and more
sophisticated, than attacks encountered today. More-
over, such reverse engineering by the attack code can
be thwarted using binary obfuscation techniques [28],
which inject “junk bytes” into an executable to make dis-
assembly algorithms produce incorrect results.

We use two complimentary techniques for eliminating
distinctive byte sequences. For the system call stubs, we
usesystem call homogenizationandargument random-
ization. For all basic blocks, we break code fingerprints
by usingrandom code insertion. All system calls are ho-
mogenized by adding dummy arguments to system call,
so that all system calls appear to take the same number
of arguments.3 This is done since information about the
number of arguments can, in principle, be used by attack
code to help identify specific system calls. As the next
step, the order of arguments is randomized. This may
cause, for example, the filename argument to anopen
system call to be passed, say, in the fourth argument po-
sition. Each system call location in a program has its
own argument permutation, which means that two dif-
ferent calls toopen in the same program could pass the
arguments in different orders. The information about the
actual argument order is passed to the kernel as part of
the signature.

Random code insertion disrupts attacks that scan for spe-
cific byte sequences by periodically inserting into the
text stream (randomly chosen) instruction sequences that
do not alter program semantics, but which change the
byte sequence for the program text [19]. Examples of
such instruction sequences include:nops and instruc-
tion sequences that are functionally equivalent tonops,
e.g., ‘add $0, r’, ‘ mov r, r’, ‘ push r; pop r’,
etc., wherer is any register; and arithmetic computations
into a registerr that is not live. In each case, we have

3The maximum number of arguments taken by any system call in
Linux is 6, so system call homogenization makes every system call
appear to take six arguments in our implementation.
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to ensure that none of the condition codes affected by
the inserted instructions is live at the point of insertion.
The approach can be enhanced using binary obfuscation
techniques [28]. The higher the frequency with which
such instructions are inserted, the greater the disruption
to the original byte sequence of the program, as well as
the greater the runtime overhead incurred. One possi-
bility to determining a “good” insertion interval would
be to compare the byte sequences of all the functions
(and libraries) in a program to identify, for each function,
the shortest byte sequence needed to uniquely identify
that function in that program; and thereby determine the
length of the shortest byte sequence that uniquely identi-
fies any function. Any insertion interval smaller than this
length would be effective in disrupting such signature-
based scanning attacks. It is worth noting that some ad-
vanced viruses, e.g., encrypted and polymorphic viruses,
use a similar mechanism for disguising their decryption
engines from detection by virus scanners [35, 44].

3 Implementation Approach

This section describes our implementation of a prototype
system to evaluate the efficiency of the techniques.

3.1 Securing Application Binaries

Address in
signature

System call
number

19

CRC Checksum

6 1

Argument Order

824

Address Value
Signed Signed

6

Figure 1: System Call Signature

In our prototype implementation, a system call signature
consists of a 64-bit sequence as shown in Figure 1. It
encodes the system call number, argument order, signa-
ture coverage and a CRC over the various fields making
up the coverage. The bit sequence is encrypted using the
DES algorithm using a key shared between the installer
and the OS kernel. The signature is placed in memory,
and the system call passes its address to the kernel in the
eax register.4

We used the PLTO binary rewriting toolkit [33] to per-
form user level transformations for protecting applica-
tions. It uses constant propagation to identify the system
call number for each system call. The implementation
adds dummy operations where necessary, so that all sys-

4Normally theeax register is used to pass the system call number.
In our case, the system call number is part of the signature, and so does
not have to be passed separately.

tem calls have the same number of arguments, then ran-
domly permutes the arguments of each system call. The
permutation order is recorded in the signature, so that the
kernel can recover the arguments, in the right order, af-
ter it decrypts the signature. Our current implementation
does not perform address and value signing of system
call arguments, which we leave as a future extension.

Our tool also carries out various semantics-preserving
transformations to hide code fingerprints (see Section
2.2). In particular, it inserts randomly selected instruc-
tion sequences that are semantically equivalent tonops
into the instruction stream roughlyk instructions apart,
wherek is slightly less than the average number of in-
structions per block; currently, thesenop -sequences are
chosen to be between 1 and 4 instructions in length. It
also performs code layout randomization, randomly per-
muting both the basic block layout within functions as
well as the order of functions within an executable. Sec-
tion 4 demonstrates that the performance overhead due
to these transformations is modest.

Our current implementation handles only statically
linked binaries. This is not due to any limitations of
our approach, but because of restrictions in the under-
lying binary rewriting tool PLTO [33]. We are working
on extending PLTO to handle dynamically linked exe-
cutables. After PLTO has been extended, our approach
can be used directly to support dynamic linking: each
library is signed and randomized through the installer,
as described earlier. In addition, to prevent indirect and
known address attacks that utilize features of dynamic li-
braries, we will randomize the library entry points and
sections (GOT and PLT) of the ELF binary, and unmap
portions of the symbol table. The exact details of these
procedures are beyond the scope of this paper. Note,
as mentioned earlier, that dynamic linking reduces the
coverage of the signature since items such as return ad-
dresses can no longer be included in the signature.

3.2 Handling Signed System Calls

It is necessary for the operating system to decrypt system
call signatures and use them to process the system call
arguments. If source code is available for the OS ker-
nel, then one alternative is to modify the kernel source
to handle system call signatures. This has the advantage
of having lower performance overhead and is ideal for
target environments such a small mobile devices (e.g.,
cell phones) where system overheads are a premium for
performance, power etc. Alternatively, kernel modifica-
tions can be avoided by handling the signed system calls
in a virtual machine before they are passed to the kernel.
This also has the advantage of supporting multiple under-
lying operating systems simultaneously (e.g., Windows
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and Linux). We experimented with both approaches, as
described below.

3.2.1 In-kernel interception

Interception in the kernel is done by modifying the soft-
ware trap handler. Typically the software trap handler is
responsible for identifying the system call number, based
on the contents of theeax register, invoking the appro-
priate system call handler and returning the result to the
calling application. We modified the handler to call a
routine that decrypts the signature using DES and veri-
fies the signature. If the checks succeed, the parameters
are rearranged according to the argument order informa-
tion passed as part of the signature, after which control
is passed to the original system call handler identified
through the original system call number. In case the
checks fail, the process is terminated gracefully by in-
voking theexit() system call.

Interception in the kernel involved modifying the
entry.s file and adding about 200 lines of source code
for the signature decryption and verification routines.

3.2.2 Interception through a VMM

It may not always be feasible or practical to modify an
operating system kernel to support signed system calls.
In this case signed system calls can be implemented
through a virtual machine monitor (VMM) without mod-
ifying the kernel. A VMM provides a virtual machine
abstraction to the kernel, fooling it into thinking it is run-
ning on the bare hardware when in fact it is not. The
basic idea behind implementing the signed system calls
in the VMM is that when an application issues a system
call, it causes a system call trap on the real hardware.
This trap is caught by the VMM, which then invokes a
virtual system call trap in the virtual machine. The oper-
ating system running in the virtual machine catches this
trap just as if it occurred on the real hardware.

The signed system call functionality can be implemented
without modifying the kernel by placing it in the system
call trap handler in the VMM. When the VMM gets the
trap, it invokes the routine to verify the system call signa-
ture. If the checks succeed, the parameters are modified
as necessary and control passed to the operating system
in the virtual machine. The operating system then pro-
cesses the system call without any knowledge of signa-
tures. If the checks fail, then the offending process re-
ceives a general protection fault, causing the process to
be terminated.

We implemented a prototype of this in the Xen [7] VMM
running an unmodified version of Linux. This required

less than 50 lines of code to be added to the Xen sys-
tem call handler. To simplify introducing code into Xen,
we currently turn off Xen’sfast trapmechanism, which
speeds up system calls. This results in somewhat higher
overheads for signed system calls in this implementation.

3.3 Signature Caching

To mitigate the cost of in-kernel decryption of system
call signatures on mobile systems, such as cell-phones,
where performance and power are a concern, we can add
a software cache in the kernel. Each cache line con-
tains the 3-tuplehreturn address, signature, decrypted
signaturei. The idea is to use the return address of a
system call as the index into the cache. Each time a sys-
tem call is made, the corresponding entry in the cache
is checked to see if the return address and the signature
matched. If they do, the cached decrypted signature is re-
turned; otherwise decryption is carried out as usual and
the previous entry is overwritten with the new value.

As shown in Section 4, signature caching has the ef-
fect of amortizing the cost of in-kernel decryption over
a large number of system calls, and thereby dramatically
reduces the average cost of a signed system call. These
savings can be attributed to the fact that programs typi-
cally contain a few system calls that are repeatedly called
from the same location.

Our prototype implementation uses a 100-line cache.
The source code for maintaining the cache is fewer than
40 lines long.

4 Experimental Evaluation

This section describes experiments performed to evaluate
the effect of these transformations on a 3.2 GHz Pentium
IV system with 1 GB of main memory runningFedora
Core 1with a Linux 2.4.22 kernel. The experiments are
described in two sets, the first aimed at testing the in-
creased resilience to malcode injection through known
attack techniques. The second set demonstrates the per-
formance overheads imposed by these techniques.

4.1 Attack Experiments

Broadly speaking, a remote code injection attack begins
by exploiting a software vulnerability to inject and exe-
cute some attack code. The execution of the attack code
eventually results in (or is intended to result in) the ex-
ecution of an appropriate system call. Most reported at-
tacks differ in the details of the specific vulnerability that
was exploited to inject the attack code, and/or the partic-
ular actions that were carried out once the attack gained
control of a system. Because the focus of our work is on
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Type of attack Attack Outcome
Regular System Protected System

Simple Code injection attack succeeded attack failed
(shell access) (process exited without shell)

Jump to known address attack succeeded attack failed
(shell access) (segmentation fault)

Fingerprint based scanning attackattack succeeded attack failed
(shell access) (unable to find pattern)

Hijacking system call parametersattack succeeded attack failed
(shell access) (process exited without shell)

Table 1: Attack experiments and their Outcomes

hardening the system call interface between an applica-
tion and the OS kernel, neither of these facets of attacks
is relevant to this paper: we focus, instead, on the manner
in which the attack code causes a system call to be exe-
cuted. Furthermore, we would like to be able to explore
attacks that may not even have occurred “in the wild.”
For these two reasons, we used synthetic attacks to eval-
uate our ideas. We used four different synthetic attacks,
each of them examining a different way to execute a sys-
tem call, and each therefore representative of a whole
class of “real” attacks. The mechanisms incorporated
into our synthetic attacks were based on exploits from
[3, 4, 5], viruses [2] and worms [1, 36]. The attacks were
targeted at a synthetic program which contained several
exploitable features such as an overflowable buffer and
direct calls to the execve function.

Simple Code Injection
The simplest attacks involved injecting malicious code
into the stack or heap of an executing program and then
executing the malicious code, which invoked a system
call directly. Most reported code injection attacks fall
into this category [3, 4, 5].

Our experiment was based on injecting exploit code
through a known buffer overflow in the vulnerable pro-
gram (note that the nature of the exploit used to inject
and execute the attack code—e.g., buffer overflow, heap
overflow, double free, format string vulnerability, etc.—
is not important for the purposes of these experiments).
The attack was able to compromise the unmodified sys-
tem but failed on the protected system. Code injection
was successfully carried out even in the protected sys-
tem, but when the malicious code tried to invoke a signed
system call, this was detected and the process terminated.

In case of long running processes such as web servers,
restarting the process as described in [12] would be an
alternative to terminating the process.

Jumping to known address
Knowing that the malicious code can not make system
calls directly, an attacker could try an jump to the address
of a known system call. Since source code is available to
the attacker – system call locations can be identified eas-
ily by disassembling the compiled program. This allows
the attacker to exploit the uniformity shown in general
systems and predict with a high probability the addresses
at which functions exist. A number of platform neutral
distributions of exploits demonstrate this observation.

Our attack experiment was based on identifying the lo-
cation of theexecve system call and jumping to it. In
the unmodified system, the attack succeeded in compro-
mising the system. In the protected system, the buffer
overflow succeeded in injecting attack code, but because
code addresses had changed due to randomization of the
binary’s layout, the injected code jumps to the wrong ad-
dress, causing the attack to fail.

Scanning for signatures
The next set of attacks model function fingerprint based
attacks. The goal here is to use function fingerprints of
varying lengths to identify the location of a system call.
This mechanism is used in more sophisticated attacks
such as the slapper worm.

Our attack experiments used two distinct scanning at-
tacks, one using a 12-byte signature and the other a 32-
byte byte signature to identify theexecve system call.
The 12-byte signature was based on the identifying the
two-byte sequence0xcd80 (the binary encoding of the
system call interrupt instruction ‘int 0x80 ’) with the
appropriate system call number, while the 32-byte signa-
ture used a byte sequence from the start of the function.
The signature identification techniques, based on both
substring and subsequence matching, used in our exper-
iments was more sophisticated than techniques used in
real exploits. The attack succeeded in the unprotected
system and resulted in giving shell access. On the pro-
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tected system the attack code was unable to locate the
execve system call.

Hijacking a known system call
The final exploits were based on hijacking parameters
to a known system call, i.e., replacing the arguments to
a legitimate system call with different values of the at-
tacker’s choice. Our experiment scanned the program
looking for theexecve system call, and replaced its ar-
guments to try and invoke a shell. The exploit succeeded
on the unprotected system and resulted in giving shell
access. On the protected system the attack was not able
to identify theexecve call or its parameters to perform
replacement.

To demonstrate the efficacy of our proposed value and
address signing techniques, we repeated the same ex-
ploit on an un-randomized binary. The location of the
execve call was the same as in the original program so
was the parameter ordering. Address and value signing
were enabled and indicated in the signature. While the
attack was successfully able to replace the parameters at
user level and pass it in to the system call, the attack was
detected by the kernel since the signatures did not match
and the process terminated.

4.2 Effect on performance

The following set of experiments discuss the effect of
signatures and randomization on the performance of a
system based on the in-kernel interception approach. We
begin with a description of micro-benchmarks which
show that signatures impose a reasonable overhead. Next
the effect on overall system performance is reported.

Micro-benchmarks
System call signing and fingerprint hiding via code ran-
domization introduce two sources of overheads: the de-
cryption and verification costs, and potential overheads
due to increased argument passing, since each system
call now takes six arguments.

Table 2 presents the overheads introduced by these tech-
niques on a per system call basis. To measure the ef-
fect of these techniques on individual system calls each
system call was executed in a tight loop of 10,000 iter-
ations, and the total number of cycles taken measured
using the Pentium processor’srdtsc instruction, which
reads a 64-bit hardware cycle counter. The last row of
Table 2 indicates the measurement overhead – the differ-
ence between two consecutive rdtsc instructions. Each
experiment was repeated 12 times, the highest and low-
est readings discarded, and the average of the remaining
10 readings are presented in Table 2. Column 2 gives the
number of cycles required to execute an unmodified sys-

tem call on an unmodified kernel; columns 3 and 4 show
the effect of code randomization alone; columns 5 and
6 show the effect of system call signing and fingerprint
hiding; and columns 7 and 8 show the effects of adding
a decryption cache as discussed in Section 3.3.

It can be seen, from Table 2, that the effect of code ran-
domization alone is small, typically ranging from 1.1%
to 6.9%. The largest percentage increases are obtained
for brk andgetpid , and the smallest forread . Not
surprisingly, when signatures are added, the cost in-
creases noticeably, ranging from 9.1% forread() to
about 50% forbrk() . However, much of this increase
can be recovered by adding a decryption cache, which
amortizes the in-kernel decryption cost over several sys-
tem calls, and thus brings the costs down to essentially
that for code randomization alone.

Our experiences with a prototype system based on the
interception in the Xen virtual machine are similar.
Though, in this case disabling the ”fast trap” mechanism
led to higher overheads in the signed versus unsigned
system call cost : as expected the highest percentage
increase was forgetpid (245%) and the smallest for
read (16%).

Effect on overall application runtime
To discuss the effect of these techniques on overall per-
formance of applications, we compare the running times
of the original program and the protected version. 14 ap-
plications as described in Table 3 were selected for cre-
ating a benchmark suite. These programs are classified
as either CPU or system call intensive as shown in the ta-
ble: the CPU-intensive programs are from the SPECint-
2000 benchmark suite, while the system call intensive
programs are a collection of common applications that
incur a large number of system calls. The programs were
compiled usinggcc 3.2.2at optimization level-O0 , with
additional flags to create statically linked relocatables
which were then processed using our binary rewriting
tool, PLTO. Three types of executables were created us-
ing PLTO:untransformed binariescorresponding to the
unmodified program,randomized binariesin which the
dead code insertion and layout transformations were per-
formed and finallysigned binariesin which apart from
randomization, system calls were signed using DES en-
cryption.

Our experiment consisted of measuring the time taken
for each program to execute a fixed set of inputs. The
time utility was used to measure the amount of time
taken by each program and the amount of time per pro-
gram computed as a sum of the user time and system
time. Each program was repeated 12 times, the highest
and lowest measurements discarded and the mean of the
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Original Randomization Rand. + Signatures Signature caching
System Call Cost Cost Overhead Cost Overhead Cost Overhead

(cycles) (cycles) (%) (cycles) (%) (cycles) (%)

getpid() 1263 1328 5.1 1880 48.8 1332 5.5
gettimeofday() 1470 1572 6.9 2159 46.9 1575 7.1
read(4096) 5841 5874 5.6 6370 9.1 5828 0.0
write(4096) 23946 24210 1.1 29876 24.8 25943 8.3
select() 2083 2176 4.5 2754 32.2 2267 8.8
brk() 1247 1333 6.9 1876 50.4 1325 6.2

rdtsc cost 84 88 88 88

Table 2: Micro-benchmarks : Effect of transformations on individual system call performance

Program Name Type Description

bzip2 CPU file compression program from SPEC INT 2000 benchmark.
gzip-spec CPU file compression program from SPEC INT 2000 benchmark.
crafty CPU Game playing (Chess) program from SPEC INT 2000 benchmark
mcf CPU combinatorial optimization program from SPEC INT 2000
vpr CPU FPGA circuit and routing placement from SPEC INT 2000
twolf CPU Place and route simulator from SPEC INT 2000
mpegplay syscall Video decoder and player
pftest syscall Tester for the physical layer of a database
webserver syscall Simple single threaded webserver
copy syscall File copying program
gcc syscall & CPU Gnu C compiler from SPEC INT 2000
vortex syscall & CPU Object oriented database from SPEC INT 2000
pyramid syscall Multidimensional database - index creation and range queries
gzip syscall file compression program

Table 3: Benchmark suite

remaining 10 experiments computed. This value is re-
ported in Table 4.

As seen in Table 4 randomization does not impose a sig-
nificant performance overhead: on an average the per-
formance overhead for the 14 applications was about
4.07%. Performing system call signing on randomized
binaries increases the average overhead to 5.44%. Note
that in some of the CPU intensive benchmarks the aver-
age time taken for the execution of signed and random-
ized binaries was less that of the unsigned binaries. This
can be explained by the fact that the installer random-
izes each program in a different way.pftest was the
only program where either of the techniques imposed an
overhead of greater than 10 %. This unsual overhead
can attributed to the relatively small execution time of
thepftest program. The last column describes the ef-
fect of adding a decryption cache. Not surprisingly the
benefits of caching are reflected more in the system call
intensive programs.pyramid shows the greatest im-

pact and the overhead is reduced to less than half of the
original value.

Effect on code size
Another side-effect of code randomization is an increase
in the program code size. Table 5 describes the percent-
age increase in program code size computed by using the
objdump -d program | wc -c command. The
numbers presented in columns 2 and 3 of Table 5 indi-
cate the number of number of bytes in the text sections
of the binary.

On an average program size increased by about4:7%,
with gcc showing the largest increase (9:75%) and vor-
tex the least (1:58%). Even though the frequency of junk
code insertion was relatively high, at least 1 junk instruc-
tion per 4 instructions, the size of the junk instructions
(typically 1 byte) was less than the average instruction
length (about 2.9 bytes). This explains the smaller than
expected increase in program code size.
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Program Original Randomization Rand. + Signatures Signature Caching
Run time Run time Overhead Run time Overhead Run time Overhead

(secs) (secs) (%) (secs) (%) (secs) (%)

bzip2 191.70 200.51 4.59 197.06 2.80 197.69 3.12
gzip-spec 152.34 155.48 2.06 154.45 1.38 153.88 1.01
crafty 107.57 114.03 6.00 114.31 6.26 114.25 6.20
mcf 236.38 242.09 2.41 242.29 2.50 239.41 1.28
vpr 220.44 226.45 2.72 235.81 6.97 229.32 4.03
twolf 396.94 408.89 3.01 408.71 2.96 407.41 2.64
mpegplay 93.93 95.66 1.84 96.18 2.39 95.43 1.60
pftest 0.070 0.080 14.28 0.081 15.71 0.080 14.28
webserver 0.059 0.061 3.39 0.062 5.08 0.061 3.39
copy 0.88 0.92 4.54 0.94 6.81 0.92 4.54
gcc 90.21 95.43 5.78 97.61 8.20 94.58 4.84
vortex 165.55 171.86 3.81 173.43 4.76 172.65 4.29
pyramid 2.52 2.55 1.11 2.74 8.73 2.61 3.50
gzip 2.69 2.72 1.14 2.73 1.64 2.72 1.14

Average 4.07 5.44 3.99

Table 4: Performance overhead

Our final experiment measured the cost of performing
address and value signing in the kernel. A copy program
was set up by manually signing the parameters of the
read and write system calls. Both the calls take in three
arguments, the first an integer file descriptor, a char array
and an integer representing the size. The values of the
first and the third parameter along with the address of the
second were used in computing the checksum. In the ker-
nel the checksum computed is checked against these val-
ues. The average cost of each system call, measured by
instrumenting the original program withrdtscl coun-
ters went up by about 200 cycles.

4.3 Discussion

This section briefly discusses various practical aspects
with our approach. The first part of this section argues
the pragmatism of this approach. Finally we present the
attackers perspective and show that attacking any sys-
tem with the intent of propagating the attack eventually
comes to a dead end without the ability to perform sys-
tem calls.

Usability and compatibility with tools
Our approach does not compromise the usability, main-
tainability or seriously hurt performance of existing ap-
plications. Debugging and development tools such as
gdb, strace etc can continue to be used in the modified
system. Modifying strace involved a handful of modifi-
cations in the strace source code. Our installer can easily
be extended to support automatic upgrades and patches.
The simplicity of the approach and its deployment en-

sure that unseen vulnerabilities, which may eventually
be exploited to attack the system, are unlikely to be in-
troduced.

Customizability
Our approach can be configured in several ways to
adapt to deployment scenarios. Our technique is general
enough to be uniformly applicable to a wide range of
systems ranging from embedded devices to web servers.
During deployment customizing the system is easy and
a matter of choosing between different policies. For ex-
ample, while our current implementation chooses to log a
message and terminate processes that make unauthorized
system calls, it is straightforward to change this, e.g., to
restart the process, without changing the overall security
model. The underlying algorithm can be also customized
depending on the deployment site requirements, e.g., for
cheap decryption, certificate verification can be chosen
as an alternative to DES in an embedded context without
affecting the protection offered by the approach.

Attacking the system
Preventing the attacker from issuing system calls
severely restricts the capabilities of the attacker. The op-
erations that can be performed, and in effect the dam-
age possible is strictly restricted to within the address
space of a given host process. In order to cross address
spaces the attacker needs invoke a system call. Opera-
tions that can be performed by an attacker without issu-
ing system calls, are restricted to scanning the processes
address space and requesting intra-address-space func-
tions. The OS maintains each process in its own address
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Program Program Size(bytes) Increase
Original Randomization Rand. + Signing (%)

bzip2 5,667,562 5,846,338 5,857,143 3.34
gzip-spec 5,900,779 6,009,818 6,021,233 2.04
crafty 7,343,326 8,010,146 8,022,412 9.25
mcf 5,190,011 5,297,951 5,308,146 2.28
vpr 6,653,956 7,064,919 7,075,114 6.33
twolf 7,546,058 8,087,422 8,098,024 7.32
mpegplay 15,802,993 16,715,412 16,736,194 5.90
pftest 5,271,729 5,396,150 5,408,077 2.59
webserver 5,899,141 6,064,041 6,077,953 3.03
copy 5,059,821 5,161,010 5,161,756 2.01
gzip 5,997,845 6,260,194 6,273,141 5.49
gcc 20,983,110 23,016,807 23,029,652 9.75
vortex 11,350,087 11,518,789 11,359,811 1.58
pyramid 5,264,248 5,466,860 5,475,263 4.01

Average 4.69

Table 5: Size overhead

space and not only regulates any communication across
address spaces, but also regulates all changes to system
state. Performing any operation such as installing a back-
door, giving shell access etc changes the state of the sys-
tem and hence requires OS interaction. Since the attacker
is not able to issue system calls he will not be able to
change the state of the system and all his damage is re-
stricted to the process that is targeted.

5 Related Work

A number of projects have proposed a variety of obfus-
cation techniques to prevent code injection attacks from
making system calls. Chew and Song proposed a num-
ber of techniques, including permuting system call num-
bers, to make the system call interface less vulnerable to
attack code [14]. Our approach goes well beyond such
techniques, for example, instead of just obfuscating the
system call numbers, our signing approach makes it pos-
sible to protect not only the system call number, but also
additional attributes of the system call, such as its loca-
tion, the values of known arguments, etc. Note that this
makes it possible to handle attacks that exploit existing
system calls in a program by changing their arguments,
e.g., by sending the name of a different file argument
to open. Finally, it allows the OS kernel to detect and
deal intelligently with signature mismatches, e.g., by ter-
minating the responsible process or signaling an intru-
sion; by contrast, with a simple permutation of system
call numbers, a system call invoked from the attack code
has unpredictable (and, potentially, problematic) results.
Bhatkaret al. propose the use of address obfuscation

to foil known-address attacks [10]. The idea is to ran-
domize the base addresses of the stack, heap and code
regions, and add gaps within stack frames and at the end
of memory blocks requested bymalloc. [43] is a similar
technique based on dynamically and randomly relocat-
ing contents of a program’s address space during startup.
While these techniques are effective against known ad-
dress attacks, they are susceptible to the scanning attacks
described in this paper. We view these as complementary
to ours and are investigating their application in extend-
ing our approach to handle local and insider attacks.

There is a wide body of literature on defending against
code injection attacks. A number of researchers have
proposed static program analysis to detect potential vul-
nerabilities such as buffer overflows [20, 26, 38]. When
applied thoroughly, such schemes have the advantage
of not letting an attacker even to begin an attack. One
disadvantage of such schemes is that they require that
programs be recompiled using special compilers. This
makes it difficult to apply them to third-party software,
where the source code is unavailable and the conditions
under which the binary was produced are not known.
Other proposals, such as StackGuard [17] and Format-
Guard [16], aim to prevent control transfers to the attack
code. As in the previous case, such schemes require that
programs be recompiled using special compilers, include
files, and/or libraries, making them difficult to apply to
third-party software. Moreover, they can be bypassed by
well-crafted attacks (see, e.g., [11, 31]). There has been
some recent work on disrupting the actual execution of
attack code by means of “instruction set randomization”
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[8, 24], but current proposals for this have the drawback
of high execution overheads in the absence of specialized
hardware support. Rabeket al., propose monitoring the
origin of library calls for the Windows operating system
to prevent misuses of critical functions [30]. Their par-
ticular approach suffers mostly due to the fact that inter-
cepting attack code at this level is vulnerable to mimicry
attacks that “spoof” the return address on the stack. The
approach can also be bypassed by the scanning attacks
described here.

The idea of constructing semantic models of “legitimate”
system call behaviors for a program in terms of se-
quences of system calls, and monitoring departures from
such models, was proposed by Forrestet al. [18, 23, 40]
and subsequently explored by a number of researchers
(see, for example, [25, 34, 37]). A drawback to this ap-
proach is that it is vulnerable to specific mimicry attacks
[39]. Also related is the work of Bernaschiet al., who
propose modifications to the Linux operating system to
regulate the usage of security-critical system calls [9].
System calls are intercepted at the kernel level and are
validated based on rules stored in database. An example
rule is validation of arguments known to be valid or safe.
A drawback of this approach is that it requires manual
encoding of access control rules for individual system
calls and applications. Furthermore, all of the above ap-
proaches require the kernel to maintain fair amount of
state information related to each application, while our
approach only requires the kernel to maintain one key.

The use of NOP-insertion and code layout randomization
to obfuscate code structure were proposed by Forrestet
al. [19]; however, this work does not describe an imple-
mentation or provide experimental results. Other work
along these lines is that of Wroblewski [42]. Many of
these ideas can be traced to Cohen’s work on system di-
versification [15]. Additional techniques for binary ob-
fuscation, to hamper static disassembly, are described by
Linn and Debray [28].

Imposing application specific restrictions through sand-
boxing is another technique that can be considered as re-
lated work. System call signing can be viewed as a sim-
ple yet efficient way of implementing a sandbox. In com-
parison to existing techniques [21, 22], our implementa-
tion offers significant speedups. Performance Signatures
as have been proposed for intrusion detection can be
viewed as extensions of address and value signing. While
performance signatures rely on monitoring dynamic be-
havior of a program, our techniques rely inferring val-
ues through static program analysis. Our techniques can
also be viewed as orthogonal yet relevant to the con-
tainment approaches [41, 29] being proposed to handle

propagatory worm attacks. While these approaches em-
phasize regulating the network interfaces, our focus has
been on the host’s system interface. Most containment
techniques try to throttle propagation from an already in-
fected host; by contrast, our goals are to make it difficult
to infect a host.

6 Conclusions

The increasing prevalence of remote code injection at-
tacks against computer systems makes it increasingly
important to develop effective countermeasures against
such attacks. A crucial aspect of such attacks is that, in
order to do any real damage, the attack code must in-
voke one or more system calls: if the attack code can
be prevented from successfully invoking system calls,
the attack will fails. This paper describes a novel de-
fense against code injection attacks that uses a combi-
nation of cryptographic and compiler-based methods to
harden the system call interface. The idea is to use cryp-
tographic signatures to protect the arguments to system
calls, together with compiler-based code randomization
techniques to hide code fingerprints that could be used
for mimicry attacks. We have evaluated our ideas using
two experimental systems: one, suitable where source
code for the OS kernel is available, where the operating
system kernel is modified to decrypt and validate system
call signatures; and another, suitable where source code
is not available, where this is carried out using a virtual
machine monitor. Our experiments indicate that our ap-
proach is effective in thwarting code injection attacks at
modest cost.
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