NAT TRAVERSAL THROUGH TUNNELING

by

Arun Madhavan

A Thesis Submitted to the Faculty of the
DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
In the Graduate College
THE UNIVERSITY OF ARIZONA

2010

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in
part may be granted by the head of the major department or the Dean of the
Graduate College when in his or her judgment the proposed use of the material is
in the interests of scholarship. In all other instances, however, permission must be
obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

Beichuan Zhang Date
Assistant Professor, Department of Computer Science

TABLE OF CONTENTS

LIST OF FIGURES 6
ABSTRACT 8
CHAPTER 1 Network Address Translation 9
1.1 Typesof NAT o 10
CHAPTER 2 Introduction 13
CHAPTER 3 NAT traversal 15
3.1 The NAT traversal problem 15
3.2 Port forwardingo L 16
3.3 UPnP IGD and NAT-PMP 17
3.4 Hole punching 19
3.5 STUN . . o 22
3.6 TURN 23
CHAPTER 4 NAT Traversal by Tunneling 24
4.1 Basic tunneling scheme 0oL 24
4.2 Learning NAT, server addresses 25
4.3 Traversing client-side NATs 26
4.4 Traversing nested server-side NATs 27
4.5 Traversing legacy NATs 29
4.6 Stateless operation of NATTT 30
4.7 Deployment considerations oL 31
CHAPTER 5 Implementation 33
5.1 NATTT client daemon 33
5.1.1 Architecture of the client daemon 33

5.1.2 Receiving traffic on the NATTT daemon 34

5.2 NATTT server daemon 35
5.2.1 Running NATTT server daemon on a NAT 36

5.2.2 Running NATTT server daemon on a host 37

5.2.3 Architecture of the NATTT server daemon 38

5.3 Overview of the entire system 38
5.4 Implementation of NATTT ona NAT 38
5.5 Detecting a single NAT’s external address 40
CHAPTER 6 Future work 41
6.1 Automatic NAT address detection 41
6.2 Nested NAT traversal 41

6.3 NAT Traversal with an unmodified client host 42

TABLE OF CONTENTS — Continued

REFERENCES 43
APPENDIX A Code structure 45
Al nat3d. 45
A.1.1 Methods 45
A.1.2 Member Variables 48
A2 LruCache 48
A.2.1 Methods 49
A.2.2 Member Variables 49
A3 TunnelMgr. 50
A.3.1 Methods 51
A.3.2 Member Variables. 52
A4 wintunmgr 53
A.4.1 Methods 55
A.4.2 Member Variables. 56
A5 linux_tunmgr 56
A.5.1 Methods o7
A6 TunnelEntry 57
A.6.1 Methods 59
A.6.2 Member Variables. 59
A7 tun_hdrt ..o 59
A.7.1 Member Variables 61
A.8 PcapArpHandler 61
A81 Methods 62
A.8.2 Member Variables 62
A9 p_thread 63
A9.1 Methods 63
Ad0log o 65
A.10.1 Methods 65
A.10.2 Member Variables 65
A1l functions 66
A.11.1 Methods 66
A12UPnP . . . 66
A.12.1 Methods 67
A.12.2 Member Variables 67
A.13DnsResolver 67
A.13.1 Methods 69

A.13.2 Member Variables 70

TABLE OF CONTENTS — Continued

A14DnsQueryo 70
A.14.1 Methods 72
A.14.2 Member Variables, .. 72

A.15 DnsPacket 73
A.15.1 Methods 74
A.15.2 Member Variables 74

A.16 DnsHeader 75
A.16.1 Methods 76
A.16.2 Member Variables, .. 76

A.17DnsName 77
A.17.1 Methods 7
A.17.2 Member Variables 78

A18DnsRR 78
A.18.1 Methods 78
A.18.2 Member Variables 80

A19DnsA . . . 81
A.19.1 Methods 81

A.20 DnsCompression 82
A.20.1 Methods 82

A.20.2 Member Variables 82

LIST OF FIGURES

1.1 Network Address Translation 11
3.1 Port forwardingo 17
3.2 Hole punching 21
4.1 Traversing a single NAT 26
4.2 Learning NAT, private host addresses 27
4.3 Tunneling through a client side NAT 28
4.4 Nested NAT traversal, 28
4.5 Deployment of NATTT with a legacy NAT 29
4.6 Stateless implementation of NATTT 31
5.1 NATTT client daemon 34
5.2 Hlustration of a TUN device 35
5.3 Basic tunneling - Actual implementation 36
54 NATTT server daemon on a host 39
5.5 Overview of the entire system 40
A.1 UML diagram of the NATTT daemon 46
A.2 Component diagram: NATTT daemon 47
A.3 Component diagram: LruCache 48
A.4 Component diagram: TunnelMgr 50
A5 Component diagram: win_tun_mgr 54
A.6 Component diagram: linux_ tun.mgr. 56
A.7 Component diagram: TunnelEntry 58
A.8 Component diagram: tun_hdrt L. 60
A.9 Component diagram: PcapArpHandler 61
A.10 Component diagram: p_thread 63
A.11 Component diagram: log L. 64
A.12 Component diagram: functions 65
A.13 Component diagram: UPnP L. 66
A.14 Component diagram: DnsResolver 68
A.15 Component diagram: dns_query 71
A.16 Component diagram: DnsPacket 73
A.17 Component diagram: DnsHeader 75
A.18 Component diagram: DnsName 7

A.19 Component diagram: DnsRR 79

LIST OF FIGURES — Continued

A.20 Component diagram: DnsA

A .21 Component diagram: DnsCompression

ABSTRACT

Network Address Translation (NAT) is widely prevalent solution adopted to allevi-
ate the IPv4 address exhaustion problem. Due to the use of private IP addresses on
hosts behind the NAT, it is not possible for external hosts to initiate communication
with these hosts. This poses a hurdle to many emerging applications, such as VoIP
and P2P. Although a plethora of NAT traversal solutions have been proposed in
recent years, they suffer from being application-specific, complex, or requiring some

behavioral compliance from the NAT.

The work presents an simple technique that is generic, works with nested
NATs, is incrementally deployable and only expects minimalistic common behavior
across all NAT implementations. The design includes the use of UDP tunnels and
a sequence of NAT addresses and private IP addresses to uniquely identify a host.
Simple and incrementally deployable changes are proposed to DNS to learn the

addresses.

CHAPTER 1

Network Address Translation

Network Address Translation is a solution developed to alleviate the exhaustion of
the IPv4 address space by allowing the use of private IP addresses on home and
corporate networks behind routers, with a single public IP address facing the public
Internet. Network address translation breaks end-to-end connectivity since the
NAT has no automatic method of determining the internal host for which incoming
packets are destined. Furthermore, since it is possible to have multiple levels of
NAT between a host and the Internet, there is no one unique address that identifies

a host.

Figure 1.1 provides an illustration of a typical NAT setup. Alice, Bob and
Carol are three hosts with private IPs behind a NAT which has a single public 1P
‘NAT”. Since the only public IP in this setup is ‘NAT’, there are two implications:
(1) When these private hosts send a packet to the Internet, the NAT replaces the
private source address of the packet with its public IP ‘NAT’ since it is not possible
to send a packet having a private address on the Internet. (2) Incoming packets from
the Internet are always destined to ‘NAT’. Therefore, the NAT uses the destination
port number in the incoming packet to identify which private host this incoming

packet should be sent to. This scheme is described below.

In step (1) of the figure, Bob sends a packet from Bob:100 to Dave:80. As
this packet passes through the NAT, the NAT replaces the private source IP with

10

its public IP ‘NAT". It also replaces the source port number 100 with port number
6000 (a free port on the NAT), and records a mapping from port 6000 to the origin
of the packet i.e. Bob:100. Any incoming packets on port 6000 are forwarded to
Bob:100.

In step (2), Dave:80 responds to the packet from NAT:6000, which is origi-
nally a packet from Bob:100. When the packet arrives on NAT:6000, the NAT uses

the mapping created in step (1) to forward this packet to the correct private host
i.e. Bob:100.

This mapping scheme allows the host behind the NAT to initiate the con-
nection to a host in the Internet. However, if a host in the public Internet wants
to initiate a connection to a host behind a NAT, it is not possible since the NAT
has no automatic way of determining which private host the packet is destined for.
This is the biggest problem associated with NATs and is termed the ‘NAT traversal
problem’. The problem and some solutions to the problem are described in detail

in Section 3: NAT traversal.

1.1 Types of NAT

The major classification criteria with NATSs is the nature of the mapping function
from a port to private host. The NAT classifications presented below only serve as
a guideline, since attempts to classify have failed and the problem has proven to be

intractable.

Full Cone: A full cone NAT is one where all requests from the same internal 1P
address and port are mapped to the same external IP address and port. Further-
more, any external host can send a packet to the internal host, by sending a packet

to the mapped external address. Techniques to traverse full cone NATSs have been

11

i

Dave
TPuin-:

(D internef @;
NAT:6000 _ | Dave:80 |
Dave:80 __NAT:6000 |
NAT:6000
........................ ntemet
Bob:100 Private network
Bob:100 | Dave:80 |
Dave:80 | Bob:100 |

¥ p

2

e e
=i I Ty
e

=)

ﬁLL, EalE ___.,4

Carol Bob Alice

Figure 1.1: Network Address Translation

quite successful.

Restricted Cone: A restricted cone NAT is one where all requests from the same
internal IP address and port are mapped to the same external IP address and port.
Unlike a full cone NAT, an external host (with IP address X) can send a packet
to the internal host only if the internal host had previously sent a packet to IP
address X. Techniques to traverse restricted cone NATs have been successful, albeit

less successful than techniques for full cone NATS

Port Restricted Cone: A port restricted cone NAT is like a restricted cone NAT,
but the restriction includes port numbers. Specifically, an external host can send a
packet, with source IP address X and source port P, to the internal host only if the
internal host had previously sent a packet to IP address X and port P. Techniques

12

to traverse restricted cone NATs have been successful, albeit less successful than

techniques for full cone NAT's

Symmetric: A symmetric NAT is one where requests from the same internal IP
address and port are mapped to a different external IP address and port, for each
destination IP address and port. Furthermore, only the external host that receives
a packet can send a packet back to the internal host. Traversing symmetric NATs

has proven to be the more challenging than any other type of NAT.

13

CHAPTER 2

Introduction

NAT Traversal by Tunneling (NATTT) provides a NAT traversal solution that
is generic, (supporting all applications and transport protocols), supports nested

NATSs and is incrementally deployable.

Suppose an external host A wants to initiate communication with an in-
ternal host B behind a NAT Y. If A knows both Y’s public address (Y,.;) and B’s
private address, A can tunnel packets to B as follows. The outer header of a packet
is destined to Y., so that the packet can be routed over the public Internet to
reach Y; The inner header is addressed to B, so that when Y receives the packet, it
can remove the outer header and find out where to forward the packet within the

private network.

To implement this idea, there are 3 main design questions that must be

answered:

1. How does the initiator of the communication learn the tunnel end-point(s) at

the destination network?

2. The hosts behind a NAT suffer from the non-uniqueness problem of their
NAT addresses. That is, even if a host A can reach other hosts behind NATS,
these other hosts may be behind different NATs and happen to have the same

private IP addresses, how can A distinguish different remote hosts when they

14

use the same (private) IP addresses?

3. How can this design handle the current NAT traffic, and work with the existing
NATSs?

This solution uses a new type of DNS record to learn the tunnel end-point
addresses. The solution is implemented as a daemon running on the client host, as
well on the NAT or on one host behind the NAT. The daemon uses UDP tunnels
to encapsulate packets, which can then traverse deployed NATs that are capable of
decapsulating the packet and forwarding them to the destination host in the NAT’s

private network.

15

CHAPTER 3

NAT traversal

3.1 The NAT traversal problem

Section 1: Network Address Translation discussed how NATSs function, and how
they masquerade an entire private network behind a single public IP address. This
section briefly explains the the primary problem associated with such a setup and

discusses some solutions to this problem.

The problem with Network Address Translation is that it is possible to
deliver packets to a private host only if there exists a mapping from a port number
on the NAT. And such a mapping is created when an outbound packet from a
private host passes through the NAT. This effectively means that it is only possible
for hosts behind a NAT to initiate a connection to a host in the Internet. Hosts
on the Internet can not initiate a connection to hosts behind the NAT unless there
is a way to tell the NAT which private host the packet is destined for (recall that
packets to private hosts behind a NAT are addressed to the NAT, since the NAT
is the only entity with a public IP. The NAT uses port numbers to determine the

destination private host).

NAT traversal refers to techniques that establish and maintain TCP/IP or
UDP connections traversing NAT devices. NAT traversal is an important problem

since services that accept inbound connections (such as HTTP, SMTP, VoIP, P2P

16

applications etc) may be located on hosts behind a NAT and must be accessible

from the public Internet.

Many techniques exist, but no single technique works in every situation
since NAT behavior is not standardized, and very little common behavior can be
expected across NATs. There are also different types of NATs, as described in
section 1.1. Therefore, for a design to be successful, it is important to treat the
NATs as black boxes, and expect very minimalistic common behavior from them.
The problem is compounded by the fact that many NATs are designed to be invisible

to both sides of a connection.

Some of the most common techniques used in NAT traversal are described

in the forthcoming sections.

3.2 Port forwarding

Port forwarding is the simplest NAT traversal technique. Port forwarding involves
setting up an explicit, static mapping rule from a port on the NAT to a port on a

private host behind the NAT.

Port forwarding is illustrated in figure 3.1. In the figure, a port forwarding
rule is set up to map packets arriving on NAT:8080 to Alice:80. Therefore, a packet
arriving from Dave:port on NAT:8080 is forwarded to Alice:80.

Discussion of port forwarding:

The port forwarding technique has several advantages: (1) It is typically
available on all types of NATs (2) Legacy clients can connect to a private host behind
a NAT. i.e. the clients need not run any special NAT traversal technique/require

any modification of any sort.

17

| Dave:port!
| NAT:8080 |

NAT:8080
&
@-Rule

NAT ;
Alice:80

Private Ne
3
A AW ﬁ
\\ | Dave:port
Alice \ \ | Alice:80 |

Figure 3.1: Port forwarding

The disadvantages of port forwarding are: (1) It is a static rule, and if the
IP address of the host changes, the mapping rule needs to be changed to reflect
that. (2) It is not possible to forward the same port to a second private host. If a
user ran two ssh servers behind a NAT, he would need to forward different ports to

the ssh servers (Although the ssh servers may themselves run on the same port).

3.3 UPnP IGD and NAT-PMP

The big problem with port forwarding is that the forwarding/translation rule is
static. UPnP and PMP let a host ‘talk’ to a NAT and set up forwarding rules as

required.

18

UPnP (Universal Plug and Play) is an architecture for pervasive peer-to-
peer network connectivity of PCs and other devices or appliances. It enable these

devices to automatically connect with one another and work together.

One of the sub-protocols in the UPnP suite is Internet Gateway Device
(IGD) Standardized Device Control Protocol, which allows hosts to interact with
Internet gateway devices, such as NATs in our case. This allows a host to forward
ports automatically by interacting with NATs. Also included in the protocol is the
ability for a host to learn the public (external) IP address of the gateway device.

NAT-PMP (NAT Port Mapping Protocol) was proposed by Apple computer
as an elegant alternative to the cluttered and complicated IGD protocol. NAT-PMP
is implemented on all Apple home routers (NAT devices) and as well on Microsoft
Windows and Apple OS X. It is also supported by many applications that require

to configure port forwarding.

NAT-PMP is the most popular implementation of a set of techniques called
zeroconf (Zero configuration networking). Other implementations by Microsoft and

some open source implementations for Linux exist.
Discussion of UPnP and NAT-PMP:

The major advantage of these methods is that port forwarding is automated

and applications can forward ports dynamically as required.

Some of the disadvantages with these methods are: (1) As with port for-
warding, it is not possible for two hosts to forward the same ports. (2) Applications
need to be modified to be UPnP aware. (3) Not all NATs implement UPnP or the
zeroconf protocols. UPnP enabled NAT devices were not prevalent until a few years
ago. (4) Nested NAT traversal is undefined. It requires all the nested NATSs to be

able to accept arbitrary port forwarding requests, something that is not likely to be

19

work, especially if the outermost NAT is an ISP’s NAT.

3.4 Hole punching

Hole punching is a very widely used NAT traversal technique where two hosts, both
behind NATs, establish connections to each other with the help of a public server.
Both private hosts send a registration packet to the public server. When the packet
passes through the NAT, a mapping is created from a free port X on the NAT to
the private host’s address (as described in section 1). Therefore, any packets that
arrive on port X on the NAT are forwarded to the private host. Then, the two hosts
learn about the mapped ports on each other’s NATs from the registration server,

and establish connections to each other on the mapped ports.

In figure 3.2, clients Alice, Bob behind publicly addressable NATSs register
and maintain maintain a traversal session with a public registration server S. To
register for a session, clients provide an “internal endpoint”, which is combination
of their private IP address and port used for the traversal session. As this packet
passes through the NAT, the NAT maps the packet’s source address and port to
a free port on the NAT. When this packet arrives on S, it records the internal
endpoint provided by the client, and additionally records an “external endpoint”,
which consists of the registration datagram’s source address and port (i.e. the

NAT’s public IP and mapped port).

In the figure, NAT1 and NAT2 are assumed to be restricted cone NATs.
In this type of NAT, a packet sent by a host H to any mapped port P on a NAT is
forwarded to the private host only if the private host had first sent a packet to H, and
the NAT had mapped the packet’s source address to P. In other words, the NAT’s
mapping NAT:P < Private address:port is only valid for the session NAT:P < H.

20

In figure 3.2(a), In step (1) Alice retrieves Bob’s external and internal end-
points from S. In step (2) S simultaneously sends Bob the external and internal

endpoints of Alice, and instructs it to try connecting to both endpoints of Alice.

In figure 3.2(b), the hosts now have each other’s endpoints. The hosts send
packets to each other on both internal and external endpoints, utilizing the same

socket used to maintain the session with the server.

In the figure step (1), (2) signify that packets sent by the hosts to internal
endpoints do reach other since the NATSs are themselves not behind a NAT.

In the figure, step (3) signifies the packet from Alice reaching Bob’s
external end-point first. Since the packet passes through NAT1, a session
NAT1:4444 < NAT2 is established for the mapping on NAT1:4444. The packet
is refused at NAT2 as the session NAT1 < NAT2:6666 is not established for the
mapping on NAT2:6666. Step (4) signifies that the packet from Bob via NAT2
arriving from NAT2:6666 (i.e. Bob:3333) on NAT1:4444 is forwarded to the private
host (i.e. Alice:2222) since NAT1 is aware of the session. Also, since the packet
from Bob has passed through NAT?2, the session is set up on NAT2. Future packets
between Alice and Bob are able to traverse both NATSs and reach their respective

destinations.

The transport protocol used for hole punching is typically UDP. TCP is

also used, but less successfully.
Discussion of hole punching:

Some of the disadvantages with hole punching are: (1) Hole punching re-
quires a lot of behavioral compliance from the NAT, especially with respect to how
the NAT maps ports. Such behavior is non-standard amongst NATs. (2) When both
NATs are behind a NAT themselves, hole punching is not well-defined and requires

21

Registration

Alice sends to

Registration
server
A
Bob:Externa

Y
INAT2:666
AT1:444

s to
A% :External +

NAT1:4444 NAT2:6666
NAT1:4444 NAT2:6666

X XK=
Bob:3333 ()

|
[

[

) Send internal packet! '
Alice:2222 Bob:3333 Y

(a) Bob @ Alice:2222 b) Bob:3333@

Figure 3.2: Hole punching

22

the outermost NAT to support specific routing features. (3) A publicly addressable

external server is required. (4) It is required to be built into the application.

Some of the advantages of hole punching are: (1) The port mapping is
dynamic and suits applications like VoIP. (2) The NAT’s explicit cooperation is not

required. There is no need to configure the NAT with a mapping rule etc.

3.5 STUN

STUN was an acronym for Simple Traversal of User Datagram Protocol (UDP)
through Network Address Translators (NATs). It was originally a technique to clas-
sify the type of NAT automatically and use a standardized hole punching technique
to traverse the NATs. Eventually, the methods used in the original STUN protocol
became intractable, given the plethora of NAT implementations. The original set

of methods was updated, and a new RFC issued. STUN now stands for Session

Traversal Utilities for NAT

The new STUN is a client-server protocol, requiring an external server with
two public IP addresses. The main purpose of the STUN protocol is to enable an
application running on a host behind a NAT to discover the port translation done
by the NAT; i.e. which port other devices can use to connect to it from outside
the network. Armed with this information, applications can use a form of hole

punching.
Discussion of STUN:

Since STUN is not a traversal mechanism in itself, and uses the hole punch-

ing technique, STUN has the same advantages and drawbacks as hole punching.

23

3.6 TURN

TURN (Traversal Using Relay NAT), is a technique to traverse NATs by using a
third-party relay server. The destination application running on a host behind the
NAT establishes and maintains a session with the TURN server. Hosts that need
to send data to the application send it via the TURN server. TURN is typically
used as a last-resort technique for NAT traversal. TURN is currently in an Internet

draft status.

Due to the high load on the public TURN server, TURN is typically used

as a last resort technique in case other techniques fail.

Discussion of TURN:

The major advantage of TURN is that it is perhaps the only NAT traversal

technique that is always successful!

Some of the disadvantages of TURN are: (1) The requirement for a third
party (publicly accessible) relay server causing concerns regarding scalability, la-
tency, bandwidth and processing power wastage. (2) TURN is only a means of

connectivity between two known hosts; not between an arbitrary client and a server

behind a NAT.

24

CHAPTER 4

NAT Traversal by Tunneling

4.1 Basic tunneling scheme

This section describes the basic tunneling scheme, the players involved, and how

the system traverses a single NAT.

In Figure 4.1, client A on the public Internet wants to access web server
B behind a NAT Y. By querying B’s DNS name, A learns B’s private IP address
and Y’s public IP address (See next section for details). A then encapsulates its
packets in UDP. The outer IP/UDP header is destined to Y on a well-known UDP
port number assigned for the use of NATTT (100 is used in this writing). The
inner header is destined to B on its service port, which is 80 for its web service
in this example. Routers in the Internet will forward the packet according to its
outer header until it reaches Y, which recognizes it as a NAT tunnel packet because
of the well-known destination UDP port number 100. Y removes the outer header
and forwards the packet to B according to the inner header. The server B receives,
processes, and sends packets as usual without any change or being aware of the NAT.
When Y receives the outbound packet from B to A, it encapsulates the packet in
UDP and sends it back to A. Upon receiving the packet, A can uniquely identify
the packet source by using addresses of both Y and B.

This approach has two major advantages. First, the server B does not

25

require any modifications to be made to it at alll Second, by using the appropriate
destination address in the inner header of the tunneled packet, it is possible to reach

any host behind the NAT!

4.2 Learning NAT, server addresses

Figure 4.1 illustrated the working of the tunneling mechanism. This section de-

scribes how the address of the NAT and the server B are learnt.

DNS is the mechanism used to learn the addresses of the NAT and the
server. The destination server is identified by a DNS Fully Qualified Domain Name
(FQDN). When a DNS query is made for the FQDN, the IP address of the NAT
as well as the destination server are returned. Since it is possible to store only
one IP address in a standard “A” DNS record, a new type of DNS record called
a “NAT” record is used to store both IP addresses. Since legacy applications are
only capable of making “A” DNS requests, the NATTT daemon makes the “NAT”
requests on behalf of the application. It does this by intercepting the application’s
DNS requests, issuing the “NAT” DNS request, and returning a single IP address to
the application in place of the NAT and server addresses retrieved via the “NAT”
DNS request.

In figure 4.2, The application requiring traversal (web browser, ssh) makes
a DNS request for the domain name of the destination server (i.e. the private
host behind the NAT). The NATTT client daemon intercepts the DNS request and
forwards it to the DNS server. The DNS server responds with an “NXDOMAIN”
signifying that there is no “A” record by that name. The daemon next makes a
“NAT” DNS request for the same host name. The server responds with the public
NAT address and (private) address of server B. Next, the daemon responds to the

26

applications “A” DNS request by sending it a single special IP in place of the two IP
addresses received from the DNS server. The NATTT daemon then intercepts the
application’s traffic on the special IP and tunnels it to B via Y. When traffic arrives
from B (tunneled via Y), the daemon forwards this traffic onto the application using

the special IP as source address.

A point to note is that the “NAT” DNS request is made only if there exists
no “A” record for the FQDN. Therefore, responses to successful “A” requests are

forwarded on to the application with no delay.

1 A100 [A12341 A:1234
Y:100 [B:80 | B:80
B

A Y
@ Public Internet)ha Private Network) q
N~ o s

4X100 |B:80 J .80
A:100 | A:1234] A:1234

Figure 4.1: Traversing a single NAT

4.3 Traversing client-side NAT's

A NAT on both ends of the communication is a complex situation for other NAT
traversal techniques They require the assistance of an external server to punch holes
through the NAT, set up a session with an external server (TURN, hole punching) or
require the technique to be application-aware i.e. to know beforehand the transport

protocol and port number the application uses (UPnP, STUN).

In contrast, NATTT only requires a small modification to be made when

both ends of the communication are behind NATSs.

27

Application NATTT daemon = DNS server
b.foo.com A? . b.foo.com A? b foo.com
~_ No"A"record A__i None
b.foo.com NAT?_ NAT:NAT,Private
~ Special IP - NAT,Private
| Dst: Special IP_|
> | Dst: Private via NAT (tunnel) |
| Src: Private via NAT (tunnel) |
| Src: Special IP | -
< Internet
Y Y
Client host

Figure 4.2: Learning NAT, private host addresses

In Figure 4.3, A is behind a NAT X which does not understand the tunneling
scheme. When the tunneled packet passes through the NAT X, the NAT does
traditional port mapping. Therefore, in the outer header, the source address A is
replaced with the NAT’s public address X, and A’s source port of 100 is mapped
to external port 5000 on the NAT. However, after the packet reaches B, returning
packets must be addressed to A’s NAT X, on port 5000. Since Y records the
external source (X:5000) during packet decapsulation (2) to (3), the external source
is restored when it encapsulates outbound packet (4) to (5). This enables server

host B to work with the new tunneling scheme without any changes.

4.4 Traversing nested server-side NATSs

Traversing nested NATs (multiple layers of NATs between a host and the Internet)

is a very complicated situation for traversal techniques. Some techniques do not

28

1A100 [A1234) 2 X:5000] A:1234 1 :5000
Y:100 |B:80 | Y: 100 [B:80 | B:80
A X b {
@ R ; ot >
S e Vate e a(PUbHC Internet aPrfvate Network (-~

®:100 [B:80 1 > X:5000] B:80 | :80
A:100 | A:1234] Y:100 [A:1234] X:5000

Figure 4.3: Tunneling through a client side NAT

work well with nested NATs or expect the NATs to have a knowledge of the other
NATSs present in the system (UPnP, STUN). In the case of NATTT, the basic
encapsulation/decapsulation scheme can be extended to work with nested NATS.
To traverse nested NATs, (1) the NATTT daemon needs to be installed on all nested

NATSs. (2) the encapsulated packet needs to have as many headers are as there are

NATS.

In figure 4.4, B is behind two levels of NAT, X and Y. A learns from DNS
(1) X’s public IP address X5, (2) Y’s NAT address in the outer NAT, and (3) B’s
NAT address in the second level NAT. A encapsulates its packets in two levels: the
outermost header is destined to X:100, the middle header Y:100, and the innermost

header B:80. The same tunneling mechanism delivers the packets.

1100 | A100 [A:123aL \2A:100 [A:12341 A:1234
X:100 | Y:100 | B:80 | Y:100 [B:80 | B:80
X X

A

(B, Publeirtermet” =-
). Public Internet aPrfvate Network aprfvafe Network
2

©x:100 | Y100 | B:80 1 ‘>A100 B8O 1 A:1234
A:100 | A:100 | A:1234] A:100 | A:1234] B:80

Figure 4.4: Nested NAT traversal

29

4.5 Traversing legacy NATSs

It is also possible to deploy NATTT without having to modify the NAT i.e. us-
ing a legacy NAT. This is achieved by delegating the NATSs job of encapsulat-
ing/decapsulating the packets to a host behind the NAT.

In figure 4.5, a legacy NAT X is configured to forward traffic of UDP port
100 to a host H behind X. H is installed with the NATTT daemon. H decapsulates
and forwards packets to their internal destinations. One small modification needs
to be made to NATTT to support operation on a host. To ensure that return traffic
flows through H, the source address of the decapsulated packet is changed to ‘H’.
Also, source port translation is performed to ensure that there is no conflict with
port numbers used by other applications. In the figure, source address A:1234 is

translated to H:2000

All a user needs to do to run NATTT in this configuration are (1) install
the daemon on a regular host H, and (2) configure one UDP port forwarding entry
on the legacy NAT X. This scheme can also be used by enterprise networks as an

incremental deployment approach.

LA100 [A1234) 2 A100 |A1234)
X:100 | B:80 | H:100 |B:80]
A X

ﬁi Public Internet aPn'vate Network [
S - T

®Jx:100 [B:80 °JH:100 | B:80 1 B:80
A:100 | A:1234] A:100 | A:1234] H:2000

Figure 4.5: Deployment of NATTT with a legacy NAT

30

4.6 Stateless operation of NATTT

The Internet is designed in such a way that only the end hosts maintain state about
the communication taking place between them. Stateless operation is a significant
principle since it ensures that failure/reboot of a network device acting as an inter-
mediary in the communication does not break the communication. All the inter-
mediary Internet devices like routers function statelessly. NATSs, however maintain
state about the mapping of ports from their public address to private addresses. If
NATTT is fully deployed (i.e. on the 2 end hosts and all intermediary NATSs), it can
make NAT traversal stateless. This allows load balancing and connection backup

over multiple NATSs.

The key fact that makes stateless NAT traversal possible is that the encap-

sulated packet’s inner header contains the addresses of the client and the server.

Stateless operation is illustrated in figure 4.6. The figure describes how

NATTT could function statelessly when tunneling through a client-side NAT.

Client host A sends an encapsulated packet to the NATTT daemon on
Y:100 through NAT X. X discovers this is an NATTT packet by looking at the
destination port number of 100. X does not do the traditional port mapping which
would lead to X maintaining state about this connection. Instead, X replaces the
private source address A (on the outer header) with its public, routable address X.

Therefore, the client side of the communication is stateless.

On the destination side, Y receives the encapsulated packet. Y recognizes
this as a NATTT packet by looking at the destination port number of 100. Now,
Y does not decapsulate this packet (as done previously in this section). Instead,
it forwards the full, encapsulated packet to the destination address present in the

inner header (‘B’).

31

The packet is received and decapsulated by the NATTT daemon on B.
When traffic needs to be sent from B to A, the same procedure is followed i.e. Y

does not do source port translation, and X does not do packet decapsulation.

LA100 [A1234] 2 K100 [A:1234) 3 K100 [A1234)
Y:100 |B:80 T Y.100 [B:80 T B:100 |B:80 T

X Y
5, e A PUBlciernet -
= Private Network ﬁ(PUbI!C Internet a Private Network

®X100 [BBO 1 °A100 |B:80) 4k:100 [B:80 1
A:100 | A:12347 X:100 | A:1234] X:100 | A:1234]

Figure 4.6: Stateless implementation of NATTT

B
Y

4.7 Deployment considerations

This section talks about the ease and simplicity in the deployment of NATTT.

On the client side, NATTT only requires users to install a daemon program
on the local host. There is no change to applications, operating systems, or network
devices (such as NATSs). Since most client users can benefit from applications en-
abled by NATTT, they have the incentive to deploy, but may not have the expertise

to make significant changes.

On the server side, there are two options: (1) The NAT needs to be up-
graded to support NATTT or (2) The NAT needs to forward port 100 to a host that
runs NATTT. Further, the DNS zone file needs to include the new NAT resource
record for servers behind the NAT. Hosts behind the NAT do not need any changes.
This works well for enterprise networks as the system administrators can make the

necessary changes at a couple of places, without the need to upgrade a large number

32

of server hosts.

For modifying DNS records, there are a number of free DNS services avail-
able for end users to register their server hosts. In the case that users do not have
access to add a new type of resource record, they can add an additional A RR
to emulate the NAT RR. For example, querying b.foo.com returns B’s private 1P,
querying b-nat.foo.com returns B’s NAT device, X’s public IP, and the daemon can

be configured to accommodate this setup.

33

CHAPTER 5

Implementation

This section describes the implementation details of the NATTT daemon. The
NATTT daemon can be configured to operate either in the client mode or in the

server mode. It consists of 3 major components:

1. Tunnel manager: Handles encapsulation, decapsulation and forwarding of

packets.

2. DNS handler (client daemon only): Intercepts and handles applications’
DNS requests. Does the ‘NAT’ DNS query on behalf of the application and

returns a single IP address in place of the NAT and private host addresses.

3. ARP handler (server daemon only): Required to retrieve response traf-

fic from other servers behind the NAT.

5.1 NATTT client daemon

5.1.1 Architecture of the client daemon

The client daemon is illustrated in figure 5.1. The client daemon intercepts the
applications DNS request for FQDN, issues the ‘NAT’ DNS query on the absence
of an ‘A’ record for the FQDN and returns a single special IP address to the appli-

cation. The daemon then intercepts traffic on the special IP and tunnels the data

34

to the destination server behind the NAT. Upon reception of a encapsulated packet

destined for an application on the local host, the daemon decapsulates and forwards

the packet to the application.

_A.com/A?

_A.com/NATT

DNS ‘NXDOMA'N Internet

Server|« $
Ext:Int
Yl Y Y