
Rex: A Toolset for Reproducing Software Experiments

Somu Perianayagam, Gregory R. Andrews, John H. Hartman
Department of Computer Science, University of Arizona

{somu,greg,jhh}@cs.arizona.edu

Abstract
Being able to reproduce experiments is the cornerstone of
the scientific method. Software experiments are hard to
reproduce even if identical hardware is available because
external data sets could have changed, software used in
the original experiment may be unavailable, or the input
parameters for the experiment may not be documented. This
paper presents Rex, a toolset that allows one to record an
experiment and archive its apparatus, replay an experiment,
conduct new experiments, and compare differences between
experiments. The execution time overhead of recording ex-
periments is on average about 1.6% and the space overhead
of archiving an experiment ranges from 5 to 7 GB.

1. Introduction
A scientific wet-lab experiment is said to be reproducible if
one can reconstruct the experiment’s apparatus then conduct
the original experiment and get identical results. Analo-
gously, a software experiment is reproducible if one can
reconstruct the original experimental apparatus and repro-
duce the results of the prior experiment. The benefits of
reproducing an experiment are:

• The results of the original experiment can be indepen-
dently verified.

• The reproduced apparatus can then be used to conduct
new experiments.

A software experiment is hard to reproduce because over
time it becomes impossible to reconstruct the apparatus,
external data sources might have changed, or aspects of the
experiment, such as input parameters, may not be docu-
mented. One way to reconstruct an apparatus is to download
and compile source programs, but over time the right version
of the compiler or libraries may not be available. Another
way to reconstruct an apparatus is to install it from binaries,
but again the right libraries may not be available. Even if the
apparatus can be reconstructed, there is no guarantee that
an experiment will read the same input if it comes from an
active source such as a database or a web server. Finally,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

if the command-line arguments or other input parameters
are not specified, which often happens for descriptions of
experiments in published papers, then again an experiment
cannot be reproduced.

Current systems for reproducing software experiments
are tailored for a specific subset of experiments, address a
specific problem such as debugging, or reproduce only the
data analysis used in an experiment. RA[15] is a toolkit
that helps one organize and reproduce software experiments
that are written in Java. Tornado[6], iDNA[4], R2[12], and
ReVirt[14] are systems that support replaying programs for
debugging purposes. Madagascar[1] and BioConductor [11]
support reproducing the data analysis part of a published
experiment and tie it closely to the publication itself[10, 5].

This paper presents Rex, a set of tools that allows one
to reproduce any software experiment. Rex does not require
access to source code or compilers, and it does not require
modifying either an experiment or the operating system on
which it executes. The Rex tools are:

• record, which archives an experiment and its apparatus;
• replay, which reproduces an archived experiment;
• runnew, which runs a new experiment using an archived

apparatus; and
• expdiff, which compares two recorded experiments and

reports differences between them.

Rex can handle sequential, multi-process, and multi-
threaded programs. It reproduces the results of a recorded
experiment as long as the experiment has deterministic
output behavior—i.e., it produces the same output given
the same input. Rex is also able to reproduce the behavior
of stochastic programs that generate random numbers from
system sources such as /dev/random. Rex imposes only
a small execution overhead for recording, replaying, and
running new experiments.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the Rex tools and presents three use cases
that illustrate how they can be used. Section 3 describes how
the tools are implemented. Section 4 presents performance
results. Section 5 discusses related work, and Section 6 gives
concluding remarks.

1

Figure 1. Archive of an Experiment

2. Rex Tools and Use Cases
This section defines the four Rex tools and gives examples
of their use. The unifying concept is that of an archive,
which contains everything necessary to reproduce an exper-
iment: its apparatus, input, and output. Rex reproduces an
experiment by reconstructing an identical apparatus, starting
the experiment in the same environment and with the same
command line parameters, and feeding it the same input.
Figure 1 gives an overview.

The apparatus of an experiment consists of all application
programs and the libraries or helper applications that the
applications require.1 (We assume that the operating system
on which an experiment will be reproduced is identical to
the one on which the original experiment was run.) The
input to an experiment is the command-line arguments, data
read from input sources such as files and servers, and data
read from the operating system (such as the time of day or
pseudo-random numbers). The output of an experiment is all
data written to terminals, files, or network sockets.

2.1 The Rex Tools
The record tool archives an experiment. First it records the
environment variables and input parameters. Then it starts
the experiment and monitors its execution to determine the
applications it uses, the input it reads, and the output it
produces. An experiment is recorded by executing

record [−l<archive name>] experiment <input
parameters>

The experiment and input parameters are those of the orig-
inal experiment. The -l option specifies a name for the
archive that will be created; its default value is default.

The replay tool takes an archived experiment as input,
sets up the environment for the experiment, and starts the

1 Perl and Python interpreters are examples of helper applications.

experiment with the recorded input parameters. As the
experiment executes, replay intercepts all input requests
and feeds recorded input data back to the experiment. A
recorded experiment is replayed by executing

replay [−l<archive name>] [−e<expname>]
[−o<output directory>]

The -l option specifies the archive containing the recorded
experiment; the default value is default. The -e option
specifies which experiment in the archive to replay.2 The
output from the replayed experiment is stored in the out-
put directory specified using the -o option; the default is
out default.

The runnew tool allows a user to select an experiment
from an archive; make changes to the recorded experiment,
such as changing input parameters, environment variables,
or input files; and then run a new experiment. The user can
optionally record the new experiment, in which case it is
added to the same archive. Runnew is started by executing

runnew [−l <archive name>]

where the -l option specifies the archive to use for run-
ning new experiments (the default is default). Invoking
runnew pops up a graphical user interface (GUI) that allows
a user to select an experiment, make changes (e.g., to the
command-line arguments or input sources), and then execute
(and optionally record) the new experiment. An example is
given in Figure 3 and described below.

The final tool, expdiff, compares two archived ex-
periments and reports differences between them, including
differences in their environments, input parameters, inputs,
outputs, and apparatuses. The expdiff tool is invoked by
executing

expdiff [−d number] archive1:exp1 archive2 :exp2

The arguments are the archives and experiments within those
archives that are to be compared. Expdiff also has different
levels of reporting, which are controlled by the -d option
(see Section 3 for details).

2.2 Use Cases
This section describes three kinds of experiments, explains
why they are hard to reproduce, and illustrates how Rex
can be used to reproduce them. Two experiments come
from computational life sciences; one is a multi-process
application and the other is a multi-threaded application.
The third example is a network simulation experiment from
computer science.

2.2.1 Basic Local Alignment Search Tool (BLAST)
BLAST is used in bio-informatics to identify the best pos-
sible matches of an input protein or nucleotide sequence

2 An archive can contain multiple experiments as a result of using the
runnew tool described below.

2

in a sequence database. The tool implements a heuristic
algorithm [2] that performs matches. BLAST takes as input
a file containing input sequences, a database that has to be
searched, and input parameters that govern the heuristics of
the search algorithm.

A typical BLAST experiment is a two step process. First,
the input database is converted from the FASTA format [3] to
a protein or nucleotide database format (commonly known
as a BLASTable format) using a tool called formatdb.
Then, the input sequences are “blasted” against the database
to find similar sequences. A scientist who wants to reproduce
the results of a BLAST experiment first has to install the
BLAST tools, download the input sequences used in the
original experiment, and then blast them against the original
database. The scientist may not be able to reproduce the
experiment because:

• The BLAST algorithm could have been updated.
• The input database could have changed (gene databases

are updated periodically).
• One or more components of the experiment could have

changed. For example, BLAST programs of version 2.2.9
and higher cannot use databases formatted using earlier
versions

• The input parameters may have not been recorded by the
person who performed the original experiment.

With Rex one can record the BLAST experiment and
archive its apparatus by executing

record −lBLASTEXP blast in.seq in.db blastn

The experiment can later be reproduced by downloading the
archive (BLASTEXP) and using Rex’s replay tool as follows:

replay −lBLASTEXP −oBLASTOUT

Here the output of the reproduced experiment will be stored
in the BLASTOUT folder.

One can then use the runnew tool to run a new experi-
ment that is based on the one in the BLASTEXP archive:

runnew −lBLASTEXP

This reads the archive and pops up a GUI as shown in Fig-
ure 2. The GUI initially presents the user with information
about the first experiment recorded in the archive: the name
of the experiment, its command line, and its apparatus. The
user can change the experiment by using the the drop-box
to choose a different experiment, in which case information
about that experiment will be displayed.

The user can modify the command line or apparatus to
create a new experiment. Figure 3 shows how one could
modify the above experiment. The command line has been
changed to reflect that the new experiment should run
the blastp program. Also, the blastall program has been
changed to a new version located in a different place. The
Record box is checked to indicate that the new experiment

Figure 2. Running a New BLAST Experiment

should be recorded. Finally, blastpout has been specified
as the location for the new output directory.

When the user clicks the Runnew button, the screen
shown in Figure 4 pops up to ask the user to confirm the
changes. After confirmation, the new experiment is run and
and recorded into the BLASTEXP archive.

Since the new experiment is recorded, expdiff can be
used to compare the original and modified experiments by
executing:

expdiff BLASTEXP:exp0 BLASTEXP:exp1

Here expdiff will report all differences between the blast
binaries, the command line arguments, the input databases,
the input sequences, and the inputs read from the system.

2.2.2 Runassembly from the Roche 454 Software Suite
Runassembly is a tool that is part of the Roche 454 software
suite [19]. It assembles short DNA sequences into large
sequences by computing overlaps between them. The output
of an assembly depends on the degree of parallelism used
by the tool, which in turn depends on the workload of the
system. Though the outputs may differ, both are correct
because there is no unique answer to the assembly problem.

3

Figure 3. Making Changes to a BLAST Experiment

Figure 4. Summarizing the New BLAST Experiment

However, with the same degree of parallelism, the tool
produces the same output.

Using Rex, runassembly can be recorded by executing:

record −lASSEXP runAssembly −nobig −o outdir
in.sff

The recorded experiment can then be replayed by executing:

replay −lASSEXP

When the experiment is replayed, runassembly will be fed
the recorded CPU workload; hence, it will use the same
degree of parallelism and produce the same output as the
recorded experiment.

2.2.3 Global Mobile Information System Simulation
(GloMoSim): A Network Simulator

GloMoSim[20] is a scalable simulation environment for
large wired and wireless communication networks. It is
implemented as a parallel discrete event simulator. Glo-
MoSim can simulate large networks that can scale up to
thousands of nodes linked by heterogeneous network stacks,
such as asymmetric communications using direct satellite
broadcasts, multi-hop wireless communications using adhoc
networking, and traditional Internet protocols.

The input parameters for a GloMoSim simulation are
specified using a configuration file. The parameters include
the number of nodes, the topology of network, the movement
of of the nodes within the topology, the protocols, and
transmission noise. The results of a simulation will vary if
the topology of the network or the movements of the nodes
is set to RANDOM. Randomness is controlled using a seed that
is also specified as a part of the configuration file.

A publication reporting the results of a simulation may
fail to describe all the configuration file setting such as the
random number seed. With Rex, a network simulation can
be recorded and archived as follows:

record −lSIMEXP glomosim config.in

Generally, network simulations that use random numbers are
run multiple times with different seeds to assure consistency
in results. Running a simulation with a different random
number seed is equivalent to running a new experiment
with the same apparatus but a different configuration file.
To run a new experiment using Rex, one would edit the
configuration file, and then use the runnew tool with an
archived experiment and the new configuration file. If the
new experiment is recorded, it will be added to the archive.
If the archive is distributed along with published results,
readers of the paper can use Rex to replay, and hence
validate, the experiments contained in the archive.

3. Implementation of Rex
This section describes the implementation of Rex tools.
The tools all work with an archive, which contains all

4

the information needed to reproduce an experiment: the
apparatus of an experiment, input read, output written,
environment variables, command-line arguments, and a log
of all system calls made when the experiment was recorded.
Rex gathers information about an experiment by monitoring
the systems calls that it makes, because it is through system
calls that a program reads input, writes output, and loads
application programs and libraries.

When Rex records a program, it creates a system call
log that is stored in the archive; it uses the log when it
replays a program to determine what the program did when
it was recorded. System call monitoring is implemented
using the Linux ptrace mechanism, which does not require
modifying the application programs and imposes only a
small overhead.

3.1 The Archive
An archive is created when the record tool is used. One is
augmented when a new experiment is run using an existing
archive (and the experiment is recorded). The archive has
repositories for the apparatus, input/output files, and system
call logs, and a directory of experiments.

The apparatus repository contains the applications and
libraries used by all the experiments stored within the
archive. Similarly, the input/output and system call log
repositories contain the I/O files and system call logs,
respectively, for all the experiments in the archive. Within
each repository, version numbers are used to resolve naming
conflicts that would, for example, occur when the same file
is used by more than one experiment.

There is a folder for every experiment in the archive.
It contains the experiment’s environment variables and
command-line arguments as well as meta data that describes
the experiment’s apparatus, I/O files, and system call log
and indicates where they are stored. One experiment is the
default experiment; initially this is the oldest experiment, but
the user can change this.

3.2 The record Tool
When record is executed, it creates an archive and then
stores the environment and command-line arguments of
an experiment in it. The record tool then executes the
experiment under its control so that it can use the ptrace

mechanism to trap the entry and exit points of the system
calls made by the experiment [13]. The ptrace mechanism
requires Rex to trap all system calls; it cannot selectively
trap just those in which it is interested. Rex takes the actions
described below for the system calls in which it is interested;
for others, Rex simply lets the call execute as it normally
would. Figure 5 gives an overview of record.

Rex determines the applications used by an experiment
by monitoring the exec system call. Some applications
might be dependent on other applications; for example, a
perl script needs a Perl interpreter in order to execute. The
exec system call shows only the script being executed. The

Figure 5. The record Tool

operating system infers that the script is not a binary and
invokes the appropriate interpreter to execute the script with
its input arguments. After the experiment has finished run-
ning, Rex determines that the script used a Perl interpreter
(by reading file headers) and adds the interpreter to the
apparatus.

While an experiment is running, Rex monitors the li-
braries opened by an application and archives them. This
ensures that Rex archives any libraries opened using inter-
faces such as dlopen to the dynamic linking loader. After
an experiment has finished running, Rex statically resolves
the libraries required by all the applications that are part of
the apparatus of the experiment, and it archives those that
are not already in the archive. This ensures that Rex does not
miss any libraries that might be required but that were not
loaded during this run of the experiment.

The record tool determines the input seen by an exper-
iment by logging all system calls that provide input. The
system calls that provide input are those that read from
input sources such as files, network sockets, pipes, and local
system data. Some of these calls—such as read, pread,
and stat—provide input by copying it into a user provided
buffer. Others—such as getpid and getuid—provide input
by means of the return value.

The file based memory map system call, mmap, is another
one that provides input. Rex logs the call as well as the
contents of the file that is mapped into a memory region. Rex
maintains a tuple for each memory-mapped file in order to
avoid storing duplicate copies of the same file contents. The
tuple has five fields: file name, file offset, length, bytes, and
log offset. Each time a file is memory-mapped, Rex checks
whether an identical call for the same file was performed
previously and whether the mapped contents of the file

5

have not changed since the last call. If the file has been
mapped and the contents have not changed, Rex stores a
pointer to the contents of the file within the log instead of
storing the bytes again. This optimization is very helpful
for applications such as blast that repeatedly memory
map the same file and for experiments that contain several
applications that all use the same set of memory-mapped
libraries.

Record logs system calls that manipulate input sources,
such as open, close, and select. The open and close

calls are also logged, because they are needed during replay
to keep track of file descriptors. However, the ioctl call
is not logged because it is used to read control information
from an input/output device. When the experiment is repro-
duced, the actual device may be different, so the ioctl call
must be re-executed.

Rex records system calls that manipulate directories, such
as chdir and mkdir, because these calls convey information
about the directory structure that is needed to reproduce an
experiment. Finally, Rex records system calls that create new
processes or threads, such as fork, execve, and clone.
These convey information regarding how to create a new
thread of execution, and their arguments are needed in order
to create identical threads.

A log entry for a system call contains a header and the
arguments of that call. The header contains the identity of the
application thread making the call, the system call number,
the number of arguments that follow the header, the return
value of the call, and the error value of the call. The log for
an argument contains the argument’s type, length, and value.

Rex does not log system calls that do not provide input to
an experiment. Common examples of these types of calls are
ones that do memory management, thread synchronization,
or thread signal management.

3.3 The replay Tool
The replay tool sets up the environment of an experiment
and executes it with the recorded command line parameters.
When the experiment requests for inputs, recorded input is
fed to the experiment. Like record it monitors execution
and intercepts all system calls made by the experiment. For
each intercepted system call, replay either emulates the
call, executes the call and then emulates its results, or simply
re-executes the call. Figure 6 gives an overview of replay.

Replaying System Calls. The replay tool emulates a
system call if there is an entry in the log for the system call
and if any effects of not executing the call can be masked
from the experiment. Examples of such system calls are
stat, access, and read. However, if a read accesses a
file that can also be written, the read is also executed in
order to advance the file pointer. System calls that returned
an error during the original experiment are always emulated;
they return the reason for the failure.

For some system calls, replay executes them and then
emulates their results because it is necessary for the side-

Figure 6. The replay Tool

effect of the execution of the system call to happen. Exam-
ples of such system calls are an open call to a write-only
file or a file-based mmap call. For a file-based mmap call, the
side-effect necessary for correct execution of a program is
the allocation of a memory region for performing file I/O. In
this case, the file based mmap call is converted to a normal
mmap call, and after execution of the call, the recorded buffer
for that mmap call is copied into the memory address returned
by the call.

System calls for which there is no entry in the log are
executed normally. Examples of such system calls are wait,
futex, brk, and rt sigaction.

Emulating Directories. The directory structure of the
file system is a key part of an experiment’s environment.
Rex could archive the directory structure during record and
then replicate it during replay by using chroot to go to
the recorded structure. However, one needs administrative
privileges to execute chroot. So that a normal user can use
replay, Rex emulates the directory structure for a replayed
experiment by keeping track of all directories used by the
experiment. Rex maintains the current working directory
for each thread, which is initialized to the current working
directory of its parent thread. The current working directory
of the first thread is initialized to the value stored in the
experiment’s meta-data. Rex emulates directory-related calls
such as getcwd and chdir. When replay intercepts a chdir
call, it changes the current working directory maintained for
that thread to the new directory provided by call, assuming
that the call executed successfully in the original experiment.
For a getcwd call, a copy of the thread’s current working

6

directory is returned if the call’s log entry has a successful
return value.

Reproducing File Objects. File objects are the other
key part of the environment that replay has to reproduce.
When a replayed experiment accesses file objects, they have
to be retrieved from one of the repositories. However, the
file names used by the replayed experiment are those in
the original experiment, not those in the repository. Hence,
replay converts file names to refer to file objects within
the repository. To aid in this name conversion, Rex builds
a file map from the meta data of the experiment. The file
map maps a file name and a current working directory to
the location of that file object within the repository. For files
that might be written, replay makes a copy of the file in the
output directory, changes all mappings for that file object
to point to the new location of the file. The replay tool
employs two file maps: one for the apparatus and one for
input/output files.

The file maps are used whenever file names are arguments
in system calls. System call arguments are located in the
calling thread’s address space. File name parameters are
encoded as a pointer (or address) to the location that contains
the file name. The actual file name cannot be copied over
the old file name because there might not be enough space
to copy it, and the old file name could be used by the
experiment later. Hence, replay copies the new file name
to a different location in the calling thread’s address space
and changes the file name parameter to point to it. The new
location is in a buffer that replay forces every thread to
allocate in its address space.

Replaying Multi-threaded Programs. Rex reproduces
multi-threaded programs that have externally deterministic
output. Stated differently, if the execution order of the
threads affects output, then the program is not reproducible
because execution order is inherently non-deterministic in
a multi-threaded program. On the other hand, if a program
is synchronized so that it always produces the same result
when given the same input, then Rex will faithfully replicate
this observable behavior even if the threads execute in a
different order when replayed than they did when recorded.
As a specific example, suppose that when a program is
recorded, thread A reads input from file foo and that thread
B reads input from file bar. When the program is replayed,
it may end up that thread A opens file bar and that thread
B opens file foo. Each thread will blithely read a different
file, which is fine as long as the output that the threads
produce is the same as that produced when the experiment
was recorded. (The expdiff tool can be used to determine
this.)

3.4 The runnew Tool
The runnew tool allows a user to run a new experiment that
is derived from an old experiment by:

• Changing some part of the apparatus,

• Changing some of the command-line parameters,
• Changing some of the environment variables, or
• Changing some of the input.

There are two components to the runnew tool: a user-
interface that helps the user make changes, and a back-end
tool that takes the changes as input, applies them to the
archived experiment, and runs the new experiment. The user
can optionally record the new experiment, in which case it is
added to the same archive.

The user interface was shown earlier in Section 2. The
back-end is similar to the replay tool. It first reads in the
old experiment’s meta data and sets up the new experiment.
Then it takes the changes provided by the user interface
component and applies them to the experiment. Changes
to the command line parameters and environment variables
are straight forward to apply. Changes to the apparatus and
the input/output files are applied by changing the apparatus
and file map. The back-end tool then executes the new
experiment and intercepts the system calls that it makes. If
a system call requests an item that is in the archive, Rex
uses the file map to find the object in the archive, and then
changes the system call parameter as described earlier for
replay. The back-end tool records the new experiment in
the same way that record saved the original experiment.

3.5 The expdiff Tool
The expdiff tool takes the archives for two recorded exper-
iments and compares each pair of components: environment
variables, command line arguments, apparatuses, and input
and output files. For environment variables, expdiff reports
ones that appear in one experiment but not the other, and
ones that have different values in the two experiments. For
command lines, expdiff performs a textual comparison of
the entire command lines to report differences; it does not
perform a semantic comparison because it knows nothing
about the role of each argument. The expdiff tool com-
pares apparatuses by comparing binary headers for binary
components and by performing a simple diff for textual
components, such as scripts.

The most significant task of expdiff is to determine
differences between input files and output files. It uses
the system call logs to examine the input read and output
written by each program. It reports differences as follows,
depending on the level of detail that is chosen by the user:

• Level 1: reports just the files that are different
• Level 2: reports the files that are different, the bytes that

differ, and the total number of bytes that are different
• Level 3: reports all output from Level 2 plus the system

calls that were skipped during comparison of the system
call log

The logs are compared by comparing the system calls
process-wise for the input they feed to the experiment and

7

the output they received from the experiment. This is done
by comparing the buffers and return values that are used
to pass data. If the system calls themselves differ, then
expdiff follows an algorithm similar to that of the textual
diff program to synchronize the logs as quickly as possible.
First, for the current entry in the first log, find a match in the
second log; and for the first entry in the second log, find a
match in the first log. Then calculate the distance in each log
from the current entry to the first match for the other log.
Finally, choose the log with the shorter distance, and set the
current system call in that log to the first entry that matches
the current entry in the other log. The system calls that are
skipped while synchronizing are noted and reported if the
user requests Level 3 output.

The system call logs are pre-processed before compar-
ison. First, systems calls that return an error are removed
because they do not contribute to any input seen by the
experiment.3 Then, for each input/output source, the set of
system calls that access that source are coalesced into a
canonical form. For example, a read system call followed
by another read call to the same input source by the same
process is coalesced into a single read call. The contents of
the buffer of the resulting call will be a concatenation of the
buffers of the two read calls, and the length of the resulting
buffer is the sum of the bytes read by the two calls. The
rationale behind coalescing read calls is that the number of
calls used to read input is irrelevant; it is the content and the
length of the contents that need to be examined to see if there
is a difference in the input. Write calls are coalesced in the
same way and for the same reasons.

4. Experimental Results
This section presents the time and space overhead of
using Rex. We measure the performance of the applica-
tions described in Section 2—BLAST, runassembly, and
GloMoSim—as well as an additional bio-informatics pro-
gram called Randomized Axelerated Maximum Likelihood
(RAxML) [18]. RAxML calculates phylogenetic trees,
which show evolutionary relationships among biological
species [8]. For reference purposes, we also measure the
performance of Rex on the SPECINT 2000 benchmarks.

Most benchmark programs were executed on an Intel
Core 2 Duo system with a 2.0 GHz clock and 4GB of
RAM and running the Linux 2.6 kernel. The runassembly
and RAxML programs were benchmarked on an Intel Xeon
Quad-core system with a 2.0 GHz clock and 24GB of
RAM running the Linux 2.6 kernel. Execution overhead
was computed by running each program six times; taking
the median execution time (as reported by gettimeofday)

3 For example, an experiment goes through a list of paths to search for
an application. The system calls that test if the application exists on a
particular path will return an error if it does not exist on that path. Two
different experiments might find the application in different places. All that
is relevant with respect to reproducibility is whether the application was
eventually located.

for the original program, recorded program, and replayed
program; and then calculating ratios. Space overheads were
computed by simply measuring the sizes of the archive and
logs and counting the number of system calls.

Figure 7 shows the execution overhead when using Rex
to record and replay computational science and computer
science experiments. The execution times for the application
programs have been normalized to 1.0. The overheads for
both recording and replaying raxml and glomosim are
negligible because these programs do a lot of computation
and have relatively few systems calls. The overhead for
recording blastall is also negligible, but this application
has a large amount of data that has to be copied into user
space during replay, and writing data into user space is much
more expensive than reading it from user space4

Recording and replaying the runassembly benchmark
incurs execution overhead because of excessive concurrency.
When runassembly starts executing, it probes for the CPU
workload and spawns as many threads as there are free
cores. At this point, the Rex thread doing record or replay is
waiting on runassembly, so it does not contribute to the CPU
workload. Thus more threads than free cores get created, and
context-switching is required every time Rex traps a system
call.

The formatdb benchmark has the most significant slow
down because it makes around 58K system calls in a second,
and these account for 16% of its execution time. (Most of our
benchmarks spend less than 1% of their execution time on
system calls.) Moreover, a large percentage of these system
calls read data, which as noted above cause slowdown during
replay due to data copying. Overheads similar to those in
formatdb can only be expected in programs that make a lot
of system calls and that require lots of recorded input during
replay.

Figure 8 shows the execution overhead of using Rex to
record and replay the SPECINT 2000 benchmarks. Almost
all have very low overhead for both record and replay. The
gcc benchmark makes a lot of getrusage calls that get
canned input from the replay tool; this avoids the overhead
that would incurred by executing the actual system call, and
thus replay actually runs faster than record. The vortex

benchmark—like runassembly and formatdb—reads a
large amount of data and hence gets slowed down during
replay.

Figure 9 gives space overheads for recording the various
benchmark applications. For each, we recorded the number
of system calls made by the benchmark, the size of the
system call log, and the size of the archive (which contains
the apparatus of the experiment, input and output files,

4 Data is read from and written to an experiment’s address space using
system calls. During record, Rex can read any amount of contiguous data
from an experiment’s address space using one system call. However, during
replay Rex has to write data into an experiment’s address space one word
at a time. Thus, to write 4096 bytes during replay takes 512 system calls,
assuming a word is 8 bytes.

8

!"!!#

$"!!#

%"!!#

&"!!#

'"!!#

("!!#

)"!!#

*"!!#

+,-./-,,#########

0%1!.2#

3456-/7+######

0$"!*.2#

589-..:6+,;#

0(<).2#

=,464.>6#######

0&!.2#

5-?6,############

0('!.2#

!
"
#
$
%
&'
(
)
*
+,
-
)
.
/
0
"
1
+2
'$

)
+

@456-,#A>6:# B:C457#A>6:# B:D,-;#AE6:#

Figure 7. Science Experiments Execution Overhead

!"!!#

!"$!#

%"!!#

%"$!#

!"#$%&

'()*+&

,-./0&

'12*+&

3.$&

'45*+&

3,,&

'56*+&

3"#$&

'224*+&

7,8&

'296*+&

$.-*:-&

'21%*+&

;<=>8&

'26%*+&

?=-;:@&

'24%*+&

?$-&&&

')%*+&

A
=
-
7
.
>#
"
:
B
&C
@
:
,
D
E
=
F
&G
#7

:
&

&'()*+#,-).# /.0'(1#,-).# /.2+*3#,-).#

Figure 8. SPECINT 2000 Benchmark Execution Overhead

and the system call log). The size of the system call log
depends on the number of system calls and the amount of
data recorded for each of those calls. The runassembly

application reads a 800 MB input file twice and thus has a
huge log and archive. The crafty benchmark executes more
system calls than vpr, but 99% of its calls are ioctl calls
that require little space for logging. On the other hand, vpr
makes very few calls, but 80% of them are reads that return
a fair amount of data. Finally, vortex and gap both make
about the same number of read system calls, but the total
amount of data read by vortex is around 298M whereas
gap reads only around 3M.

5. Related Work
There has been work in computational biology that focuses
on integrating the data analysis part of a software experiment
into scientific publications [17, 10, 5]. This is accomplished
by embedding scripts into papers so that reported results can
be independently reproduced and verified. BioConductor
[11] and Madagascar [1] are two such projects. Both require
that readers wanting to reproduce the results will install
the appropriate software packages and the data sources that
were used by the original computation. RA [15] focuses on

Benchmark No. System
Calls

System Call
Log (MB)

Archive
(MB)

Science Experiments
blastall 33k 28 60
formatdb 58k 38 78
glomosim 792 3 7
raxml 948 3 8
runassembly 7M 3264 5270

SPEC INT 2000 Benchmarks
bzip 334 26 53
crafty 9874 3 6
gap 13k 6 13
gcc 66k 45 89
gzip 473 39 80
mcf 65 5 11
parser 8k 5 10
twolf 467 5 10
vortex 10k 307 338
vpr 379 14 28

Figure 9. Space Overheads

reproducing experiments written specifically in Java. The
experiment has to be annotated to record input and output
to methods. Rex is more powerful than these tools because
it automatically captures the code and data of an experiment
(independent of the source language), and it does not require
that the user modify anything.

Many debugging systems record executions of applica-
tions and use replay to reproduce errors [16, 9, 12, 4, 7].
Systems such as Jockey[16] and Liblog[9] inject a library
at runtime into an application to record and replay it. They
work on applications written in C/C++; Liblog also needs
to modify the thread scheduler for multi-threaded program.
Systems such as R2[12] require access to the source code
of an application because the user has to add annotations in
order to record and replay an application.

These systems focus on reproducing the exact states
the application execution so that they reproduce any bugs.
By contrast, the goal of Rex is to reproduce externally
deterministic output. The internal states of an application can
differ—as they will in multi-threaded programs especially—
as long as the visible output is the same. Tornado [6] is
similar to Rex, and it uses system call logging to record
and replay programs. However, Tornado does not archive
the apparatus, and to use it one has to make changes to
the operating system. Rex aims to enable one to replay
an experiment—or run new ones—long after the original
experiment was recorded.

Systems such as Revirt[7] and iDNA [4] use virtu-
alization to record and replay whole systems. They are
heavyweight systems because they record the entire virtual
machine (VM) on which an experiment runs, and replaying

9

an experiment requires a hypervisor that can understand that
VM to perform replay. Rex is a much lighter-weight system
and supports running new experiments, although it does
require that replay and runnew execute on the same type of
operating system on which an experiment was recorded.

6. Conclusions and Future Work
The Rex system supports recording and replaying experi-
ments and comparing differences between recorded exper-
iments. Because it captures the apparatus of an experiment,
it also supports running new experiments on a recorded
apparatus. Rex can handle a wide variety of computational
science experiments—from shell scripts to multi-process
workflows and multi-threaded programs—and it does not
require that the user modify an experiment in any way.

Rex cannot yet handle MPI programs that run on a cluster
of machines, but work is underway to do so. At present,
differences between experiments are computed off-line; we
are also working on extending Rex to report differences on
the fly for long running programs.

There are also a few limitations of our current imple-
mentation. Rex monitors a program by trapping system
calls, so it does not handle input received by using machine
level instructions such as rdtsc, but instructions such as
this have not been used in any application that we have
tested. Rex also does not handle fast system calls such
as gettimeofday that are included in the newer Linux
kernels; these could be intercepted by pre-loading hooks for
each application using the LD PRELOAD mechanism. Finally,
Rex does not archive the operating system on which a
recorded experiment is run; this could be supported by using
virtualization technology.

References
[1] Madagascar. http://www.reproducibility.org/wiki/

Main_Page.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J.
Lipman. Basic local alignment search tool. Journal of
molecular biology, 215(3):403–410, 1990.

[3] SF Altschul, TL Madden, AA Schaffer, J. Zhang, Z. Zhang,
W. Miller, and DJ Lipman. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs.
Nucleic acids research, 25(17):3389, 1997.

[4] S. Bhansali, W.K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drini, D. Mihoka, and J. Chau. Framework for instruction-
level tracing and analysis of program executions. In
ACM/Usenix International Conference On Virtual Execution
Environments: Proceedings of the 2 nd international
conference on Virtual execution environments. Association
for Computing Machinery, Inc, One Astor Plaza, 1515
Broadway, New York, NY, 10036-5701, USA,, 2006.

[5] J. Buckheit and D.L. Donoho. Wavelab and reproducible
research. Wavelets and Statistics, 103:55–81, 1995.

[6] F. Cornelis, M. Ronsse, and K. De Bosschere. Tornado:
A novel input replay tool. In Proceedings of the 2003
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA, volume 3,
pages 1598–1604.

[7] G.W. Dunlap, S.T. King, S. Cinar, M.A. Basrai, and P.M.
Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replay. ACM SIGOPS Operating
Systems Review, 36:211–224, 2002.

[8] J. Felsenstein. Evolutionary trees from DNA sequences:
a maximum likelihood approach. Journal of molecular
evolution, 17(6):368–376, 1981.

[9] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX Annual
Technical Conference, volume 2006, pages 2–3, 2006.

[10] R. Gentleman. Reproducible research: A bioinformatics case
study. Statistical Applications in Genetics and Molecular
Biology, 4(1):2, 2005.

[11] R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling,
S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al.
Bioconductor: open software development for computational
biology and bioinformatics. Genome biology, 5(10):R80,
2004.

[12] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M.F.
Kaashoek, and Z. Zhang. R2: An application-level kernel for
record and replay. In Proceedings of the Eighth Symposium
on Operating Systems Design and Implementation (OSDI08),
pages 193–208, 2008.

[13] M. Haardt and M. Coleman. ptrace (2), 1999.

[14] S.T. King, G.W. Dunlap, and P.M. Chen. Debugging
operating systems with time-traveling virtual machines. In
Proc. USENIX Annual Technical Conference, pages 1–15,
2005.

[15] D. Ramage and A.J. Oliner. RA: ResearchAssistant for the
computational sciences. In Proceedings of the 2007 workshop
on Experimental computer science, page 19. ACM, 2007.

[16] Y. Saito. Jockey: a user-space library for record-replay
debugging. In Proceedings of the sixth international
symposium on Automated analysis-driven debugging table
of contents, pages 69–76. ACM New York, NY, USA, 2005.

[17] M. Schwab, M. Karrenbach, and J. Claerbout. Making
Scientific Computations Reproducible. Computing in Science
& Engineering, pages 61–67, 2000.

[18] A. Stamatakis. The RAxML 7.0. 4 Manual. The Exelixis Lab,
LMU Munich.(April 2008).

[19] T.T. Torres, M. Metta, B. Ottenwälder, and C. Schlötterer.
Gene expression profiling by massively parallel sequencing.
Genome research, 18(1):172, 2008.

[20] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library
for parallel simulation of large-scale wireless networks. ACM
SIGSIM Simulation Digest, 28(1):154–161, 1998.

10

