
22

rule. The graph on the right shows the number of pokes sent per context switch, which can be used to asses the relative
magnitude of the input waiting rule and null message overheads.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1 2 3 4 5 6 7

C
o
n
t
e
x
t

S
w
i
t
c
h
e
s

p
e
r

M
u
l
t
i
R
e
a
d

Number of processors

MultiRead Jacobi

3.8

4

4.2

4.4

4.6

4.8

5

5.2

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

C
o
n
t
e
x
t

S
w
i
t
c
h

Number of processors

MultiRead Jacobi

21

The next graph shows how often null messages were sent when they were considered. In this algorithm, there
were many more times when null messages were considered but deemed unnecessary than in the Matrix Multiply al-
gorithm.

The following two graphs involve the effect of null messages on the context switching of Poker processing
elements. The left graph shows the frequency that reads by adjacent processors cause processing elements to be moved
onto the ready queue when they are blocked waiting for I/O. The graph on the right shows the frequency that null mes-
sages cause extraneous context switches, i.e. that they cause processing elements to be moved to the ready queue and
when activated, the processing elements are immediately swapped back out because no I/O messages had arrived. Note
that there were no instances when extraneous context switches occurred in this algorithm, in contrast to the Matrix
Multiply algorithm.

The final two graphs pertain to the overhead of the input waiting rule. The graph on the left shows the number
of context switches perMultiRead, an indication of the amount of time which should be charged to the input waiting

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

P
o
k
e

C
o
n
s
i
d
e
r
e
d

Number of processors

MultiRead Jacobi

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7

W
a
k
e
u
p
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

MultiRead Jacobi

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

N
u
l
l

R
e
a
d
s

p
e
r

P
o
k
e

S
e
n
t

Number of processors

MultiRead Jacobi

20

MultiRead Jacobi Iteration

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator running the version
of the Jacobi Iteration algorithm usingMultiRead construct. Once again, we only show the data for the compute phase,
since we believe that the timings on the aggregate phase are too small for the data to be meaningful. Here, not only do
we see the effect of null messages on the overhead, but overhead due to the input waiting rule is also present. Once
again, the term “pokes” is used in lieu of the term “null messages” in the graphs.

Once again we begin by considering the total number of null messages or “pokes”. On the left we show the
total number of null messages which were sent, and see that it is no longer invariant with respect to the number of
processors. Likewise, the total number of null messages which were considered also changes with the number of pro-
cessors. This graph is shown on the right

In the next two graphs the above data is simply divided by the number of reads, which is an invariant.

45000

45500

46000

46500

47000

47500

48000

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

S
e
n
t

Number of processors

MultiRead Jacobi

64000

66000

68000

70000

72000

74000

76000

78000

80000

82000

84000

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

Number of processors

MultiRead Jacobi

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

1 2 3 4 5 6 7

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

p
e
r

R
e
a
d

Number of processors

MultiRead Jacobi

5.05

5.1

5.15

5.2

5.25

5.3

5.35

5.4

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

MultiRead Jacobi

19

The next graph verifies that all null messages which were considered were actually sent.

The final two graphs for these simulation runs involve the effect of the null messages on the Poker threads
package. The graph on the left shows the frequency that reads cause adjacent Poker processing elements to be moved
onto the ready queue when they were blocked waiting for reads. The graph on the right shows the frequency that null
messages cause extraneous context switches. In these cases the null messages caused the processing elements to be
placed on the ready queue, and when they were activated, they were immediately swapped back out because no I/O
messages had arrived.We see much more variation in this algorithm than in the Matrix Multiply algorithm.

0.9

0.95

1

1.05

1.1

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

P
o
k
e

C
o
n
s
i
d
e
r
e
d

Number of processors

Plain Jacobi

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

W
a
k
e
u
p
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

Plain Jacobi

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1 2 3 4 5 6 7

N
u
l
l

R
e
a
d
s

p
e
r

P
o
k
e

S
e
n
t

Number of processors

Plain Jacobi

18

Plain Jacobi Iteration

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator run on the Jacobi
Iteration code which doesnot useMultiRead.We only show the results of the compute phase of the algorithm, since
we believe that the data for the aggregate phase may not be representative since the time spent in this phase is so short.
Once again, the graphs in this section measure the effects of adding null messages, or “pokes”, to the original Poker
simulator; no overheads are present from the input waiting rule.

We begin by considering the total number of null messages, or “pokes”. On the left we show the total number
of null messages that were sent and see that the number is invariant with respect to the number of processors. It is also
interesting to see that the number is invariant over all sampled runs. On the right we show the total number of null
messages considered, which equals the number of null messages sent in this algorithm

In the next two graphs, we simply divide the data in the above graphs by the number of reads, which is also
invariant in the simulations, so we once again obtain constant data.

29000

30000

31000

32000

33000

34000

35000

36000

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

S
e
n
t

Number of processors

Plain Jacobi

29000

30000

31000

32000

33000

34000

35000

36000

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

Number of processors

Plain Jacobi

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

Plain Jacobi

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

1 2 3 4 5 6 7

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

p
e
r

R
e
a
d

Number of processors

Plain Jacobi

17

rule. The graph on the right shows the number of pokes sent per context switch, which can be used to asses the relative
magnitude of the input waiting rule and null message overheads.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7

C
o
n
t
e
x
t

S
w
i
t
c
h
e
s

p
e
r

M
u
l
t
i
R
e
a
d

Number of processors

MultiRead Matrix Multiply

-200

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7
P
o
k
e
s

S
e
n
t

p
e
r

C
o
n
t
e
x
t

S
w
i
t
c
h

Number of processors

MultiRead Matrix Multiply

16

The next graph shows that there were times when null messages were considered, but not sent. This corre-
sponds to the times when the null message would not have increased the timestamp of the processing element’s clock,
so it was not necessary to send the message.

The following two graphs involve the effect of null messages on the context switching of Poker processing
elements. The left graph shows the frequency that reads by adjacent processors cause processing elements to be moved
onto the ready queue when they are blocked waiting for I/O. The graph on the right shows the frequency that null mes-
sages cause extraneous context switches, i.e. that they cause processing elements to be moved to the ready queue and
when activated, the processing elements are immediately swapped back out because no I/O messages had arrived.

The final two graphs pertain to the overhead of the input waiting rule. The graph on the left shows the number
of context switches perMultiRead, an indication of the amount of time which should be charged to the input waiting

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

P
o
k
e

C
o
n
s
i
d
e
r
e
d

Number of processors

MultiRead Matrix Multiply

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7

W
a
k
e
u
p
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

MultiRead Matrix Multiply

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

N
u
l
l

R
e
a
d
s

p
e
r

P
o
k
e

S
e
n
t

Number of processors

MultiRead Matrix Multiply

15

MultiRead Matrix Multiply

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator running the version
of the Matrix Multiply algorithm usingMultiRead construct. Here, not only do we see the effect of null messages on
the overhead, but overhead due to the input waiting rule is also present. Once again, the term “pokes” is used in lieu
of the term “null messages” in the graphs.

Once again we begin by considering the total number of null messages or “pokes”. On the left we show the
total number of null messages which were sent, and see that it is no longer invariant with respect to the number of
processors. Likewise, the total number of null messages which were considered also changes with the number of pro-
cessors. This graph is shown on the right.

In the next two graphs the data in the above graphs in simply divided by the number of reads, which is an
invariant in the simulations.

4300

4350

4400

4450

4500

4550

4600

4650

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

S
e
n
t

Number of processors

MultiRead Matrix Multiply

4300

4350

4400

4450

4500

4550

4600

4650

4700

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

Number of processors

MultiRead Matrix Multiply

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

1 2 3 4 5 6 7

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

p
e
r

R
e
a
d

Number of processors

MultiRead Matrix Multiply

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

MultiRead Matrix Multiply

14

The next graph verifies that all null messages which were considered were actually sent.

The final two graphs for these simulation runs involve the effect of the null messages on the Poker threads
package. The graph on the left shows the frequency that reads cause adjacent Poker processing elements to be moved
onto the ready queue when they were blocked waiting for reads. The graph on the right shows the frequency that null
messages cause extraneous context switches. In these cases the null messages caused the processing elements to be
placed on the ready queue, and when they were activated, they were immediately swapped back out because no I/O
messages had arrived.

0.9

0.95

1

1.05

1.1

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

P
o
k
e

C
o
n
s
i
d
e
r
e
d

Number of processors

Plain Matrix Multiply

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 3 4 5 6 7

N
u
l
l

R
e
a
d
s

p
e
r

P
o
k
e

S
e
n
t

Number of processors

Plain Matrix Multiply

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5 6 7

W
a
k
e
u
p
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

Plain Matrix Multiply

13

Appendix B: Performance Graphs

Plain Matrix Multiply

The graphs in this section correspond to the Chandy-Misra version of the Poker simulator run on the Matrix
Multiply code which doesnot useMultiRead. Thus these graphs measure the effects of adding null messages to the
original Poker simulator. In the graphs, the term “pokes” is used in lieu of “null messages”.

We begin by considering the total number of null messages, or “pokes”. On the left we show the total number
of null messages that were sent and see that the number is invariant with respect to the number of processors. It is also
interesting to see that the number is invariant over all sampled runs. On the right we show the total number of null
messages considered, which equals the number of null messages sent in this algorithm.

In the next two graphs we simply divide the data in the above graphs by the number of reads, which is also
invariant in these simulations, so we once again obtain constant data.

3900

4000

4100

4200

4300

4400

4500

4600

4700

4800

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

S
e
n
t

Number of processors

Plain Matrix Multiply

3900

4000

4100

4200

4300

4400

4500

4600

4700

4800

1 2 3 4 5 6 7

T
o
t
a
l

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

Number of processors

Plain Matrix Multiply

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

1 2 3 4 5 6 7

P
o
k
e
s

C
o
n
s
i
d
e
r
e
d

p
e
r

R
e
a
d

Number of processors

Plain Matrix Multiply

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

1 2 3 4 5 6 7

P
o
k
e
s

S
e
n
t

p
e
r

R
e
a
d

Number of processors

Plain Matrix Multiply

12

identify the port with the earliest possible message arrival;

}

if there is no message ready on the required port {

SendNullMessage(earliest arrival time);

forevery port we have a connection too {

if there is a message waiting at that port {

++switchCount[port];

}

++CurProcs->switches;

put this process to sleep;
}

}

else {

CurProcs->waitedOnWrong += switchCount[identified earliest arrival];

done;
}

}

ReadPort(identified earliest arrival);
}

/*
 * Procedure wakeupOldPokes
 *
 * It is possible for a poke to occur after a process has last examined
 * its input queue and decided to go to sleep. This routine awakens
 * processes that are asleep with waiting pokes.
 */

wakeupOldPokes()
{

for each sleeping process {

if process went to sleep with an unprocessed poke {

++Process->sleeperWakeUpsSent;

wait the process up;

}
}

}

/*
 * Procedure ContextSwitch:
 *
 * Suspends the current process. Starts the next runable process
 */
ContextSwitch(...)
{ /* Numbers are indexes for sequent */

 ++CurProcs->contextSwitches;

 suspend the current process;

 activate the next runnable process;
}

11

Appendix A: Measurement Modifications

The following code templates identify the locations where measurements were taken during the executation
of the simulator. Each Poker Processing Element maintained its own set of counters. The counters were “wrapped” in
conditionally compiled code allowing for executation time measures with and without the additional counter code.

/*
 * Procedure SendNullMessage
 *
 * Go poke my connections simulating NULL messages
 * The calling process will never send a message earlier than.... time
 */

SendNullMessage(time)
{

foreach connected port {

++CurProcs->pokesConsidered;

if time is greater than the last time we poked this port {

++CurProcs->pokesSent;

poke the port;

if the process is waiting for IO from this port {

++CurProcs->wakeUpsSent;

wake the process up;

}
}

}
}

/*
 * Procedure ReadPort
 *
 * Read a message of a specified size on a specified port
 */

ReadPort(...)
{

++CurProcs->reads;

while there is no data on the requested port {

++CurProcs->nullReads;

put this process to sleep;
}

read an process the waiting message;

SendNullMessage(processes current timestamp);
}

/*
 * Procedure ReadMultiPort
 *
 * Read a message from anyone of a set of ports
 * Apply the input waiting rule to insure that the earliest
 * possible message is read first.
 */

ReadMultiPort(...)
{

++CurProcs->multiPortReads;

loop until done {

foreach port requested in the MultiRead {

10

[4] Fujimoto, R.M. 1989. Time warp on a shared
memory multiprocessor.Transactions of the Society for
Computer Simulation6(3): 211-239.

[5] Fujimoto, R.M. 1990. Parallel discrete event sim-
ulation.Communications of the ACM33(10): 30-53.

[6] S. Y. Kung, K. S. Arun, R. J. Gal-Ezer, and D. B.
B. Rao. Wavefront array processor: Language, architec-
ture, and applications.IEEE Transactions on Computers,
C-31(11): 1054-1065, 1982.

[7] Lin, Y.-B. and E.D. Lazowska. 1990. Optimality
considerations for “time-warp” parallel simulation. In
Proceedings of the SCS Multiconference on Distributed
Simulation, ed. D. Nicol, 29-34. SCS, San Diego, Cali-
fornia.

[8] Lin, Y.-B., E.D. Lazowska, and M.L. Bailey.
1990. Comparing synchronization protocols for parallel
logic-level simulation. InProceedings of the 1990 Inter-
national Conference on Parallel Processing, ed. P.-C.
Yew, III-223–III-227. Penn State, University Park,
Pennsylvania.

[9] Lipton, R.J. and D.W. Mizell. 1990. Time warp
vs. chandy-misra: A worst-case comparison. InProceed-
ings of the SCS Multiconference on Distributed
Simulation, ed. D. Nicol, 137-143. SCS, San Diego, Cal-
ifornia.

[10] Madisetti, V., J. Walrand, and D. Messerschmitt.
1990. Synchronization in message-passing computers –
models, algorithms, and analysis. InProceedings of the
SCS Multiconference on Distributed Simulation, ed. D.
Nicol, 35-48. SCS, San Diego, California.

[11] Mitra, D. and I. Mitrani. 1984 Analysis and opti-
mum performance of two message-passing parallel
processors synchronized by rollback.Performance’84,
35-50.

[12] Nelson, P.A. 1987. Parallel Programming Para-
digms. Ph.D. thesis, Computer Science Department,
University of Washington, Seattle, Washington.

[13] Nicol, D.M. 1990. Performance bounds on paral-
lel self-initiating discrete-event simulations. Technical
Report 90-21, ICASE.

[14] Notkin, D., L. Snyder, D. Socha, M.L. Bailey, B.
Forstall, K. Gates, R. Greenlaw, W.G. Griswold, R.J.
Holman, R. Korry, G. Lasswell, R. Mitchell, and P.A.
Nelson. 1988. Experiences with poker. InProceedings of
the ACM/SIGPLAN PPEALS, 10-20. Association of
Computing Machinery, New York, New York.

[15] Reynolds, P.F. and P.N. Dickens. 1989. SPEC-
TRUM: A parallel simulation testbed. InProceedings of
the 4th Annual Hypercube Conference.

[16] Snyder, L. 1984. Parallel programming and the
Poker programming environment.Computer17(7): 27-
36.

[17] Snyder, L. 1988. Poker (4.2) programmer’s refer-
ence guide. Technical Report TR88-10-05, Computer
Science Department, University of Washington, Seattle,
Washington.

AUTHOR BIOGRAPHIES

MARY L. BAILEY is an assistant professor in
the Department of Computer Science at the University of
Arizona. Her research interests include parallel and dis-
tributed simulation, computer-aided design for VLSI,
and parallel computation.

MICHAEL A. PAGELS is a research assistant
in the Department of Computer Science at the University
of Arizona. His research interests include multi-proces-
sor architecture and operating system simulation.

9

null messages generally decreases with the number of
processors, although there is an increase in the cases
when the processors are more poorly balanced. We also
see that there are a number of instances when null mes-
sages are considered but not sent. In our code, we only
send null messages if the time stamp differs from the last
null message that was sent. In this phase, there seem to
be a large number of times when the null message being
sent has the same time stamp as the last null message the
PPE sent. This seems to be most pronounced in the three
and five processor experiments. We also see some over-
head due to the input waiting rule, although there are
many fewer context switches than in the compute phase.
In fact, the number of null message per context switch
ranges from 20 to 70, a huge increase over the compute
phase. Four processors seems to be particularly suscepti-
ble to extraneous context switches. It is the instance
where poor PPE balancing is most evident.

To summarize the results for the aggregate
phase, we see very different behavior in this phase than
in either of the two other experiments. This is likely due
in part to the small execution time of this phase. Before
any concrete conclusions can be drawn concerning the
effect of the tree interconnection structure on the over-
heads in the conservative algorithms, a more time-
consuming example needs to be used.

5 CONCLUSIONS

We were able to measure many of the over-
heads present in the conservative algorithm. In the first
example, the matrix multiply, we saw that a simple exe-
cution model was generally able to explain the difference
in theMultiRead andPlain versions, demonstrating the
minimal effects of overhead due to the conservative al-
gorithm. The major overhead present in this case was the
addition of null messages which increased the overall
workload. The absence of other effects is likely due to
the well-balanced algorithm.

In the mesh interconnection structure, we saw
some impact of edge effects. Here, the simple execution
model no longer explained the difference in execution
times. The total number of pokes increased, as well as the
number of context switches due to the input waiting rule.
The number of pokes per Read ranged from 5.08 to 5.32
and generally increased with the number of processors.
The number of pokes per context switch ranged from 3.9
to 5.1 and generally decreased with the number of pro-
cessors.

The binary tree interconnection structure be-
haved quite differently from either of the other two. We

saw that the addition of null messages actually decreased
the simulation time. Unfortunately, the run times were so
small, that the data drawn from this experiment is incon-
clusive. However, we did see that poor balance of PPEs
to processors had an large impact on both execution time
and context switch overhead.

There is still a great deal of work to be done in
characterizing the overheads in conservative simula-
tions. The interconnection structure seems to have a
major impact on the resulting overheads. We were able
to discuss only a single algorithm using each intercon-
nection structure in this paper. Imbalances in
communication patterns and structures appear to result in
increased overheads.

In the future, we hope to quantify the effects of
the dynamic overheads, such as the effects of the input
waiting rule, so that they can be used in analytical mod-
els. The data here suggests that this is a viable task, that
it is feasible to characterize the overheads in the conser-
vative algorithm for this class of programs.

ACKNOWLEDGEMENTS

We would like to thank John Luiten and the Lab
Staff in our department for providing support and single-
user access to the Sequent Symmetry. We would also
like to thank Larry Snyder for providing access to the
Poker programming environment and sample programs,
and Richard Fujimoto for giving us his parallel simula-
tors which provided an excellent point of reference for
our work. This work is funded in part by National Sci-
ence Foundation Grant CCR-9110443.

REFERENCES

[1] Bryant, R.E. 1977. Simulation of packet commu-
nication architecture computer systems. Technical
Report MIT-LCS-TR-188, Massachusetts Institute of
Technology.

[2] Chandy, K.M. and J. Misra. 1979. Distributed
simulation: A case study in design and verification of
distributed programs.IEEE Transactions on Software
EngineeringSE-5(5): 440-452.

[3] Felderman, R.E. and L. Kleinrock. 1991. Two
processor time warp analysis: Some results on a unifying
approach. InProceedings of the SCS Multiconference on
Distributed Simulation, eds. V. Madisetti, D. Nicol, and
R. Fujimoto, 3-10. SCS, San Diego, California.

8

null messages per Read. The number of null messages
per context switches is not constant, but ranged from 3.9
to 5.1. One interesting phenomenon that we observed is
that these overheads decrease when three or five proces-
sors are used. We saw a “zig-zag” shaped graph for many
of the measured overheads, with the magnitude of the
peaks and valleys generally increasing with the number
of processors. For example, Figure 6 shows the total

number of pokes sent as a function of the number of pro-
cessors.

In summary, we see overheads in the Jacobi
compute phase, due to both the presence of null messag-
es and the input waiting rule. This increase is likely due
in part to the imbalances caused by edge effects in the
mesh, since the PPEs on the edge of the mesh have dif-
ferent communication patterns from those in the interior
of the mesh. This problem does not fit the typical parallel
execution model, demonstrating that the conservative
overheads are impacting the simulation execution time.
We did measure the ratio of null messages to context
switches and found that there were on average four to
five null messages sent per context switch. Thus we can
begin to quantitatively compare the overheads spent in
the input waiting rule and time spent in processing null
messages.

We now consider the overheads in the aggre-
gate phase. This phase uses a binary tree as its
interconnection structure, with the modification that the
root node has a third child, which is the remaining PPE.
Just over half of the PPEs are leaf nodes, which perform

45000

45500

46000

46500

47000

47500

48000

1 2 3 4 5 6 7

N
u
m
b
e
r

o
f

p
o
k
e
s

Number of processors

Multiread

Figure 6: Total Number of Pokes Send in the Jacobi
Compute Phase

no reads, but simply write a value to their parent nodes.
The inner nodes of the tree require twoMultiReads, and
the root node requires three. Thus there are many fewer
Reads than in the other phase. Consequently the execu-
tion times are much shorter.

As before we begin by considering the differ-
ence in execution times betweenOriginal and Plain
(Figure 7).

We have a really unusual case here. If we look
at Original compared toPlain, we see that by adding
null messages we actually improved the running time of
the simulation in all cases except the uniprocessor case!
We once again found the total number of null messages
sent was invariant, although the total number sent here
was only 315, substantially less than in the other two ex-
amples. We see a large number of pokes sent per read,
five. As in the matrix multiply, this is due to null pokes
being sent as PPEs terminate. The effect is even more
dramatic here because half of the PPEs perform no reads,
but all terminate. There is also a rather substantial num-
ber of extraneous context switches due to null message
arrival, an effect seen in all runs. We believe that the in-
creased performance of thePlain overOriginal can be
attributed to the small amount of additional code which
is executed, together with its impact on scheduling of
PPEs. Transmission of null messages does impact the
scheduler, and in this case, it appears to have increased
its efficiency.

The overheads seen in theMultiRead experi-
ments are relatively straightforward. The total number of

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7

R
u
n
t
i
m
e

d
i
f
f
e
r
e
n
c
e
(
s
e
c
)

Number of processors

Multread vs Plain

Plain vs Original

Figure 7: Difference in Executation Times for the
Jacobi Aggregate Phase

7

tains code for only 12 PPEs. It is this fifth processor
which generates all of the context switches and addition-
al null messages. An analogous situation holds for the six
and seven processor case, although in the six processor
case there are two processors which are unbalanced so
both are performing context switches and sending extra
null messages, causing the total number of context
switches in the six processor case to be much larger than
in the five and seven processor cases. These extra context
switches have a minimal effect on the overall simulation
time, since it is the fast processors which are wasting
time. They are likely to have higher idle rates inOriginal
andPlain.

Thus the difference in execution time is due to
the overhead of performingMultiReads instead of Reads,
together with additional simulation time required to pro-
cess the additional code present in theMultiRead version
of the algorithm. In fact, we see that theMultiRead vs.
Plain curve fits the predicted difference formula, imply-
ing that there are no additional overheads due to the input
waiting rule which impact the execution time of the sim-
ulation.

In summary, we found that in this example, the
overheads due to the addition of Chandy-Misra were
completely accounted for by the typical execution curve
for any parallel algorithm. There are no additional fac-
tors related to the Chandy-Misra algorithm, except for
computing the increment in the total work. Thus it is
straightforward to compute the extra work in this prob-
lem which is due to the Chandy-Misra algorithm.

4.3 Jacobi Iteration

We will discuss each phase of the Jacobi Itera-
tion separately since each has a different interconnection
structure. We begin with the compute phase, which uses
a mesh interconnection structure. As in the matrix multi-
ply, we begin by considering the difference in execution
times in theOriginal andPlain measurements (see Fig-
ure 5).

Once again, the total number of null messages
is independent of the number of processors. Here there
are a total of 3.63214 null messages sent per read. This
number is lower than four because the PPEs on the edges
of the mesh send only three messages (the corner PPEs
send two), and there are many more Reads, an average of
140 per PPE. Unlike the matrix multiply, there is some
context switch overhead in all versions from processes
waiting for Reads being awakened by receiving null
messages. These seem to be mainly in the PPEs on the
edges of the mesh when the number of processors is

small, but becomes widespread as the number of proces-
sors increases. The largest number of context switches
occur when five, six, or seven processes are used. Unlike
the matrix multiply, although there is often more context
switch overhead in the processors with unbalanced num-
bers of PPEs, there is a significant amount of context
switching in other processors. This extra context switch-
ing doesn’t seem to adversely affect the execution time
of the simulation, because we can fit the difference curve
to the simple parallel execution model. Hence, the extra
“thrashing” which occurs in unbalanced processors is not
affecting the overall simulation time.

The overheads due to changes between the
Plain andMultiRead execution times are more difficult
to characterize. There is a superlinear decrease in over-
head going from one to two processors, which implies
that the total overhead in the system actually decreased.
In fact, we see this for other numbers of processors also.
The data points here donot fit the simple parallel execu-
tion model, implying that there are additional overhead
terms due to the dynamic characteristics of the Chandy-
Misra algorithm which affect the simulation execution
time.

The measurements of conservative algorithm
overheads indicate that the number of null messages in-
creased overPlain, and additional context switches due
to the input waiting rule were also present. In fact, there
is on average between 1 and 1.38 context switches per
read. More interestingly, the number of context switches
per Read has a similar shape to the average number of

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7

R
u
n
t
i
m
e

d
i
f
f
e
r
e
n
c
e
(
s
e
c
)

Number of processors

Multread vs Plain

Plain vs Original

Figure 5: Difference in Simulation Executation
Times for the Jacobi Compute Phase

6

models: Original , Plain, and MultiRead. Figure 4
shows these for the Matrix Multiply algorithm.

We begin by considering the difference in exe-
cution times for theOriginal andPlain measurements.
Since the same algorithm is used in both measurements,
and noMultiReads are used, this difference must be com-
pletely due to null message overhead.

We computed the total number of null messages
in the runs and found it to be invariant with respect to the

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

R
u
n
t
i
m
e
(
s
e
c
)

Number of processors

Multiread

Plain

Original

Figure 3: Executation Time for the Jacobi Aggregate
Phase

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7

R
u
n
t
i
m
e

d
i
f
f
e
r
e
n
c
e
(
s
e
c
)

Number of processors

Multread vs Plain

Plain vs Original

Figure 4: Difference in Simulation Executation
Times for the Matrix Multiply

number of processors. There are exactly 4.25 null mes-
sages sent per read in all cases, and there are a total of
1024 reads, 16 per PPE. Whenever a read is done, all 4
neighbors are poked. Additionally, all neighbors are
poked when each PPE finishes. Thus we obtain an aver-
age of 4.25 pokes per read. There is no additional
overhead from extraneous context switches due to pro-
cessors waiting for Reads except when the number of
processors is five or six. In these cases the total number
of extraneous context switches is small. Thus we can
conclude that the overhead due to null messages is essen-
tially linear in the number of PPEs, since every PPE
generates and receives the same number of null messag-
es. Additionally, the PPE’s are mapped to simulator
processes in row-major order, so in most cases the same
number of PPE’s are mapped onto every processor.

If we assume that the original Poker simulator
reflects a “typical” parallel execution curve, then we can
approximate the execution time of the simulation as

 wherep is the number of proces-

sors,W is the total amount of work,c is a constant related
to the extra code due to the original Poker parallel ver-
sion, and ε is a small constant involved with
initialization, such as forking processes. Since we have
basically added a constant amount of work toW per pro-
cessor, we can compute the difference between the
Original and Plain versions to be: whereδ W is the
amount of work we added to each processor.

Using the 6 processor value as the basis point

we fit to the difference curves in Fig-

ure 4. With the exception of the single processor case, the
data fromPlain vs.Original fits within one standard de-
viation of the calculated values. The single processor
difference is less than predicted, indicating that based on
multiprocessor performance, single processor perfor-
mance is faster than expected. More analysis is required
to exactly determine the cause of this effect.

Now we consider the overhead differences be-
tween thePlain andMultiRead execution times. In the
one to four processor runs, the total number of null mes-
sages did not change. In addition, there were no
extraneous context switches due toMultiReads. For the
larger numbers of processors, there were additional null
message and context switches. These all occurred on the
processor with the least balanced load. For instance,
when 5 processors are used for 64 PPEs, four processors
contain code for 13 PPEs and the other processor con-

Torig εp c
W
p

+=

∆ p() c
δW
n

=

5

Two versions of the Poker Simulator and two
versions of each test program were used in the measure-
ments. Table 1 shows the names that we use for each of
the measurements.

Original is the original Poker simulator, with
the algorithm writtenwithout the MultiRead construct.
This provides a baseline for our comparison, since there
is no overhead here due to the Chandy-Misra algorithm.
Plain uses the Chandy-Misra version of the Poker simu-
lator but run on the version of the algorithm which does
not useMultiRead. Thus there is no input waiting rule
overhead in this version, but there is overhead due to null
messages.MultiRead uses the Chandy-Misra version of
the Poker simulator run on the version of the algorithm
which usesMultiRead. Both null message and input
waiting rule overheads will be present in this version.

In both versions, there is a heavy-weight UNIX
process associated with each running Symmetry proces-
sor. Poker PPEs are implemented as light-weight
processes using a light-weight threads package provided
in the original Poker parallel simulator. The heavy-
weight processes are actually just parked (suspended) af-
ter the first phase of a Poker program; in subsequent
phases these processes are simply signaled

We begin by presenting the execution times of
the three simulators on each of the algorithms. These are
shown in Figure 1, Figure 2, and Figure 3. The average
execution times are plotted in the graphs. Standard devi-
ations are shown using error bars.

Each of the points in the figure represents the
average of 22 runs. The execution times were printed out
as part of the program and measures the execution time
for each phase from the point just before the processes
are forked to the point when the last forked process has
completed. The measurements do not include any over-
head time to print the statistical information that was

gathered during the run1.

1. We compared the execution times both with and without measure-
ments and found no significant difference. Thus all results here are with
measurements turned on. Appendix A details the measurement points
added to the simulator

Table 1: Naming Conventions used in the
Measurements

No MultiRead MultiRead

Original Simulator Original

Modified Simulator Plain MultiRead

In the following sections we will discuss the
overheads found in each of the two algorithms. See Ap-
pendix A and Appendix B for more detailed
experimental data.

4.2 Matrix Multiply

The easiest way to visualize the overheads in
the modified Poker simulator is to consider the differ-
ence in execution times between the three experimental

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7

R
u
n
t
i
m
e
(
s
e
c
)

Number of processors

Multiread

Plain

Original

Figure 1: Executation Times for Matrix
Multiplication

0

10

20

30

40

50

60

1 2 3 4 5 6 7

R
u
n
t
i
m
e
(
s
e
c
)

Number of processors

Multiread

Plain

Original

Figure 2: Executation Time for the Jacobi
Computation Phase

4

when it wasn’t. These timing problems were exacerbated
with the addition ofMultiReads.

3 THE TEST PROGRAMS

Two test programs have been run to test the ef-
ficiency of the Chandy-Misra strategy on Poker
programs. One is a systolic Matrix Multiply algorithm.
The other program implements the Jacobi iterative meth-
od for solving Laplace’s equation on a rectangle. The
Matrix Multiply algorithm and a single-point version of
the Jacobi Iteration are described in Nelson (1987). Both
are implemented on 64 Poker processing elements
(PPEs). Because the structure of the algorithm impacts
the resulting performance and overhead, we will describe
each of the algorithms briefly.

3.1 Matrix Multiply

The matrix multiply algorithm is a well-known
wavefront algorithm first proposed by Kung et al. (1982)
to multiply twon × n matrices,A andB together. Our im-
plementation uses two 8× 8 input arrays. It differs from
the original algorithm in that the matrix elements begin
in the PPEs instead of being fed into the matrix from the
edges. The 64 PPEs are connected in a 8× 8 torus, creat-
ed from an 8× 8 matrix by connecting the ends of each
row and column. The matrix elements flow vertically or
horizontally around the torus. The result matrix is also
stored in the processors.

In this implementation, the elementsA(i,j) and
B(i,j) are pre-routed to the appropriate processor so that
the data is staged for the systolic portion of the algorithm.
The result array,C, has elementC(i,j) stored in processor
(i,j). This algorithm is implemented in two phases. In the
first phase we load random numbers into the appropriate
processors to form the matricesA andB. In the second
phase the matrix multiply is performed. All measure-
ments reported in this article pertain only to the second
phase, the matrix multiply.

3.2 Jacobi Iteration

The Jacobi Iteration is a parallel implementa-
tion of the Jacobi iterative method for solving Laplace’s
equation on a rectangle. The rectangle is represented by
n discrete values which correspond to the voltages at
points in the rectangle. The boundary and the voltage
sources are fixed constants. In the algorithm, an initial
guess is computed for each of the points, and then new
values are iteratively obtained by averaging the values of
its four neighbors until the voltage stabilizes.

In the Poker implementation, this process is
represented as two phases, one for the iterations, and an-
other to determine whether the system has stabilized.
The iterate or compute phase uses a mesh interconnec-
tion structure, since each processor must obtain values
from each neighbor. The aggregate phase uses a tree in-
terconnection structure since it must determine whether
all processes have stabilized. In our implementation a
rectangular set of points is maintained in each processor,
and in the compute phase, a single message is sent to
each of the four neighbors containing the appropriate ar-
ray of points necessary for communication. Additionally,
we iterate 10 times in this phase to decrease the overhead
of changing phases. Increasing the number of iterations
also increases the resulting simulation time, so we obtain
more accurate measurements.

We took measurements on both phases of this
problem since both phases are pertinent to the algorithm
and can use theMultiReadoperator. Since in the com-
pute phase the algorithm receives a set of values from
each of its 4 neighbors and then performs the averaging,
it doesn’t matter which values are received first, so we
used theMultiRead construct on the four ports. Because
four array boundaries of elements were being received, it
was necessary to understand which port was being read,
which complicated the code somewhat. Likewise in the
aggregate phase we are simply taking the maximum of a
set of values stored one in each processor (the maximum
voltage change in the last ten iterations), so order is not
important here.

4 EMPIRICAL RESULTS

The goal of the empirical tests is to determine
the amount and types of overhead present due to the
Chandy-Misra algorithm we added to the Poker simula-
tor. We will first discuss the general experimental
methodology used to take the measurements, and then
will discuss the actual experiments performed.

4.1 Methodology

All programs were run on a Sequent Symmetry,
with eight processors running at 16 MHz. On this ma-
chine, one processor must be reserved for the operating
system, so the maximum number of processors available
for measurements is seven. All experiments were run
when the machine was in single user mode, with
“tmp_affinity” set so that processes are bound to specific

processors1.

1. This decreases the operating system overhead by reducing cache
conflicts.

3

gy. However, we also have a deadlock detection
mechanism, since the simulated system can deadlock.

2.2 Poker

The Poker Programming Environment consists
of a programming language, together with a simulation/
debugging environment used to simulate the program-
ming language (Snyder 1984 and Notkin et al. 1988). We
will provide a brief summary of the programming envi-
ronment here; for more information, see Snyder (1988).
A Poker program is not a monolithic text file, but is rep-
resented by a database. The execution of a Poker
program occurs in one or more phases. Different phases
often have different interconnection structures.

There are two languages that are currently sup-
ported in Poker which are used for the sequential process
code, XX (dos equis) and Poker C. Poker C is the more
robust language and uses a faster, more generic simula-
tor; we use it as our experimental platform.

The current version of Poker C supports two
message primitives, one for sending a message and an-
other for receiving messages. In both of these a single
message is sent/received on a specific port. Processes
block on a receive until the message arrives; sends are
non-blocking. Events in the Poker simulator are generat-
ed by sending and receiving messages. The current
parallel implementation of the Poker simulator uses a
data-driven model since receives are blocking and only a
single port can supply the data to be received. Thus there
is no need for a more general synchronization strategy to
insure that the simulation is correct.

In order to test the viability of the conservative
synchronization primitives, a second type of receive
primitive was added to the Poker C language,MultiRead.
Here one can receive a message from one of several
specified ports, and whichever message arrives first will

be the one which is delivered1. The addition ofMulti-
Read eliminates the possibility of using the data-driven
paradigm for the parallel version of the Poker simulator.
The simulator now must insure that the event corre-
sponding to the message with the least time stamp among
the specified ports is actually simulated first; otherwise
the simulation is not accurately reflecting the perfor-
mance of the sequential processes.

The addition of theMultiRead construct is actu-
ally useful in many Poker programs. There are often

1. Note that the message delivery ordering must be in terms of the local
clocks on each multicomputer process, as opposed to the simulator’s
time.

cases where one needs to get values from several ports

and the order that they arrive is immaterial2. To make
the construct more meaningful, we allow the user to
check to see which port provided the message that was
read during theMultiRead.

2.3 Chandy-Misra Poker Simulator

The Chandy-Misra version of the Poker simula-
tor uses much of the original Poker simulator code intact.
There were two major modifications to the data-driven
parallel version of the Poker simulator which were nec-
essary to create the Chandy-Misra version, adding the
MultiRead and adding null messages to avoid deadlock.
In addition we modified the parser for Poker C to accept
the newMultiRead construct.

Adding MultiRead to the simulator was rela-
tively straightforward. Because messages are generated
and sent in time stamp order, the output waiting rule is
not needed in this environment. The code for the input
waiting rule is isolated in theMultiRead function. We ba-
sically execute a loop waiting for the input waiting rule
to be satisfied. In this loop we perform a context switch
if the waiting rule is not satisfied. Thus we use the num-
ber of context switches when the desired message is
already present to provide an estimate of the overhead
from the input waiting rule, since it is a measure of the
substantive source of overhead from the input waiting
rule. See Appendix A for additional details.

The other major change is the implementation
of null messages to the system to avoid deadlocks. Null
messages are implemented as “pokes” in shared memo-
ry, which generates less overhead than if they are
implemented as full-blown messages. When a process
performs aRead, it “pokes” all other processes which are

connected to it3. In our experiments 79% to 99% of sim-
ulated time is spent in I/O. In programs with lowerI/O to
compute ratios, or where the ratio is very asymmetric be-
tween processes, a method to “poke” processes during
compute time would likely be beneficial.

Besides these two changes, we modified the
Poker C deadlock detection algorithm. The original
deadlock detection algorithm had some timing problems,
causing it to report that the simulator was deadlocked

2. In an earlier version of Poker, the XX language supported a similar
construct, where the user could read from multiple ports and these reads
were done in order of message arrival time. This construct was not im-
plemented in the original Poker C.
3. Since all arcs in the graph are bidirectional, this is equivalent to
“poking” all outgoing arcs.

2

measurements. Next is a discussion of the results of the
empirical study, including both general overhead costs
together with a more specific breakdown of the overhead
costs. Finally, we conclude and discuss future directions.

2 THE PARALLEL SIMULATOR

At the core of our empirical work is the Poker
simulator and a Chandy-Misra algorithm. We will briefly
discuss each of these separately, and then will describe
the interactions between the two when we created the
Chandy-Misra version of the Poker simulator.

2.1 The Chandy-Misra Paradigm

In synchronous event-driven simulation, two
independent events may not execute in parallel if they
have different time stamps. Asynchronous strategies at-
tempt to increase the number of events available for
parallel evaluation by allowing independent events to be
executed in parallel. These parallel simulations must pro-
duce the same result as an equivalent sequential
simulation, so the focus is on developing strategies for
ensuring this correctness while completing the simula-
tion as quickly as possible. There are two general
strategies that are most prevalent in the literature: conser-
vative and optimistic. In both asynchronous strategies, as
in the synchronous strategy, the processes are divided
among the simulation processors, with each executing
events for its partition of the problem space. Each pro-
cess also maintains a local clock and one or more local
event queues. Events queued for this process can be exe-
cuted if their time stamps equal the value of the local
clock. The two strategies differ in the way the local
clocks advance. We focus on the conservative strategy in
the remainder of this paper. The interested reader is re-
ferred to Fujimoto (1990) for a more complete
description.

In the conservative strategy, local clocks can
advance only if it can be guaranteed that the process will
not receive an event with a time stamp less than the new
value of the local clock. In other words, no events can ar-
rive that are in the “past”. Chandy and Misra (1979) and
Bryant (1977) pioneered this strategy. We will summa-
rize the key ideas in the asynchronous strategies. To
simplify the explanation, we will assume that there is one
process per simulation processor. This is not a require-
ment, and we do not have this situation in our
simulations, since we expect that there will be many
more processors in the multiprocessor than in the simu-
lation engine.

Another requirement for the conservative strat-
egy is a static process communication graph. In this
graph, there is a directed arc from a process to another if
and only if the first process will send message(s) to the
second one. The graph may not change as the simulation
progresses as the graph is used to determine when to in-
crement the local simulation clocks. Each simulation
process maintains an input queue for each incoming arc
in the communication graph and sends outgoing events
to the appropriate process queue as determined by the
process communication graph. The conservative strategy
requires that for each arc in the process communication
graph, events arrive in increasing time stamp order. This
enables the receiving process to consider only a single
event from each incoming edge in deciding whether to
increase its simulation clock.

There are two rules that are used to ensure the
“conservative” requirements in the algorithm. The first,
the input waiting rule, states that a process must wait for
an event on each incoming edge in the corresponding
communication graph before advancing the clock. The
clock time is then advanced to the minimum of the time
stamps of the events in all queues. Because we know that
on each arc, events arrive in time stamp order, we know
that there will be no event arriving earlier than the mini-
mum time stamp. The second rule, the output waiting
rule, states that output messages cannot be sent until the
simulation clock time equals the time of the outgoing
message. This guarantees that output messages are sent
in time stamp order. There is an explicit assumption that
the hardware maintains this message ordering when
transmitting messages. The output waiting rule is often
relaxed if there is a minimum delay between any event
and resulting output messages. Its function is to ensure
that no later event will generate output messages with
time stamps less than those already transmitted.

As a consequence of these two rules, there can
be substantial idle time while a process waits for input
messages, and there can be substantial delays between
creating an output message and its transmission. In par-
ticular, the system can deadlock because of both the
input and output waiting rules. Thus the simulation strat-
egy must be able to detect and recover from deadlock or
to avoid deadlock. The most popular deadlock avoidance
mechanism is to use “null messages,” messages which
only transmit timing information, to ensure that the sim-
ulation can proceed. Thus the overhead in this system
must account for deadlock detection and recovery or
transmission of null messages. In these experiments we
primarily use null messages because it seems to be the
most popular implementation of the conservative strate-

1

ABSTRACT

In this paper we show that it is feasible to char-
acterize the overheads present in conservative parallel
simulations of multicomputer programs. We use a mod-
ified version of the parallel simulator from the Poker
Programming Environment to empirically measure the
overhead in two parallel algorithms which use three dif-
ferent interconnection structures. We discuss the sources
of overhead and qualitatively discuss their relative im-
portance.

1 INTRODUCTION

There has been a great deal of interest over the
past few years in comparing conservative and optimistic
strategies for parallel discrete-event simulations. The
work in this area can be categorized as empirical studies
and analytical or formal models. In the empirical studies,
specific experiments are run on both conservative and
optimistic simulators to see which strategy results in a
faster simulation. Fujimoto (1989) did this for closed
queuing networks and found that the optimistic strategy
generally outperformed the conservative strategy. Rey-
nolds and Dickens (1989) have developed a test bed for
comparing the two strategies and are currently using it to
compare the synchronization strategies with various ap-
plications.

In addition to these empirical studies, there has
been a flurry of activity in formal or analytical models
for comparing the two synchronization strategies. Here
different assumptions are made to keep the analysis trac-
table, such as requiring one process per processor, or
vastly simplifying the overhead costs. In contrast to the

MEASURING THE OVERHEAD IN
CONSERVATIVE PARALLEL SIMULATIONS OF

MULTICOMPUTER PROGRAMS: DETAILED
MEASUREMENTS

Mary L. Bailey
Michael A. Pagels

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

empirical experiments, where a single application do-
main is investigated, most of the analytical studies
consider all domains (Felderman and Kleinrock 1991,
Nicol 1990, Lin and Lazowska 1990, Madisetti, Walrand
and Messerschmitt 1990, Lipton and Mizell 1990, Mitra
and Mitrani 1984). There has been some work in do-
main-specific formal models, but this seems to be the
exception, rather than the rule, and simplifying assump-
tions are still made for overhead costs and processes per
processors (Lin, Lazowska and Bailey 1990).

The focus of our work lies between these two
traditional approaches. We have performed an empirical
study using the conservative strategy in which we exam-
ine its performance and more importantly investigate
whether it is feasible to characterize the overheads in the
simulation so that they can be used in analytical models.
The application domain which we have chosen is simu-
lating multicomputer programs, i. e., programs written
for non-shared memory parallel processors. In particular,
we have taken a well-established multicomputer pro-
gramming environment, the Poker Programming
Environment, to use for our work (Snyder 1984). We
have modified a parallel version of the Poker simulator
by adding a conservative communication strategy based
on the Chandy-Misra paradigm, and have characterized
the overheads using two Poker programs. Our character-
izations are not sufficiently tuned for use in analytic
models, but we believe we demonstrate the feasibility of
this approach, and its future efficacy.

The organization of this paper is as follows. We
first describe the parallel multicomputer simulator which
we used in the experiments, including brief overviews of
the original Poker simulator and the conservative algo-
rithm. Then we discuss the programs that we used for our

MEASURING THE OVERHEAD IN
CONSERVATIVE PARALLEL

SIMULATIONS OF MULTICOMPUTER
PROGRAMS: DETAILED

MEASUREMENTS

Mary L. Bailey
Michael A. Pagels

TR 91-14

