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Abstract

The design and implementation of FT-SR, a programming language oriented towards
constructing fault-tolerant distributed systems, is described. Thelanguage, which is based
on the existing SR language, is unique in that it has been designed to support equally
well any of the programming paradigms that have been devel oped for thistype of system,
including the object/action model, the restartable action paradigm, and the state machine
approach. To do this, the language is designed to support the implementation of systems
modeled as collections of fail-stop atomic objects. Such objects execute operations as
atomic actions except when afailure or series of failures cause underlying implementation
assumptions to be violated; in this case, notification is provided. It is argued that this
model forms a common link among the various paradigms and hence, is a redlistic basis
for a language designed to support the construction of systems that use any or al of
these approaches. An example program consisting of a data manager and its associated
stable storage is given; the manager is built using the restartable action paradigm, while
the stable storage is structured using the replicated state machine approach. Finaly, an
implementation of the language that usesthe z-kernel and runs standal one on a network of
Sun workstationsis discussed.
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1 Introduction

Ensuring the dependability of computer systems—that is, that the system delivers services on which
people can rely [Lap91]—is an increasingly important issue. One key aspect of this problem is the
development of techniques and support systems for constructing fault-tolerant distributed programs
that can continueto execute despite the failure of one or more processorsin a distributed system. Such
programs areintimately tied to the problem of increasing dependability, since many systemsin avariety
of areas ranging from databases to process control are, in fact, fault-tolerant distributed programs of
one kind or another.

Constructing programs of this type is undeniably difficult, which has led to research in a variety
of areas aimed at systematizing and simplifying various aspects of the task. For instance, failure
model s have been developed as a means for precisely specifying assumptions made about the possible
effect of failures. Examples of popular failure models include fail-stop [SS83], timing [Cri91], fail-
silent [PVB*88], and Byzantine [LSP82]. Another area has been the development of programming
paradigms, which simplify the development of certain types of fault-tolerant distributed programs
by providing canonical organization techniques and abstractions. Examples of popular programming
paradigms include the object/action model [Gra36], the restartable action paradigm [Lam81], and the
replicated state machine approach [Sch9Q].

In this paper, we focus on a third area related to simplifying the construction of fault-tolerant
distributed programs, that of providing adequate programming language support. Specificaly, we
describe the design and implementation of FT-SR, a programming language based on SR [AOC*88,
A093] that is oriented towards writing fault-tolerant distributed systems. FT-SR isuniqueinthat it has
been designed to be a multi-paradigmlanguage, that is, a language that can support equally well any
of the multiple programming paradigms that have been developed for thistype of system. Thisis done
by providing support for constructing fail-stop atomic objects; such objects behave as atomic objects
unless their implementation assumptions are violated, in which case natification is provided. Here,
we concentrate on processors with fail-silent semantics—that is, where the only failures are assumed
to be a complete cessation of execution activity—although the approach generalizes to other failure
models aswell. The language has been implemented using the z-kernel, an operating system designed
for experimenting with communication protocols [HP91], and runs standalone on a network of Sun
workstations.

The orientation towards supporting multiple paradigms distinguishes FT-SR from other languages
[Lis85, EFH82, LW85], language extensions[SCPI1, CGR88, KU87] and language libraries [BSS91,
Coo85, PS88, HW87] related to fault-tolerance, which are typically oriented around a particular
paradigm. Support for a single paradigm has been shown to be constraining in many situations
[Bal91], and is particularly inappropriate for constructing systems, where different paradigms may be
used at different levels of abstraction. Moreover, the development of such a multi-paradigm language
for fault-tolerant programming can be viewed as analogous to the evolution of standard distributed
programming languages, which have progressed from languages such as CSP [Hoa78] and Concurrent
Pascal [BH75] that support only a single synchronizationparadigm to thosesuch as SR, Dislang[LL81],
Pascal-FC [BD88], and StarMod [Co080] that support multiple approaches.

This paper is organized as follows. In Section 2, we first describe fail-stop atomic objects and the
programming model that results from considering these as the primary abstraction. We also argue that
this model is a“lowest common denominator” for the various programming paradigms, and hence, a
realistic basisfor the design of alanguage intended to support these approaches. Section 3 then outlines
the design of FT-SR and describes how its features facilitate the implementation of fail-stop atomic



objects using commonly accepted techniques. The use of the language isillustrated in Section 4 with
the presentation of a data manager and associated stable storage. Section 5 provides an overview of the
implementation, focusing particularly on the language runtime where the inclusion of new features has
had the biggest impact. Section 6 returns to the issue of the appropriateness of FT-SR’s mechanisms,
and elaborates further on related work. Finally, Section 7 offers some conclusions.

2 Fail-Stop Atomic Objects

Asmentioned, our programming model is based on the abstraction of afail-stop (or FS) atomic object.
Such an object contains one or more threads of execution, which implement a collection of operations
that are exported and made availablefor invocation by other FS atomic objects. Higher-level FS atomic
objects may, in turn, be constructed by composition. When invoked, an operation exported by an
FS atomic abject normally executes as an atomic action that is both unitary—all or nothing despite
failures—and serializable—executed rel ative to other atomic actions such that the result is equivalent
to some seria schedule[LamB1]. However, asis always the case with fault-tolerance, these properties
can only be approximated by an implementation; that is, they can be only guaranteed relative to some
set of assumptions concerning the number and type of failures. For example, agorithms to realize
the unitary property often rely on stable storage in such a way that the failure of this abstraction can
lead to unpredictable results. Or, a series of untimely failures might exhaust the redundancy of an
implementation built using replication.

To account for cases such as these, the semantics of FS atomic objects include the concept of
failure notification. Such a natification is generated for a particular object whenever a catastrophic
failure occurs, where such afailure is defined to occur when an object’s implementation assumptions
are violated, or should the object be explicitly destroyed from within the program. The status of an
operation being executed when such a failure notification occurs is indeterminate. Hence, the analogy
to fail-stop processorsimplied by the term “fail-stop atomic objects’ is strong: in both cases, either the
abstraction is maintained (processor or atomic object) or notificationis provided.

A fault-tolerant distributed system can be realized by a collection of FS atomic objects organized
aong thelinesof functional dependencies. For example, an FS atomic object implementing the services
of atransaction manager may use the operations exported by another FS atomic object implementing
the abstraction of stable storage [Lam81]. These dependencies can be defined more formally using the
depends relation given in [Cri91]. In particular, an FS atomic object « is said to depend on another
object v if the correctness of «’s behavior depends on the correctness of v’s behavior. Thus, thefailure
of v may result in the failure of «, which in turn can lead to the failure of other objectsthat depend on
Uu.

Increasing the dependability of adistributed system organized in thisway isdone by decreasing the
probability of failure of its constituent FS atomic objects using fault-tol erance techniques based on the
exploitation of redundancy. For example, an object can be replicated to create a new FS atomic object
with greater resilienceto failures. Thisreplication can either be active, where the states of al replicas
remain consistent, or passive, where onereplicaisaprimary and others remain guiescent until afailure
occurs. Or, an FS atomic object can contain a recovery protocol that would be executed upon restart
following a failure to complete the state transformation that was in effect when the failure occurred.
The applicability of each of these techniques depends on the details of the system or the application
being implemented.

As an example of how atypical fault-tolerant system might be structured using FS atomic objects,
consider the simple distributed banking system shown in Figure 1. Each box represents an FS atomic
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Figure 1: Fault-tolerant system structured using FS atomic objects

object, with the dependencies between objects represented by arrows. User accounts are assumed to be
partitioned across two processors, with each data manager object managing the collection of accounts
on its machine. The user interacts with the transaction manager, which in turn uses the data managers
and a stable storage abject to implement transactions. The transaction manager acts as the coordinator
of the system; it decides if and when atransaction is to be committed and coordinates the two-phase
commit protocol [Grar9] that is used to ensurethat all data managersinvolved agree on the outcome of
the transaction. Associated with the transaction manager is a stable storage object, which it usesto log
the progress of transactions in the system. The data managers export operations that are used by the
transaction manager to read and write user accounts, and to implement the two-phase commit protocol.
The stable storage associated with each data manager is used to store the actual data corresponding
to user accounts, and to maintain key values that can be used to restore the state of the data manager
should afailure occur. Thelock managers are used to control concurrent access.

Toincreasetheoveral dependability of the system, the constituent FSatomic objectswould typically
be constructed using fault-tolerance techniques to increase their failure resilience. For example, the
transaction and data managers might use recovery protocolsto ensure that datain the systemisrestored
toaconsistent statefollowingfailure. Similarly, stable storage might be replicated to increaseitsfailure
resilience. The failure notification aspect of FS atomic objects is used to allow objects to react to the
failures of objects upon which they depend. If such afailure cannot be tolerated, it may, in turn, cause
subsequent failures to be propagated up the dependency graph. At thetop level, thiswould be viewed
by the user asthe catastrophicfailure of the transaction manager and hence, the system. Such asituation
might occur, for example, should the redundancy being used to implement stable storage be exhausted



by an untimely series of failures. In Section 4, we illustrate how the data manager and stable storage
FS atomic objects from this example might be implemented using FT-SR.

Fail-stop atomic objects and the associated techniques for increasing failure resilience form, in
our view, a “lowest common denominator” that can be conveniently used to redize the seemingly
disparate programming paradigms proposed for fault-tolerant programming. For example, consider
the object/action model. Asits name implies, there are two types of components, objects and actions.
Objects are passive entities that encapsulate a state and export certain operations to modify that state;
typically, this state involves long-lived data that is assumed to be stored on stable storage to survive
failures. Actions are active entities similar to threads that invoke operations on objects to carry out
some task. The objects comprising an application can potentially be located on multiple machinesin
a network, which implies that actions may logically cross machine boundaries during their execution.
An action is both unitary and serializable, which guarantees the atomicity of its execution with respect
to both failures and the concurrent execution of other actions. These properties have also been called
totality and serializability [Wei89], and recoverability and indivisibility [Lis85]. In the database
literature, atomic actions are known as transactions [BHG87].

A system built using the object/action paradigm may be implemented using FS atomic objects.
Objects in the system correspond to FS atomic objects. An action corresponds to an abstract thread
realized by the combination of concrete threads in the FS atomic objects. This abstract thread may
span multiple FS atomic objects as aresult of invocations made by concrete threadsthat are serviced by
concrete threadsin other objects. Standard locking and commit protocolsare used to ensure the unitary
and serializable nature of these actions across multiple objects. Viewed as awhole, this system appears
to the user as one FS atomic object exporting the set of operations required by the application.

Asasecond example, consider the replicated state machine paradigm. Inthisparadigm, asystemis
implemented asacollection of interacting state machines. Each such machineconsistsof statevariables,
which encode its state, and commands, which transform its state. Each command is implemented by
a deterministic program that modifies the state variables and/or produces some output. Command
executions are atomic and any outputs produced are determined solely by the sequence of commands
processed by the state machine. A fault-tolerant version of a state machine can be implemented by
replicating that state machine and running each replica on adifferent processor in a distributed system.
All available replicas must receive all commands sent to the replicated state machine (the agreement
property) and must process them in the same sequence (the order property).

State machines map directly to FS atomic objects. Commands to the state machine correspond to
invocations on an FS atomic object, with locking techniques being used to ensure that the operation
executionsare atomic. A replicated state machine can beimplemented by replicating FS atomic objects
and ensuring that all commands to the state machine result ininvocationson al replicasin a consistent
order. Each ensembl eof replicated FS atomic objectsforms ahigher-level FS atomic object representing
the fault-tolerant version of a given state machine. The entire collection of such FS atomic objects can
then be viewed as a single FS atomic object that implements the entire system.

The system shown in Figure 1 is an example of a system in which FS atomic objects are used
to implement different programming paradigms in different parts of the system. Specifically, the
transaction and data managers are built using the restartable action paradigm, while the stable storage
objects are built using the replicated state machine approach. The user of the banking system sees the
system as one implementing the atomic object/action paradigm and interacts with it accordingly.



3 FT-SR Language Description

The goal of FT-SRisto support the building of systems based on the FS atomic object model, and thus,
by implication, the building of systems using any of the existing programming paradigms. Given the
need for flexibility, we do not provide these objects directly in the language, but rather include features
that allow them to be easily implemented. To this end, the language has provisionsfor encapsulation
based on SR resources, resource replication, recovery protocols, synchronousfailure notification when
performing interprocess communication, and a mechanism for asynchronous fail ure notification based
on a previous scheme for SR [SCP91]. Since our extensions are based on existing SR mechanisms, a
short overview of thelanguageis provided in Appendix A; for further details, see[AOC* 88, AQ93].

3.1 SimpleFS Atomic Objects

Realizing much of the functionality of a simple FS atomic object—i.e., one not composed of other
objectsor using any other fault-tol erancetechniques—in SR is straightforward since aresourceinstance
is essentialy an object in its own right. For example, it has the appropriate encapsulation properties,
and is populated by a varying number of processesthat can function as threadsin the FS atomic object
model. SR operationsare also very similar to the operationsdefined by the model; they areimplemented
by processes and can be exported for invocation by processes in other resource instances. Moreover,
the execution semantics of SR operations are aready close to those desired for FS atomic objects; the
only additional property required is atomicity of operation execution in the absence of catastrophic
failures, which occur for simple objects when the resource instance is destroyed due to failure or
explicit termination. Ensuring atomicity therefore reduces to ensuring seriaizability, which can easily
be programmed in SR by, for example, implementing each exported operation as a separate alternative
in an input statement repeatedly executed by a single process. Standard locking-based solutions that
allow more concurrency are also easy to implement in SR.

Figure 2 showsthe outline of asimple FS atomic object that implements atomicity by use of an SR
input statement. Theobjectisalock manager that control saccessto ashared datastructureimplemented
by some other resource. It exports two operations: aget | ock operation that is invoked by clients
wishing to access the shared data structure and ar el _| ock operation that clients invoke when they
aredone. If aclientinvokestheget | ock operation and thelock isavailable, al ock_i d isreturned.
If thelock isunavailable, the client isblocked at the first guard of theinput statement. Theget _| ock
operation takes as its argument the capability of theinvoking client. This capability is used as a means
of identifying the client.

The one aspect of simple FS atomic objectsthat SR does not support directly—and hence the focus
of our extensionsin this area—is generation of afailure notification. As mentioned earlier, for simple
objects this occurs when the processor executing the resource instance fails, or when the resource
instance or itsvirtual machineisexplicitly destroyed from within the program. In Section 5, we discuss
how thisfailure is detected by the language runtime system, so here we concentrate on describing the
mechanismsthat are provided to field this notification in other resourceinstances. Thesefacilitiesalow
an abstract object to react to thefailure of other objects on which it depends.

FT-SR provides the programmer with two different kinds of failure notification and consequently,
two different ways of fielding anotification. Thefirst is synchronouswith respect to acall; it isfielded
by an optiona backup operation specified in the calling statement. The second kind of notificationis
asynchronous; the programmer specifies a resource to be monitored and an operation to be invoked
should the monitored resource fail. To understand the need for these two kinds of failure notification,
consider what might happen if the lock manager shownin Figure 2 or any of its clientsfail. If the lock



resour ce | ock_manager
op get lock(cap client) returns int
op rel ock(int)

body | ock_manager
var ...variable declarations...

process | ock_server
do true ->
in get_ock(client_cap) and | ock_avail able() ->
...mark lock. d as being held by client_cap...
return | ock.id

[T rel 1ock(client_cap, lockid) ->
...rel ease | ock...
return
ni
od
end | ock_server
end | ock_manager

Figure 2: Simple FS atomic object

manager fails, all clients that are blocked on its input statement will remain blocked forever. Clients
can usethe FT-SR synchronousfailure notification facility to unblock themsel vesfrom the call and take
some recovery action in the event of such afailure. Figure 3 shows the outline of aclient structuredin
thisway. The statement of interest is where the client makes a call invocation using a capability to the
lock manager’s get _| ock operation | ock_ngr _cap. get _| ock. Bracketed with this capability is
the capability to a backup operation mgr _f ai | ed. This backup operation isinvoked should the call
tol ock_nmgr _cap. get _| ock fail, where the call is defined to have failed if the lock manager fails
before it can reply to the call. In this example, the backup operation ngr _f ai | ed is implemented
locally by the client, which we expect will be the most common usage; in general, however, the backup
operation can be implemented by any resource. Note that the backup operationis called with the same
arguments as the original operation and, hence, must be type compatible with the origina operation.
Backup operationscan only be specified with call invocati ons; send invocationsare non-blockingand no
guarantees can be made about the success or failure of such an invocationif the resource implementing
the operation fails. Both call and send invocationsare guaranteed to succeed in the absence of failures.
Executionisblocked if acal fails and there is no associated backup operation.

Consider now the inverse situation where a client of the lock manager fails. If the client fails
while it holds a lock, al other clients will be prevented from accessing the shared data structure.
The server can use the FT-SR asynchronous failure notification facility to detect such a failure and
release the lock, as shown in Figure 4. This figureis identical to Figure 2 except for the noni t or
statement in the get _| ock operation and the noni t or end statement in ther el | ock operation.
The server uses the moni t or statement to enable monitoring of the client instance specified by the
resource capability cl i ent _cap. If the client is down when the statement is executed or should it
subsequently fail, the operationr el _| ock will be implicitly invoked by the language runtime system
with the cl i ent _cap and | ock_i d as arguments. Arguments to the operation specified in the
noni t or statement are evaluated at the time the noni t or statement is executed and not when the
failure occurs. Monitoring is terminated by the noni t or end statement, which also takes a resource
capability as its argument (as shown in Figure 4) or by another noni t or statement that specifies the
sameresource. Theability to request asynchronousnotification has proven to be convenient in avariety



resource client

op ...
op ...

body client()
var lock.id: int

op ngr failed(cap client) returns int

i ock.did := call {lock.nmgr_cap.get.ock, ngr_failed} (nmyresource())

proc ngr failed(client_cap) returns |ock.err
return LOCK.EERR
end ngr fail ed
end client

Figure 3: Outline of Lock Manager client

resource | ock_manager
op get_lock(cap client) returns int
op rel 1 ock(int)

body | ock_nmanager
var ...variable declarations...

process | ockserver
do true ->
in get_ock(client_cap) and | ock_avail able() ->
...mark lock.id as being held by client_cap...
nmonitor client_cap send rel 1ock(client_cap, |ock.d)
return |ockdd

[T rel dock(client_cap, lock.id) ->
...release lock if held by client_cap...
nmoni torend client _cap
return

ni

od
end | ock_server
end | ock_manager

Figure 4. Lock Manager with client monitoring




of contexts [CGR88, SCP91, BMZ92] and is in keeping with the inherently asynchronous nature of
failures themselves.

3.2 Higher-Level FS Atomic Objects

FT-SR provides mechanisms for supporting the construction of more fault-tolerant, higher-level FS
atomic objects using replication, and for increasing the resilience of objects to failures using recovery
techniques. Thereplication facilitiesallow multiplecopiesof an FT-SR resource to be created, with the
language and runtime providing the illusion that the collection is a single resource instance exporting
the same set of operations. The SR create statement has been generalized to allow for the creation of
such replicated resources, which we call aresource group. For example, the statement

| ock_ngr cap := create (i := 1 to N) |ock_manager () on vmcaps[i]

creates a resource group with N identical instances of the resource | ock _manager on the virtua
machines specified by the array of virtual machine capabilitiesvmcaps. Both the quantifier (i : =
1 to N) andon clausesare optional. If they are omitted the statement reverts to the semantics of the
normal SR statement, which creates one instance of the named resource on the current virtual machine.

The value returned from executing the cr eat e statement is a resource capability that provides
access to the operations implemented by the new resource(s). If a single resource instance is created,
the capability allowsthe holder to invoke any of the exported operationsin that instance as provided for
innormal SR. If, on the other hand, multipleidentical instances are created, the capability isaresource
group capability that allows multicast invocation of any of the group’s exported operations. In other
words, using this capability inacal | or asend statement causes the invocation to be multicast to
each of theindividual resourceinstancesthat make up thegroup. All such invocationsare guaranteed to
be delivered to the runtime of each instance in a consistent total order, although the program may vary
thisif desired. Thismeans, for example, that if two operationsimplemented by alternatives of an input
statement are enabled simultaneously, the order in which they will be executed is consistent across
al functioning replicas unless a scheduling expression by the programmer overrides this explicitly.
Moreover, themulticast is a so done atomically, so that either all replicasreceive theinvocation or none
do. This property is guaranteed by the runtime given no greater than max_sf simultaneous failures,
where max_sf is a parameter set by the user at compile time. The combination of the atomicity and
consistent ordering properties means that an invocation using aresource group capability is equivalent
to an atomic broadcast [CAS85, MSMA90]. The results of a multicast call invocation are collected
by the runtime system, with only a single result being returned to the caller; since FT-SR assumes
processors with fail-silent semantics, returning the first result is sufficient in this case.

In addition to this facility for dealing with invocations coming into a resource group, provisions
are also made for coordinating outgoing invocations generated within the group. There are two kinds
of invocations that can be generated by a group member. In some cases, a group member may wish
to communicate with a resource instance as an individua even though it happens to be in a group.
For example, this would be the situation if each replica has its own set of private resources with
which it communicates. At other times, the group members might want to cooperate to generate a
single outgoing invocation on behalf of the entire group. To distinguish between these two kinds of
communication, FT-SR allows a capability variable to be declared as being of type pri vat e cap.
Invocationsmade using a private capability variabl e are considered private communication of the group
member and not co-ordinated with other invocations from group members. Invocations using regular
capability variables are, however, considered to be invocations from the entire group, so exactly one



invocation is generated in this case. The invocation is actually transmitted when one of the group
members reaches the statement, with later instances of the same invocation being suppressed by the
language runtime system. This invocation could, in fact, be a multicast-type invocation as described
aboveif the operation being invoked is within another resource group (i.e., if the capability used in the
statement is a resource group capability). It should be noted that a private capability variable can be
assigned to aregular capability of the same type and vice versa; whether aninvocationis private or not
is determined solely by the type of the variable used in making the invocation.

A resource group can aso be configured to work according to a primary-backup scheme [AD76].
In this scenario, invocations to the group are delivered only to a replica designated as the primary by
the language runtime, with the other replicas being passive. Thistype of configuration is achieved by
placing the op restrictor {pr i mar y } on the declaration of operationsin the group membersthat are to
beinvoked only if thereplicais the primary.

FT-SR also provides the programmer with the ability to restart a failed resource instance on a
functioning virtual machine. The recovery code to be executed upon restart is denoted by placing
it between the keywordsr ecovery and end in the resource text. This syntax is analogous to the
provisions for initialization and finalization code in the standard version of SR. A resource instance
may be restarted either explicitly or implicitly. Explicitly, it is done by the following statement:

restart | ock_ngr_cap() on vmcap

This restarts the resource indicated by the capability | ock _ngr _cap and executes any recovery code
that may be specified by the programmer. To restart an entire resource group,

restart (i:=1 to N) |ock.ngr_cap() on vmcaps[i]

isused. The size of the reconstituted group can be different from the original. In both cases, it is
important to note that the restarted resource instanceis, in fact, are-creation of the failed instance and
not a new instance. This means, for example, that other resource instances can invoke its operations
using any capability values obtained prior to the failure.

Implicit restart isindicated by the presenceof thekeywordper si st ent intheresourcedeclaration
and the inclusion of more virtual machines in the vmcaps array specified in the original create
statement than the number of replicas actually created. Then, should avirtual machine executing one of
theinstancesof the resource group fail, the system will select one of these backup virtual machinesand
recreate the failed instance automatically. The arguments supplied during the recreation are the same as
those used for the original creation. Thisfacility isdesigned to allow aresource group to automatically
regain itsorigina level of redundancy following afailure.

Another issue concerning restart isdetermining when the runtime of the recovering resourceinstance
begins accepting invocations from other instances. In general, the resource isin an indeterminate state
while performing recovery, so we choose to begin accepting messages only after the recovery code
has completed. The one exception to thisis if the recovering instance itself initiates an invocation
during recovery; in this case, invocations are accepted starting at the point that particular invocation
terminates. Thisis to facilitate a system organization in which the recovering instance retrieves state
variables from other resources during recovery.

Finally, we note that the failure notification facilities described in the previous section work with
resource groups as one would expect. For such higher-level FS atomic objects, a catastrophic failure
occurs when all of the replicas have been destroyed by failure or explicit termination request(s), and
thereisno system guaranteeof recreation. Thus, if aresourceisnot persistent, anotificationisgenerated



once al replicas have been destroyed, while for a persistent resource, a notification is generated once
all replicas have been destroyed and the list of backup virtual machines exhausted. In either case, the
way in which the notification is fielded is specified using backup operations or the monitor statement
in the same way as before.

4 Programmingwith FT-SR

In this section, we present an example program that illustrates how FT-SR can be used to construct a
simple system that uses multiple fault-tolerance paradigms. The example consists of the data manager
and stable storage objects from the banking system described in Section 2. As outlined there, the data
manager implements a collection of operations that provide transactional access to data items located
on a stable storage. The organization of the manager itself is based on the restartabl e action paradigm,
with key items in the interna state being saved on stable storage for later recovery in the event of
failure. The state machine approach isused to build stable storage. A prototypeversion of thisbanking
system has been implemented and is currently being tested.

The datamanager controls concurrency and provides atomic access to dataitems on stabl e storage.
For simplicity, we assume that al data items are of the same type and are referred to by a logica
address. Stable storageis read by invokingitsr ead operation, which takes as arguments the address
of the block to be read, the number of bytes to be read, and a buffer in which the values read are to be
returned. Dataiswritten to stable storage by invoking an analogouswr i t e operation, which takes as
arguments the starting address of the block being written, the number of bytesin theblock, and abuffer
containing the values to be written.

Figures 5 shows the specification and an outline of the body of such adata manager. Ascan beseen
in its specification, the data manager imports stable storage and lock manager resources, and exports
sixoperations. st art Transacti on,read,wite,prepareToComrt,commit,andabort.
Theoperationst art Tr ansact i on isinvoked by the transaction manager to access data held by the
datamanager; itsargumentsareatransaction identifiert i d and alist of addressesof the dataitems used
during the transaction. r ead and wr i t e are used to access and modify objects. The two operations
prepareToComit and comm t are invoked in succession upon completion to, first, commit any
maodifications made to the dataitems by the transaction, and, second, terminate the transaction. abor t
is used to abandon any modifications and terminate the transaction; it can be invoked at any time
up to the time conmi t isfirst invoked. All of these operations exported by the data manager are
implemented as pr ocs; thus, invocations result in the creation of a thread that executes concurrently
with other threads. Finally, the data manager contains initial and recovery code, as well as afailure
handler pr oc that dealswith the failure of thel ockManager and st abl eSt or e resources.

To implement the atomic update of the data items, the data manager uses the standard technique
of maintaining two versions of each data item on stable storage together with an indicator of which is
current [BHG87]. To simplify our implementation, we maintain this indicator and the two versionsin
contiguous stabl e storage locations, with the indicator being an offset and the address of the indicator
used as the logica address of the item. Thus, the actua address of the current copy of the item is
calculated by taking the address of the item and adding to it the indicator offset.

Thedatamanager keepstrack of al in-progresstransactionsin astatustable. Thistable containsfor
each active transaction the transaction identifier (t i d), the status(t r ans St at us), the stable storage
addresses of the dataitems being accessed by the transaction (dat aAddr s), the value of theindicator
offset of each item (cur r ent Poi nt er s), apointer to an array in volatile memory containing a copy
of the dataitems (memCopy), and the number of dataitems being used in thetransaction (num t ens).
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resour ce dataManager
i mports gl obal Defs, | ockManager, stableStore
op startTransaction(tid: int; dataAddrs: addrList; nunDataltens: int)
op read(tid: int; dataAddrs: addrlList; data: datalist; nunDataltens: int)
op wite(tid: int; dataAddrs: addressList; data: dataList; nunDataltens: int)
op prepareToCommit(tid: int), commt(tid: int), abort(tid: int)
body dataManager(dmid: int; Incap: cap |ockManager; ss: cap stableStore)

type translinfoRec = rec(tid: int;
transStatus: int;
dat aAddrs: addresslLi st;
currentPointers: intArray;
memCopy: ptr dataArray;
num tens: int)

var statusTabl e[ 1: MAXTRANS] : transl nf oRec; statusTabl eMutex: senaphore

initial
# initialize statusTable

nDniiBr(ss)send fail Handl er ()
nmoni t or (1 ncap) send fai | Handl er ()
end initia

...code for startTransaction, prepareToCommit, commit, abort, read/wite...

proc fail Handl er ()
destroy myresource()
end fail Handl er

recovery
ss.read(statusTabl e, sizeof(statusTable), statusTable)
t ransManager . dnip(dm d)
end recovery
end dat aManager

Figure5: Outlineof dat aManager resource

This table can be accessed concurrently by threads executing the pr ocs in the body of the data
manager, so the semaphore st at usTabl eMut ex is used to achieve mutual exclusion. New entries
in thistable also get saved on stable storage for recovery purposes. Reads and writes during execution
of the transaction are actually performed by the datamanager on versionsof theitemsthat it has cached
initsloca (volatile) storage.

The data manager depends on the stable storage and lock manager resources to implement its
operations correctly. As a result, it needs to be informed when they fail catastrophically. The data
manager does this by establishing an asynchronous failure handler f ai | Handl er for both of these
eventsin theinitial code using the noni t or statement. When invoked, f ai | Handl er terminates
the data manager resource, thereby causing the failure to be propagated to the transaction manager.

Thefailure of the data manager itself ishandled by recovery codethat retrievesthe current contents
of the status table from stable storage. It isthe responsibility of the transaction manager to deal with
transactionsthat were in progress at the time of the failure; those for which conmi t had not yet been
invoked are aborted, whileconmmi t isreissued for the others. To handlethis, the recovery code sends
a message to the transaction manager notifyingit of the recovery.

The pr ocs implementing the other data manager operations do not use any of the FT-SR prim-
itives specifically designed for fault-tolerant programming and are therefore not shown here. For
compl eteness, they can be found in Appendix B.

We now turn to implementing stable storage. One way of redlizing this abstraction is by using
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persi stent resource stableStore
i mport gl obal Defs
op read(address: int; nunBytes: int; buffer: charArray)
op wite(address: int; nunBytes: int; buffer: charArray)
op sendState(sscap: cap stabl eStore)
op recvState(objectStore: objlList)

body stabl eStore
var store[ MEMSI ZE]: char

process ss
do true ->
in read(address, nunBytes, buffer) ->

buf fer[1: nunBytes] := store[address: address+nunByt es- 1]
O wite(address, nunBytes, buffer) ->
store[ address, address+nunBytes-1] := buffer[1l: nunBytes]

O sendState(rescap) -> send rescap.recvState(store)
n
od
end ss

recovery
send mygroup().sendState(myresource())
receive recvState(store); send ss
end recovery
end stabl eStore

Figure 6: st abl eSt or e resource

the state machine approach, that is, by creating a storage resource and replicating it to increase failure
resilience. Figure 6 shows such a resource; for simplicity, we assume that storage is managed as an
array of bytes.

Replica failures are dealt with by restarting the resource on another machine; this is done auto-
matically since st abl eSt or e is declared to be a persistent resource. The recovery code that gets
executed in this scenario starts by requesting the current state of the store from the other group mem-
bers. All replicas respond to this request by sending a copy of their storage state; the first response
isreceived, while the other responses remain queued at ther ecv St at e operation until thereplicais
either destroyed or fails. The newly restarted replica begins processing queued messages when it is
finished with recovery. Since messages are queued from the point that its sendSt at e message was
sent to the group, the replica can apply these subsequent messages to the state it receives to reestablish
consistency with the state of the other replicas.

Stable storage could aso be implemented as a primary-backup group by adding a {primary}
restriction to ther ead and wr i t e operations. The process ss would then send the updated state to
the rest of the group at the end of each operation by invokingar ecvSt at e operation on the group.
This operation would be implemented by extending the input statement in ss to include this operation
as an additional aternative.

The main resource that starts up the entire systemis shown in Figure 7. Resource mai n creates a
virtual machine on each of the three physical machines available in the system. Three stable storage
objectsare then created, where each such object hastwo replicas and usesthevirtual machine on“host3”
as a backup machine. The two data managers are then created followed by the transaction manager.
Notice how the system is created “bottom up,” with the objects at the bottom of the dependency graph
being created before the objects on which they depend. Thisway, each object can be given capabilities
to the objects on which it depends upon creation.
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resource main
imports transManager, dataManager, stableStore, |ockManager
body nmain
var virtMachines[3] : cap vm# array of virtual machine capabilities
dataSS[ 2], tnSS: cap stableStore # capabilities to stable stores
I'm cap | ockManager; dni2]: cap dataManager # capabilities to | ock and data managers

virtMachines[1] := create vm() on ‘‘hostl’
virtMachines[2] := create vm() on ‘‘host?2’
virtMachines[3] := create vm() on ‘‘host3 ' # backup nachi ne

# create stable storage for use by the data managers and the transacti on manager

dataSS[1] := create (i := 1 to 2) stableStore() on virtMchines
dataSS[2] := create(i := 1 to 2) stableStore() on virtMchines
tnSS := create (i :=1to 2) stableStore() on virtMchines

# create | ock manager, data managers, and transacti on nmanager
I'm:= create | ockManager () on virtMchines[2]
fai :=1to 2 ->
dnfi] = create dataManager (i, Im dataSS[i]) on virtMachines[i]
af
tm = create transManager (dni 1], dni2], tnSS) on virtMchines[ 1]
end main

Figure 7: System startup in resource mai n

5 Implementation

Overview. Theimplementation of FT-SR consistsof two major components: acompiler and aruntime
system. Both the compiler and the runtime system arewrittenin C and borrow heavily from theexisting
implementation of SR. In fact, the FT-SR compiler is amost identical to the SR compiler, which is
to be expected since FT-SR is syntactically close to SR. The compiler is based on lex and yacc, and
consists of about 16,000 lines of code. It generates C code, which isin turn compiled by a C compiler
and linked with the FT-SR runtime system.

The FT-SR runtime system provides primitives for creating, destroying and monitoring resources
and resource groups, handling failures, restarting failed resources, invoking and servicing operations,
and a variety of other miscellaneous functions. It consists of 9600 lines of code and is implemented
using version 3.1 of the x-kernel, a stand-alone operating system kernel that runs on Sun 3s [HP91].
The magjor advantage of such a bare machineimplementationisthat it gives usthe ability to use FT-SR
to build realistic fault-tolerant systems and experiment with these systems by actually crashing and
restarting processors. Thisisin contrast to experimental systemsbuilt, for example, on top of Unix. In
addition, the x-kernel provides a flexible infrastructure for composing communication protocols; this
has proven to be extremely useful in building the many protocols that went into the FT-SR runtime
system.

Figure 8 shows the organization of the FT-SR runtime system on a single processor. As shownin
the figure, each FT-SR virtual machine exists in a separate x-kernel user address space. In addition
to the user program, a virtual machine contains those parts of the runtime system that create and
destroy resources, route invocations to operations on resources, and manage intra-virtua machine
communication. This user resident part accounts for about 85 percent of the runtime system. The
remaining 15 percent resides inside the kernel and is responsible for the creation and destruction of
virtual machines and inter-virtual machine communication. Figure 8 a so shows some of theimportant
modules in both the kernel and user resident parts of the runtime system, and the communication
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Figure 8: Organization of FT-SR runtime system

paths between them. The kernel resident modul es shown are the Communication Manager, the Virtua
Machine (VM) Manager, and the Processor Failure Detector (PFD). The communication manager
consistsof multiple communication protocol sthat provide point-to-point and broadcast communication
services between processors. The VM Manager is responsible for creating and destroying virtual
machines, and for providing communication services between virtual machines. The PFD isafailure
detector protocol; it monitors processors and notifies the VM manager when a failure occurs. The
user space resident modules shown in Figure 8 are the Resource Manager, the Group Manager, the
Invocation Manager, and the Resource Failure Detector (RFD). The Resource Manager is responsible
for the creation, destruction and restart of failed resources. The Group Manager is responsiblefor the
creation, destruction and restart of groups, restart of failed group members, and all communication to
and from groups. The RFD detects the failure of resources and group members.

The FT-SR runtime system, while similar in structure to that of standard SR, differs significantly
in terms of how its different constituent modules implement their functionality. The reasons for this
difference are threefold. First, unlike SR, which implements its own threads package within a Unix
process, FT-SR usesthreads provided by thex-kernel. Therefore, while SR has complete control over its
threads and can schedulethem when it deems safe, the FT-SR runtime has no control over when athread
is preempted and another thread scheduled. This gives rise to numerous concurrency problems that
had to be dealt within the FT-SR implementation. Second, the need to deal with failures required large
modifications to the SR runtime system, since it uses centralized control in places and is written under
the assumption that all parts of the distributed program will always be available. The FT-SR runtime
system cannot make such an assumption, and this need to anticipate and deal with failures affected the
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design of amost every runtime system module. Finaly, in addition to the standard language features,
the FT-SR runtime system had to, of course, provide support for the fault-tolerance extensions. The
implementation of some of these extensions required new modules within the runtime system and at
times the redesign of other modules.

From the programmer’s viewpoint, there are two major aspectsin which FT-SR differsfrom SR: the
support for using resources as FS atomic obj ects, and the support for various fault-tol erance techniques.
Accordingly, we focusin the remainder of this section on describing those parts of the FT-SR language
runtime system that provide this support. It is worth keeping in mind that, since FT-SR is designed to
support construction of fault-tolerant systems, every effort has been made to keep the implementation
as efficient as possible. For example, whenever possible, the implementation takes advantage of the
fact that the processors can only suffer from fail-silent failures and that the maximum number of
simultaneousfailures max_sf isknown a priori.

Failure Detection and Notification. Failure detection and notification is the single most important
difference between FS atomic objects and SR resources. Failure detection is initiated in one of two
ways: when a resource explicitly asks to be notified of a failure using the noni t or statement, or
when the communication module of the runtime system cannot complete an invocation and suspects a
failure. Depending on how thefailure detection wasinitiated, the runtime system either notifiesthe user
program of the failure by generating an implicit invocation of the operation specified by the noni t or
statement, or, if a backup operation has been supplied with an invocation, the invocation is forwarded
to the backup operation.

Failure detection in FT-SR is done at two levels: at the virtual machine level by the VM Manager
and at the resource level by the RFD. The PFD at each processor monitors the other processors in the
system and notifiesthelocal VM manager of any failures. The VM manager then maps these processor
failures to failures of virtual machines and notifies the RFD of these failures. The RFD in turn maps
virtual machine failures to resource failures and passes thisinformation on to any of the other runtime
system modules that might have asked to be notified of the failure. To detect the termination of a
resource that is explicitly destroyed, the RFD sends a message to its peer on the appropriate virtual
machi ne asking to be notified when the resource isdestroyed. Similarly, aVM Manager can ask another
VM Manager to send afailure notification when avirtual machine isexplicitly destroyed.

Replication and Recovery. FT-SR provides two mechanisms for increasing failureresilience: repli-
cation and recovery. For replication, the most interesting aspect of the implementation is managing
group communication, since messages sent to a resource group as a result of invocations have to be
multicast and delivered to al replicas in a consistent total order. The technique we use is similar to
[CM84, KTHB89, GMS89], where one of the replicas is a primary through which all messages are
funneled. Another max_sf replicas are designated as primary-group members, with the remaining being
considered ordinary members. Upon receiving a message, the primary adds a sequence number and
multicastsit to all replicas of the group. Only the replicas that belong to the primary-group acknowl-
edge receipt of the message. As soon as the primary gets these max_sf acknowledgements, it sends an
acknowledgement to the original sender of the message; this action is appropriate since the receipt of
max_sf acknowledgements guarantees that at least one replica will have the message even with max_sf
failures. The primary is also involved when messages are sent by the group as awhole, that is, when
group members use a capability that is not a private capability when making ainvocation. The runtime
system suppresses such an invocation from al group members except the primary. When the primary
receives an acknowl edgement that itsinvocation has been received, it multicaststhat acknowl edgement
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to the other group members.

The Group Managers at each site are responsiblefor determining the primary and the members of
the primary-group set. Specifically, they maintain a list of al the group members and keep track of
which member is the primary, which belong the primary-group set, and which are ordinary members.
Thislistisordered consistently at all sites based on the order in which the replicas were specified in the
group create statement. Thefirst replicaof thelist isthen designated the primary and the next max_sf as
members of the primary-group; the remaining replicas are ordinary members. The consistent ordering
of replicas ensures that al Group Managers will independently pick the same primary and assign the
same set of replicasto the primary-group set.

The Group Managers are a so responsiblefor dealing with the failure of group members. Theaction
taken when afailure occursvaries, depending on whether the failed member was the primary, aprimary-
group member, or an ordinary member. If the primary fails, the first member of the primary-group is
designated as the new primary. The designation of a new primary or the failure of a primary-group
member will cause the size of the primary-group to fall below max_sf. When this happens, ordinary
members are added to the primary-group to bring it up to max_sf members. No special actionis needed
when an ordinary member fails. If the resource from which the failed member was created is declared
as being persistent and backup virtual machines were specified in the create statement, failed replicas
are restarted on these backups. Restarted replicas join the group as ordinary members.

Supporting recovery involves: (1) restarting the resource instance, either as a result of an explicit
request or due to its declaration as persistent, (2) ensuring that the recovery code is executed, and (3)
correctly starting the delivery of new invocations. Actually implementing (1) and (2) are fairly easy
since the requirements for restarting a resource instance are very similar to creating oneinitialy. For a
persistent resource, thisis preceded by the selection of a backup virtual machine from thelist supplied
during initial creation to act as the new host. The policy used to ensure (3) has already been described
in Section 3.2.

6 Discusson

6.1 FT-SR and Fault-Tolerance Abstractions

The various programming paradigms that have been developed for fault-tolerant distributed systems
provide the programmer with structuring techniques and abstractions for the problem being solved.
The rel ationship between the abstractions used for a particular paradigm and the mechanisms provided
by FT-SR can be illustrated by arranging them in a hierarchy based on the dependency relationship
[MS92]. Figure 9 shows such a hierarchy for the object/action model. In this figure, the circles
represent abstractions, the rectangles represent mechanisms provided by FT-SR, and the labeled boxes
a the bottom represent the portions of the FT-SR runtime system that implement these language
mechanisms. At the top of the hierarchy are objects and atomic actions. These depend directly on
restartable actions, which are needed to implement protocols like the two-phase commit protocol in
which failed processes must recover to successfully complete. Theserestartableactions, inturn, depend
on two other abstractions. idempotent actions and stable storage. |dempotent actions are actions that
can berestartedif interrupted by failure without the need to restore the initia state; for example, writing
to stable storage can be implemented in thisway using an intentionslist [Lam81]. Stable storage itself
is, of course, used to maintain the intermediate states of atomic actions and other key values; in most
cases, stable storage is redlized in hardware (e.g., a disk), but, as shown in Section 4, it is possible
to build such an abstraction in software using replicated state machines or primary/backup schemes.
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Figure 9: Abstraction hierarchy for object/action model

Finally, the mechanisms and runtime modulesin FT-SR are at the base of the hierarchy,

Similar hierarchies can be defined for programming paradigms such as restartable actions and the
state machine approach, and in each, FT-SR isthefoundation. Asaresult, we arguethat FT-SR provides
the fundamental abstractions that underlie fault-tolerant programming. In particular, FT-SR provides
the abstraction of a simple FS atomic object and two categories of language mechanisms: those that
deal with failurerecovery and thosethat deal with group management. A simple FS atomic object may
be combined with these language mechanismsin avariety of waysto redlize the abstractions needed to
implement the different programming paradigms. For example, asillustrated in our banking example,
an object with arecovery section can be used to implement a restartable action. Similarly, the FT-SR
cr eat e statement can be used to replicate objectsto construct stable storage. In addition, FT-SR gives
the programmer the ability to create groups where the degree of replication is automatically maintained
and the ability to restart entire groups after a catastrophic failure.

We also fedl that FT-SR provides an appropriate level of abstraction for a systems programming
language. Its mechanisms are primitive enough to give the programmer the ability to build all other
abstractions, yet powerful enough to be able to do so with relative ease. Such flexibility allows FT-SR
to be used for a variety of different applications and system architectures. The primitive nature of the
mechanisms a so allows them to be efficiently implemented, an important consideration for a systems
programming language.
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6.2 Redated Work

Other programming languages that have been proposed for fault-tolerant programming differ from FT-
SR in that they provide support for only a single paradigm, making it difficult to construct applications
using other approaches. For example, languages like Argus [Lis85], Avalon [HW87], Plits [EFH82],
TABS [SDD*85] and Hops [Mad86] support the object/action model, languages like Fault-Tolerant
Concurrent C [CGR88] support thereplicated state machine approach, and numerous operating systems
like UNICOS[KK89] support the restartable action paradigm. To illustrate how the different program-
ming paradigms are typically supported, we describe a representative example from each category:
Fault-Tolerant Concurrent C, UNICOS and Argus.

Fault-Tolerant Concurrent C. Fault-Tolerant Concurrent C (FTCC) isacollection of extensionsto
Concurrent C [GR89] that allows the programmer to build replicated state machines using multiple
processes. This is done by extending the Concurrent C process creation statement to create multiple
copies of a process on one or more processors. The entire replicated process ensembleisidentified by
a single process identifier and cals using thisidentifier are delivered by the FTCC runtime system to
al members of the ensemble. A distributed consensus protocol in the runtime system ensures that all
replicas process messages in the same total order. While FTCC does not provide the programmer with
any mechanism to restart failed replicas on functioning processors, it does provide the ability to detect
process failures, where a process is defined to have failed if al of itsreplicas are lost due to failures or
are destroyed by the program. The programmer can ask to be synchronously or asynchronously notified
of such failures. Synchronousfailure notificationis provided by means of a fault-expression associated
with the call statement that is executed if the call fails. Asynchronous failure notification is provided
by the built-infunction c r equest _deat h_not i ce, which takestwo arguments: the identifier of a
process to be monitored and afunction to be called by the runtime system when the processfails. This
monitoring can be terminated using the built-in function c_cancel _deat h_not i ce, which takes a
process identifier asits argument.

FTCC's support for the replicated state machine approach is suitable for building a large class of
fault-tolerant applications. However, thereis an equally large class for which some other paradigm is
most convenient, and for these, FTCC providesno explicit support. FT-SR, on the other hand, provides
an integrated collection of mechanisms that supportsa variety of paradigms equally well.

UNICOS. UNICOS is an operating system for Cray machines derived from AT&T Unix System V.
It supports the restartabl e action paradigm by providing the programmer with primitivesto checkpoint
and restart processes. These primitivesare provided in theform of two new systemcalls: chkpnt and
restart. chkpnt isusedtocheckpoint aprocess; it creates arestart file containing the information
needed to restore the process to execution at alater time. r est art accepts arestart file and restores
the processto the stored state. In addition to providing these new system calls, UNICOS defines a new
Unix signal called SGRECOVERY that is sent to arestarted process. Thissigna may be fielded by the
process and recovery code executed by the signal handler.

Although an important building block, the restartable action paradigm is directly applicable to only
asmall class of mainly sequential applications. Moreover, even for these applications, coarse-grained
checkpointing facilities such as those provided by UNICOS are sometimes less than optimal sincethey
force the programmer to save an entire process state even if only a portion is needed. In FT-SR, the
granularity of accessto stable storageis controlled by the programmer, thereby allowing the facility to
be tuned to the needs of the particular application. Of course, coarse-grained checkpointing can still be
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provided in the form of library routinesif desired.

Argus. Argus is an integrated programming language and system that supports the object/action
programming paradigm. Objectsin Argus are called guardians and export operations called handlers.
Thestateof aguardianisencoded by itsvariables, which may bestableor volatile. Asthenameimplies,
stable variables are stored in stable storage and survive failures, while volatile variables are lost when
failures occur. A call to a handler results in the creation of a process to handle the call. This process
may modify the variables of the guardian and invoke handlers on other guardians. Since the guardians
may be on different machines, handler invocations may cross machine boundaries. An actionin Argus
can be thought of as a process that attempts to transform the state of one or more guardians from an
initial state to afinal state, with any number of intermediate state changes. All actions are atomic and
compl ete by either committing or aborting. An action may also be aborted if afailure occurswhileit is
in progress. When an action aborts, afailureis signaled that can be fielded by a programmer-supplied
signal handler associated with the action. When a failed processor recovers, the Argus runtime first
recreates the guardians that were executing when the failure occurred. The system then restores the
values of the stable variables from stable storage and executes the specified recovery code, if any. The
guardian is ready to accept new invocations as soon as the recovery code compl etes.

As shown in Figure 9, languages like Argus that realize the object/action model often end up
implementing an entire range of abstractions as part of the runtime support. From the perspective of
the user, however, these intermediate abstractions are hidden and therefore not available to construct
applicationsfor which the object/action model isnot directly suited. In contrast, the philosophy behind
FT-SRisto buildinonly thecommon foundation, thereby allowing theuser to construct whatever higher-
level abstractions are most appropriate for a given application. Of course, as with checkpointing, those
that are most commonly used can be provided as library routinesif desired.

7 Concluding Remarks

A distributed programming language designed to support the construction of fault-tolerant systems
must be flexible enough to allow avariety of structuring and redundancy techniques. FT-SR has been
designed to be such alanguage by incorporating facilitiestargeted at supporting the variousprogramming
paradigms that have been proposed for such systems. Theseinclude support for encapsulation based on
SR resources, synchronous and asynchronous failure notification, resource replication with consistent
invocation ordering, and recovery. The logical basis of the language design is a programming model
centered around the notion of fail-stop atomic objects.

Future work will concentrate on using FT-SR to construct a number of different prototype systems.
This process will be used to gain experience with the language that can be used to refine and expand
the design of the language. Thiswill also help usidentify and implement the library support necessary
to simply the task of constructing such systems. Among the additional issues that we expect to
addressare theexpansion of our failure-handling mechanismsinto ageneral exception handling scheme
oriented towards the specific nature and requirements of distributed programming languages, and the
incorporation of provisionsfor real-time computing.
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Appendix A: The SR Distributed Programming L anguage

An SR program consists of one or more resources. These resources can be thought of as patterns from
which resourceinstances are created dynamically. Each resourceiscomposed of two parts: an interface
portion which specifies the interface of the resource and a body, which contains the code to implement
the abstract object. The specification portion contains descriptions of objects that are to be exported
from this resource—made avail able for use within other resources—as well as the names of resources
whose objects are to be imported. Of primary importance are the declaration of operations—actions
implemented by sequences of statementsthat can be invoked. These declarations specify the interface
of those operationsthat are available for invocation from other resources. For example,

op exanmplel(var x: int; val y: bool)

declares an operation, exanpl el, that takes as arguments an integer x that is passed with copy-
in/copy-out (var ) semanticsand abooleany that is copy-inonly (val ). Result parameters (r es) are
also supported, as are operations with return val ues.

The declaration section in the resource body together with its specification define the objects that
are global to theresource, i.e., accessibleto any process within the resource. All of the usual typesand
constructors are provided. In addition, there are capability variables. Such a variable functions either
as a pointer to all operationsin aresource instance (a resource capability), or as a pointer to a specific
operation within an instance (an operation capability). A variable declared as a resource capability is
given a value when a resource instance is created, while an operation capability is given a value by
assigning it the name of an operation or from another capability variable. Once it has a vaue, such
variables can be used to invoke referenced operation(s), as described later.

The resource instances comprising a given program may be distributed over multiple virtual ma-
chines, which are abstract processors that are mapped to physical machinesin the network. A resource
instanceis created and placed on a virtual machine using the following:

res_cap := create res_nane(argunments) on virtual _machi ne_cap

Execution of this statement creates an instance of the resource r es_nane on the virtual machine
specified by the virtual machine capability vi rt ual _machi ne_cap and assigns a capability to the
newly created resource to the capability variabler es _cap.

An operationisan entry into aresource. An SR operation has aname, and can have parameters and
return aresult. There are two different ways to implement an operation: as a proc or as an aternative
in an input statement. A proc is a section of code whose format resembles that of a conventional
procedure:

proc opnane(paraneters) returns result
op_body
end

Theoperationbody op _body consistsof declarationsand statements. Likeaprocedure, thedeclarations
define objects that are local to the operation opnane. Unlike a procedure, though, a new process is
created, at least conceptually, each time opnane isinvoked. It is possibleto get standard procedure-
like semantics, however, depending on how the proc is invoked (see below). The process terminates
when (if) either its statement list terminatesor ar et ur n is executed.

An operation can also be implemented as an alternative of an input statement. An input statement
implementing a collection of operations opname,, opname., . . ., opname,, hasthefollowing form:
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i n opnane,(paraneters) -> op_body,
O opnhane,( paraneters) -> op_body,

O opnane,(paraneters) -> op_body,
ni

A processexecuting aninput statement isdelayed until thereisat | east oneaternativeopname, for which
thereisa pending invocation. When this occurs, one such alternativeis selected non-deterministically,
the oldest pending invocation for the chosen alternative is selected, and the corresponding statement
listis executed. Theinput statement terminates when the chosen aternative terminates.

An operation isinvoked explicitly usingacal | or send statement, or isimplicitly caled by its
appearance in an expression. The explicit invocation statements are written as

call op_denotation(argunments)
send op-denotati on(argunents)

where the operation is denoted by a capability variable or by the operation name if the statement is
in the operation’s scope. An operation can be restricted to being invoked only by a call or a send by
appendinga{cal | } or {send} operation restrictor to the declaration of the operation.

Executionof acal | terminates once the operation has been executed and aresult, if any, returned.
Its execution is thus synchronous with respect to the operation execution. Execution of a send
statement is, on the other hand, asynchronous: a send terminates when the target process has been
created (if aproc), or when the arguments have been queued for the processimplementing the operation
(if an input statement). Thus, the effects of executing the various combinations of send/cal | and
pr oc/i n are described by the following table.

Invocation Implementation Effect

cal l proc procedure call

send proc process creation

cal | in rendezvous

send in asynchronous message passing

Toillustrate how the individual pieces of the language fit together, consider the implementation of
a bounded buffer shown in Figure 10. Two operations are exported from this resource: deposi t and
f et ch; deposi t placesavaueinthenext availableslotif oneexists, whilef et ch returnsthe oldest
value from the buffer. A depositing process is delayed should the buffer be full. Similarly, afetching
processis delayed whenever the buffer isempty. Note aso that the resource has aparameter si ze; its
value determines the number of slotsin the buffer. The use of resource parameters in thisway allows
instancesto be created from the same pattern, yet still vary to a certain degree. Finally, notethe single
input statement to implement both the deposit and fetch operations, and the use of a send statement in
the initialization code to initiate the main (parameterless) proc buf f | oop. Creating a processin this
manner is so common that the keyword pr ocess can be used instead of pr oc as an abbreviation for
thesend in the resource initialization code and corresponding op declaration.
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resource buffer

op fetch() returns value: int

op deposit(val newalue: int)
body buffer(size: int)

var first, last: int :=0, O

var slot[0:size - 1]: int

initial

send buff _l oop()
end

proc buff _Ioop()
do true ->
in deposit(newalue) and first != (last + 1) %size ->
slot[last] := newal ue
last := (last + 1) %size
O fetch() returns value and first !=last ->
value := slot[first]
first := (first + 1) %size
ni
od
end
end

Figure 10: Bounded buffer resource
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Appendix B: Data Manager | mplementation

Here, we present therest of thepr ocs exported by thedatamanager describedin Section4. Asoutlined
there, the data manager keeps track of all in-progresstransactionsin astatustablet r ansSt at us.

proc startTransaction(tid, dataAddrs, nunDataltens)
var t: int # index into the status table

P(st at usTabl eMut ex) ;
# find an enpty slot t in the statusTable

statusTable[t].transStatus :='A # mark transaction as active

V( st at usTabl eMut ex) ;
statusTable[t].tid :=tid

# acquire |l ocks on data itens
| ockManager . | ock(tid, dataAddrs)

statusTabl e[t]. nenCopy : = new dat aArray)

statusTabl e[t].num tens : = nunDat al t ens

fai :=1 to nunDataltenms ->
statusTabl e[t].dataAddrs[i] := dataAddrs[i]
ss.read(dataAddrs[i], sizeof(int), currentPointer)
statusTabl e[t].currentPointers[i] := currentPointer

ss. read(dat aAddrs[i] +currentPoi nter, sizeof(data), statusTable[t]. menCopy[i])
af

# wite status table entry onto stable storage

ss.write(statusTabl e + t*sizeof (translnfoRec), sizeof(trans), statusTable[t])
end startTransaction

Figure1l: st art Transact i on operation

Figurellshowsst art Tr ansact i on. Thepr oc firstfindsanempty slotinthest at usTabl e,
i.e. aslotwithat ransSt at us of ‘E’, and marksit as being actively used (‘A’) by transactiont i d.
The lock manager is then invoked to acquire locks on the data items. The status table entry is
updated next; specifically, the address of the data array is assigned to mentCopy and the num t ens
field isinitialized. Information concerning each data item is then stored after being retrieved from
stable storage if necessary; this information includes the address of the data item, its value, and its
current Poi nt er. Findly, the appropriate status table entry on stable storage is updated. Once a
transaction is started, the dataitems it uses may be accessed and modified usingther ead andwr i t e
operations shownin Figure 12. These operations use the copy of the dataitemsin volatile memory.

Thepr epar eToConmi t andconi t operationsare shownin Figure13. pr epar eToConmmi t
is invoked when the transaction manager decides to commit the transaction; it writes al the data
items from the copy in volatile storage to the “non-current” copy in stable storage, and then discards
the copies in volatile memory. The conmi t operation commits the modifications by changing the
offset indicators of the appropriate data items in stable storage to point to the new version written by
prepareToComi t. Following this, the status of the transaction is changed to done (‘D’) in both
the volatile and stable storage versions. The data items are then unlocked. Finally, the transaction
statusis changed to empty (‘E’), with the change being reflected onto stable storage aswell. Since the
transaction manager that co-ordinatesthe various data managers may re-issuecommitswhen recovering
fromafailure, theconmi t operation may bere-executed in part or intota an arbitrary number of times
given inopportune failures. Our implementation takes this into account by constructing this operation

26



proc read(tid, dataAddrs, data, nunDataltens);
# search transaction table for entry for tid. let t be index of entry

fa i 1 to nunDataltens ->
=1
do (statusTable[t].dataAddrs[j] != dataAddrs[i]) ->
j ++

od
data[i] = statusTable[t]. menCopy][j]
af
end read

proc wite(tid, dataAddrs, data, nunDataltens);
# search transaction table for entry for tid. let t be index of entry

fa i 1 to nunDataltens ->
=1
do (statusTable[t].dataAddrs[j] != dataAddrs[i]) ->

j ++

od
statusTabl e[t].nenCopy[j] = data[i]
af
end wite

Figure12: r ead andwr i t e operations

as arestartable action.

Figure 14 shows the abor t operation, which is invoked when the transaction manager decides
to abort the transaction. abort simply discards the copies of the dataitems in volatile memory and
changes the status of the transaction to empty ('E’) in both the volatile and stable storage versions.
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proc prepareToCommit (tid)
var t: int # index into the status table

# search transaction table for entry for tid. let t be index of entry

# wite nodified objects to the "non-current" copy
fai :=1to statusTable[t].nunDataltens ->
ss.write(statusTabl e[t].dataAddrs[i] + (statusTable[t].currentPointers[i] nod 2 + 1),
si zeof (data), statusTable[t].nenCopy[i])
af
free(statusTabl e[t]. nenCopy)
end prepareToConmi t

proc commt(tid)
var t: int # index into the status table
# search transaction table for entry for tid, let t be index of entry

# if entry cannot be found, return---transaction has conmitted al ready

if statusTable[t].transStatus = 'A -> # transaction hasn't conmitted yet
# replace current pointers of data itens by new current pointers
fai :=1to statusTable[t].nunDataltens ->

ss.write(statusTabl e[t].dataAddrs[i], sizeof(int),
(currentPointers nod (sizeof(data)+1l) + 1))

af
statusTable[t].transStatus :='D # mark transacti on as done

fi

if statusTable[t].transStatus ='D -> # cl eanup
ss.write(statusTabl e + t*sizeof (translnfoRec), sizeof(trans), statusTable[t])
| ockManager . unl ock(tid, statusTabl e[t]. dataAddrs)
statusTable[t].transStatus := 'E # mark table slot as being enpty
ss.write(statusTabl e + t*sizeof (translnfoRec), sizeof(trans), statusTable[t])

fi

end conmit

Figure 13: pr epar eTocommi t and conmi t operations

proc abort(tid)
var t: int # index into the status table

# search transaction table for entry for tid. let t be index of entry
# free volatile copy of data itens
free(statusTabl e[t]. nenCopy)

# change transaction status to enpty

statusTable[t].transStatus :='FE
ss.write(statusTabl e + t*sizeof (translnfoRec), sizeof(trans), statusTable[t])
end abort

Figure 14: abort operation
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