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Abstract

The trend towards very large DNA sequencing projects, such as those being undertaken as
part of the human genome initiative, necessitates the development of efficient and precise algo-
rithms for assembling a long DNA sequence from the fragments obtained by shotgun sequenc-
ing or other methods. The sequence reconstruction problem that we take as our formulation of
DNA sequence assembly is a variation of the shortest common superstring problem, compli-
cated by the presence of sequencing errors and reverse complements of fragments. Since the
simpler superstring problem is NP-hard, any efficient reconstruction procedure must resort to
heuristics. In this paper, however, a four phase approach based on rigorous design criteria is
presented, and has been found to be very accurate in practice. Our method is robust in the sense
that it can accommodate high sequencing error rates and list a series of alternate solutions in the
event that several appear equally good. Moreover it uses a limited form of multiple sequence
alignment to detect, and often correct, errors in the data. Our combined algorithm has success-
fully reconstructed non-repetitive sequences of length 50,000 sampled at error rates of as high
as 10 percent.
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Combinatorial algorithms
for DNA sequence assembly

1 Introduction

DNA sequences may be viewed abstractly as strings over the four letter alphabet ,
each letter standing for the first character of the chemical name of the nucleotidecomprising the
polymer’s chain. Current gel electrophoresis technology permits experimentalists to directly
determine the sequence of a DNA strand 300 to 700 nucleotides in length. Determining the
sequence of a longer strand, of say 10,000 to 100,000 nucleotides, requires an indirect approach.
In the shotgun sequencingmethod, the experimentalist randomly samples fragments of a length
short enough to be determined by electrophoresis. Whenever two fragments are sampled from
regions that intersect this is detected as an overlap in the sequences of the fragments. With
sufficient sampling one can eventually reconstruct the underlying sequence by assembling the
fragments according to their overlaps. Our problem is to perform the assembly of the current
fragment set at any given point in such a project.

This seemingly simple procedure is made difficult by several exacerbating factors. First,
the fragments may not assemble into a single reconstruction due to incomplete coverage of the
original sequence. Second, errors are present in the fragment sequences due to experimental
errors in the electrophoresis procedure. With current technology, anywhere from .5 to 5 percent
of the sequence of a fragment may be incorrect. Third, an overlap may not be due to the fact
that the fragment intervals intersect, but may simply be due to chance. In a project involving
a thousand fragments, given the presence of error such spurious overlaps do occur. Finally,
DNA is double-stranded, and a particular fragment may have come from either strand. Hence
a fragment may represent the sequence on one strand or the reverse complement sequence on
the opposite strand. In this case we say the orientation of the fragments is not known.

This paper develops an algorithm for sequence assembly in the most general setting, with
incomplete coverage, sequencing errors, unknown fragment location, and unknown fragment
orientation. As the error in the fragments decreases, the speed of the algorithm increases. It can
also accomodate information concerning fragment order and orientation, and generate alternate
solutions on demand. For the subproblems that arise, we either design exact algorithms thatfind
an optimal solution but may take exponential time, or approximation algorithms that always run
fast but find a solution close to optimal. For some problems, we design both.

To formally define the problem, let us denote the minimum number of insertions, deletions,
and substitutions required to edit sequence into sequence by , the edit distance
between and . We denote the reverse complement of sequence by . Sequence is
obtained by reversing and mapping each character to its complement. We write for the
complement of character . For the DNA alphabet, and , while and .
If , for example, .

Under the principle of parsimony, a natural formulation of the sequence assembly problem
is to determine a shortest sequence that explains all of the fragments. Formally we have the
following.
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Definition The DNA sequence reconstruction problem, RECONSTRUCT, is, given a collec-
tion of fragment sequences and an error rate , find a shortest sequence such that
for every fragment there is a substring of such that

In the related shortest common superstring problem, SUPERSTRING, one is given a col-
lection of strings and seeks a shortest string , called a superstring, such that every string in
the collection is a substring of . In essence RECONSTRUCT is a shortest common superstring
problem where a fragment is considered to match the superstring if the fragment, or its reverse
complement, can be aligned to the superstring within a length-relative error threshold of . In
fact, SUPERSTRING can be reduced to the sequence reconstruction problem with . Since
SUPERSTRING is NP-complete [13], this implies that RECONSTRUCT is NP-complete. Details
may be found in [18].

Related work

Prior work related to DNA sequence assembly may be classified into three categories. In the
first class of papers, Shapiro [32], Hutchinson [17], Smetanič and Polozov [33], Gallant [12],
and Foulser [7] examine an early model of the problem where fragments do not contain errors
and are partitioned into classes such that concatenating the fragments within each class, in some
order, gives the underlying sequence. The problem is to determine when the fragment data is
consistent with a sequence, and if it is, to find such a sequence. These papers show that the
problem can be solved in polynomial time.

The second category of papers analyze approximation algorithms for the shortest common
superstring problem, which we have indicated is equivalent to the sequence reconstruction prob-
lem without error and with fragment orientation known. Tarhio and Ukkonen [36], Turner [38],
and Ukkonen [39] show that a simple greedy algorithm finds a superstring whose amount of
compression is within a factor of of the maximum, and give efficient implementations. Blum,
Avrim, Jiang, Li, Tromp and Yannkakis [1] prove that the greedy algorithm delivers a super-
string at most times longer than the shortest, and that a simple variant delivers a superstring
at most times longer than the shortest. It is not known whether these bounds are tight. Li [21]
examines sequence assembly from the viewpoint of computational learning theory and shows
that an approximation algorithm for SUPERSTRING will learn the underlying sequence in poly-
nomial time in the PAC model of learning, given fragments without error and with known ori-
entation.

In the third category of papers, Staden [35], Gingeras, Milazzo, Sciaky and Roberts [14],
and Peltola, Söderlund and Ukkonen [27] develop software for sequence assembly. Peltola,
Söderlund, Tarhio and Ukkonen [26] describes the algorithms used in [27], and also gives the
first statement of the sequence reconstruction problem. These papers deal with error, and with
orientation, but do not characterize the quality of the reconstruction that is output.

In addition, three papers have recently come to our attention that look at the subtask of com-
puting overlaps between pairs of fragments. Gusfield, Landau and Schieber [15] show that with
the suffix tree data structure the longest overlap beween a suffix of one fragment and a prefix
of another can be determined for all pairs of fragments in time linear in the size of the input
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and output, if no errors are permitted in the overlaps. Cull and Holloway [6] apply the suffix
array data structure of Manber and Myers [22] to find overlaps, where fragments are assumed
to contain only substitution errors, and the suffix and prefix of each fragment is assumed to
match only one other fragment in an overlap longer than a given threshold. Huang [16] applies
a local alignment algorithm of Smith and Waterman [34] to compute an overlap that maximizes
a linear function of the number exact matches and errors in the alignment, and uses a filtering
technique of Chang and Lawler [4] to avoid considering some of the pairs of fragments whose
alignment score is below a fixed threshold.

Our work may be distinguishedfrom prior theoretical investigations in that we address both
sequencing errors and unknown orientation, and in contrast to earlier software, each phase is
a well-defined problem. Like Peltola et al. [26] we cannot claim that our algorithm as a whole
solves RECONSTRUCT, but in distinction, each phase solves or approximates a precise opti-
mization problem. Moreover, for the case of no error and known orientation we can say that
our algorithm, without modification, solves RECONSTRUCT, which is equivalent to SUPER-
STRING. In this sense the algorithm generalizes earlier theoretical work.

Overview

Our algorithm proceeds in four phases consisting of the following combinatorial problems:
(1) constructing a graph of approximate overlaps between pairs of fragments, (2) assigning an
orientation to the fragments, in other words choosing the forward or reverse complement se-
quence for each fragment, (3) selecting a set of overlaps that induce a consistent layout of the
oriented fragments, and (4) merging the selected overlaps into a multiple sequence alignment
and voting on a consensus. We devote a section of the paper to each of the four phases.

In phase (1) we compute overlaps within the error rate that maximize a likelihood function
on alignments. Edges in an overlap graph correspond to these alignments, and are weighted by
their likelihood. Given fragments of total length and error rate , our method for computing
the graph modeling these overlaps takes time.

In phase (2) we orient fragments so as to maximize the weight of all edges in the overlap
graph that are consistent with the chosen orientation. This subproblem is NP-complete. We
present an exact algorithm that computes an optimal orientation in time for an
overlap graph of fragments and edges, where is the size of its branch and bound
search tree. We also present an approximation algorithm that computes an orientation of weight
at least the maximum in time.

In phase (3) we place the fragments in an overlapping layout by selecting a set of edges of
maximum total weight that form a branching satisfying a dovetail chain property. Finding such
a branching is also NP-complete. We present an exact algorithm that computes an optimal lay-
out byfinding a maximum weight dovetail-chain branching in time, where

is the size of its search tree. A greedy approximation algorithm for this problem is
well-known and in contrastfinds a branching of weight at least the maximum in time.
We further show how our approach naturally lends itself to producing alternate solutions if de-
sired.

In phase (4) we take the set of all overlaps in the graph that agree with the fragment layout
and merge them into a multiple sequence alignment, as follows. The alignments represented
by the set of overlaps match pairs of characters from the fragments. Of these character pairs we
seek a subset of maximum total weight that forms a multiple alignment. This problem is also
NP-complete, though it can be solved in time exponential in the maximum number of fragments
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Figure 1 The four types of overlaps.

that mutually overlap in the layout. Given overlaps that match pairs of characters from a lay-
out with at most mutually overlapping fragments, we construct a multiple sequence align-
ment of length , and a consensus sequence, in time. The set of matched
pairs that forms the alignment has weight at least of the maximum.

The paper closes with a presentation of some preliminary experimental results for the com-
bined algorithm, and we conclude by suggesting some possible extensions.

2 Overlap graph construction

Our algorithm builds a reconstruction by overlapping the fragments in pairs. We represent the
set of all pairwise overlaps with a directed edge-weighted graph called an overlap graph. This
section describes the structure of this graph, and how we construct it.

If we consider fragments as intervals and overlaps as intersections of intervals, there are
essentially four ways a pair of fragments can overlap, as shown in Figure 1. Each type of over-
lap is an alignment between the sequence for fragment and the sequence for fragment . If
the alignment is between a proper suffix of and a proper prefix of , we call it a dovetail
and say dovetails to . If the alignment is between a substring of and all of , we call
it a containment and say contains . An overlap is denoted by an ordered pair of
sequences, and represents an alignment where either dovetails to or contains . The
overlap is at rate if the number of errors in the alignment is at most , where an
error is the insertion, deletion, or substitution of a character. We also attribute an overlap with
a real-valued weight, which is a score for the alignment based on the probability of the over-
lap occurring by chance. There are many possible alignments for a given type of overlap. We
choose an alignment that has maximum score.

An overlap graph represents fragments with vertex set and overlaps
with edge set . Edge weight function gives the weight of overlaps. In an unoriented over-
lap graph, contains two vertices for every fragment . One vertex represents sequence ,
and the other vertex represents the reverse complement sequence . An overlap of se-
quence with sequence is represented by an edge directed from vertex to vertex . An

A proper suffix of is a substring where . A proper prefix is a sub-
string where .
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Figure 2 Overlap graphs. (a) An unoriented graph. (b) An oriented subgraph.

edge corresponding to a dovetail is denoted by . A containment is denoted by .
Note that edge is equivalent to edge . In other words, any alignment be-

tween a suffix of and a prefix of is an alignment between a suffix of and a prefix of .
Similarly, edge is equivalent to edge . This equivalence is reflected in our rep-
resentation: is always accompanied by , and is always accompanied
by . With this pairing of edges, there are essentially four possible overlaps between
two fragments when their orientation is unknown, namely , , , and .
Each of these overlaps may be a dovetail or a containment.

Our algorithm for overlap graph construction builds an unoriented graph. We form an ori-
ented overlap graph from an unoriented graph by specifying the orientation of fragments.
In this case we restrict our attention to the subgraph of induced by the vertices specified in
the orientation. For example, Figure 2 shows an unoriented overlap graph, and the subgraph
induced by a particular orientation. Section 3 describes how we determine which oriented sub-
graph to submit to the fragment layout algorithm of Section 4.

2.1 The least random overlap problem

Given two fragments, we would like to infer how they overlap in the underlying sequence, if
they overlap at all. We model this inference problem as one of finding, for each type of overlap,
an alignment of minimum probability. If this alignment is statistically rare, it is not likely to
be due to a chance matching of characters. An overlap poorly explained by chance is likely to
represent a true overlap of the fragments.

To determine the probability of an alignment we treat the fragments as random sequences
with each character drawn uniformly and independently from the alphabet . While
the exact probability of an alignment is unknown even for this model, a result of Chvátal and
Sankoff [5] on random common subsequences gives a good upper bound.

The alignments that we compute match a pair of characters only when they are equal. These

The subgraph of induced by a subset is the graph where contains only edges
joining vertices in .

Of course the other possibility is that the sequence contains a repeat.
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matches give a common subsequence of the fragments, and each unmatched character is con-
sidered an insertion error or a deletion error. Thus a substitution is counted as a deletion error
followed by an insertion error. The quantities that we measure for an alignment are , the length
of the common subsequence, and , the number of errors. Sankoff and Chvátal [30] show that
the number of sequences of length over an alphabet of size that contain a fixed subse-
quence of length is

(1)

independent of the particular subsequence. This gives an upper bound on the probability of an
alignment with matches and errors of

(2)

We say an overlap minimizing is least random. Our problem is the following.

Definition The least random overlap problem, OVERLAP, is, given an ordered pair of
sequences from an alphabet of size , and an error rate , find an overlap at rate mini-
mizing , where is the number of exact matches in the alignment and is the number
of errors.

We make a few remarks on the problem. Our sequences are from an alphabet of four letters,
so we are interested in minimizing . Minimizing is equivalent to maximizing

which we call the likelihood of the alignment. Likelihood has several nice properties. is
increasing in , decreasing in , and bounded by . While we do not prove it here, asymptoti-
cally . Likelihood balances more matches against greater error in an
objective manner.

2.2 Computing overlaps

A simple algorithm for OVERLAP is to (1) compute for all dovetails and containments be-
tween and the edit distance between the overlapped substrings, (2) evaluate for
each of these overlaps where is the distance between overlapped substrings
and and , and (3) output the overlap with maximum . It suffices
to consider the alignment of minimum distance for each possible overlap, in other words this
algorithm is correct, because is monotone in its arguments. Since a pair of se-
quences of length and has dovetails and containments, and since the edit

Intuitively one would like an overlap with the greatest number of matches, yet matches are often achieved at
the price of error in the alignment. The packages of Staden [35] and Gingeras et al. [14] use rules of thumb, such
as, extend an alignment with 5 matches if this can be done with only 3 errors, while the system of Peltola et al. [26]
tries to minimize , which has the rough behavior of , but does not discriminate between longer and shorter
overlaps with the same error density. Huang [16] minimizes , which also approximates , but trades
matches against errors linearly, which from an objective point of view, is arbitrary. However, both Peltola et al. [26]
and Huang [16] are able to accomodate substitution errors within their objective function.
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distance for each dovetail and containment may be computed in time by the standard
dynamic programming algorithm [31], this gives an time algorithm, and it is easy to
bring this down to time by combining subproblems. Here we assume .

Myers [25] has shown that it is possible to solve all subproblems in time,
where is the maximum edit distance allowed. In our application, , so this
gives an time algorithm.

The idea of Myers’ algorithm is to solve the alignment problems incrementally, and rep-
resent the solutions with a data structure that can be efficiently updated. For ,
let denote the substring denote the suffix , and denote the pre-
fix . Given sequences and of length and , Myers solves a series of alignment
problems that compare increasingly longer suffixes against . For each suffix , the
edit distance is obtained between all and all for which . Note this
includes the dovetails and the containments . These distances are not
explicity computed, but are represented implicitly by a sparse data structure that encodes their
values. Any particular distance, if needed, can be recovered from the encoding.

Given the encoding for versus , Myers shows that the encoding for versus
can be obtained in time. To find a least random overlap, the distances we need for a fixed
are for the possible dovetails, and for the roughly possible
containments. Of these dovetails and containments, only can have distance
at most . With the encoding for versus in hand, these distances can be recov-
ered in time. Given the distances, we can evaluate the likelihoods. This spends a total of

time per problem, and as there are problems, it gives an time algorithm.
Throughout this description we have assumed that the likelihood function can be evaluated

in time. Computing directly from equations (1) and (2), however, involves a sum
of terms. Fortunately, it is possible to precompute a table of since and are
both bounded in practice. For fragments of at most 1,000 nucleotides, and error rates of at most
10 percent, it suffices to store a table of for and .

To construct an overlap graph then for fragments at error rate , for every pair of frag-
ments we solve OVERLAP for , , , and , using Myers’ algorithm. For
fragments of total length , this takes time . Each overlap is classified as a dovetail
or a containment, and we add the appropriate edge to the graph attributed with the correspond-
ing alignment, and weighted by the likelihood of the match. Alignments are encoded by edit
scripts to conserve space (see Section 5.3.4).

2.3 Culling overlaps

The construction we have described gives a complete overlap graph. Most of the edges, how-
ever, will represent chance alignments, rather than true overlaps. We now describe how to cull
such edges from the graph. In practice we observe that culling reduces the number of edges
from to . Our orientation and layout algorithms will take advantage of this spar-
sity.

This is possible because only subproblems can have distance at most . Nevertheless it is remarkable
that a subproblem, which in isolation requires time, can be solved in effectively constant time. Myers does
assume edit distance is measured in terms of insertions and deletions only.
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Table 1 Number of matches to achieve .

Matches,
Errors,

0 5 10 25 50
1 7 12 28 53
2 8 14 30 56
3 9 15 32 58
4 10 17 33 60
5 12 18 35 62

10 18 25 44 72
15 24 31 51 81
20 30 38 59 89
25 37 45 66 97
50 69 78 101 136
75 102 111 135 172

100 135 144 169 207

2.3.1 Match significance

We use two criteria for culling edges, the first based on match probability. We assume the biol-
ogist has amatch significance threshold for the minimum acceptable likelihood of an overlap.
An overlap of matches and errors is rejected if

With edges weighted by likelihood, this means every edge in the graph must have weight at
least . Since , it also implies that every overlap must have at least matches.
Table 1 lists the minimum number of matches to achieve a given threshold, for various values
of and .

2.3.2 Error distribution

Our second criterion for culling edges is based on the distribution of errors in an overlap. The
alignment for an edge between fragments and is guaranteed to have at most er-
rors, but one expects an overlap that aligns substrings and to have around er-
rors. If the number of errors far exceeds this, it is natural to suspect that the edge is not a true
overlap, and reject it. Such an edge is inconsistent with the hypothesis that errors are roughly
evenly distributed.

Let us assume that fragments and have a total of errors between
them, and that the probability of observing an error in an overlap of substrings and is

. Then if errors are independent, the number of errors in the overlap, , is a binomial

Admittedly, when the fragment sequences are obtained from reading electrophoresis gels, errors occur more
frequently at the fragment ends. We can conservatively treat such errors as evenly distributed according to the max-
imum error rate at the end of a fragment.
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Figure 3 Culling an overlap by error distribution.

random variable with parameters and . The probability of observing or more errors is

To cull overlaps on the basis of error distribution, we assume that the biologist is willing
to reject a small fraction of all alignments that do not distribute the errors evenly but have an
error count exceeding a critical value. We call this fraction the error distribution threshold ,
and reject an overlap with errors if

(3)

This is illustrated in Figure 3. The probability is equal to ,
where is the incomplete beta function. There are fast numerical methods for evalu-
ating , which yield an efficient test of inequality (3). (See for instance [28, pages 178–
180].)

Finally, we note that both the match significance and the error distributioncriteria are needed.
Without a match significance criterion, time and space are wasted on short overlaps, such as
those that align one character. Without an error distribution criterion, long but poor overlaps
are permitted, such as those that align many characters, but have an error rate of 50 percent.
Also note that the extreme case and is permitted, in which case no overlaps are
rejected.

To summarize, given fragments of total length , error rate , a match significance thresh-
old, and an error distribution threshold, the first phase of our algorithm constructs a graph of
least random overlaps, weighted by likelihood, in time .

3 Fragment orientation

Once we have constructed an overlap graph and culled its edges, we are left with a collec-
tion of significant overlaps. With high probability these edges represent true overlaps between
fragments, and while some may align reverse complement sequences and others not, the ma-
jority of overlaps should indicate a consistent orientation. This section describes how we find
an oriented subgraph of in preparation for fragment layout.
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3.1 The fragment orientation problem

To specify an oriented subgraph is to determine for every fragment whether sequence or
is used in the reconstruction. If we decide to use , we say the fragment is assigned the forward
orientation; if we use we say it is assigned the reverse orientation. Assigning orientations
eliminates some overlaps and retains the possibility of using others. For example, assigning

and the forward orientation eliminates any overlap between and , but allows us to
use or .

For and from an overlap graph with edge weight function , let

and

with the understanding that the weight of an overlap is zero when it is not in . The weight of
the best overlap between fragments and is given by when both are assigned
the same orientation; applies when they are assigned opposite orientations. Note
that and are symmetric in their arguments. We view these functions
as defining an undirected graph whose vertices are the fragments and whose edges are the
pairs for which or is nonzero. With this interpretation, same
and opp are two edge-weight functions for . For an overlap graph with fragments and

overlaps, has vertices and at most edges.
An orientation of a collection of fragments is represented by a partition

where is the set of fragments in the forward orientation, and is the set with
the reverse orientation. We write for when is given by context, and often specify
partition by only giving set . For an edge of and a partition of , we
use the notation to indicate that and , and we write

when or .
Since all overlaps remaining after culling are significant, we would like an orientation

that minimizes the weight of the overlaps it eliminates, or equivalently maximizes the weight
of the overlaps it retains. Our problem is the following.

Definition The fragment orientation problem, ORIENT, is, given fragments and functions
same and opp, find an orientation for minimizing

We call the weight of the orientation. Figure 4 gives an illustration.
ORIENT is NP-complete. As may be suspected, it is polynomial-time equivalent to the

maximum weight cut problem [18].

3.2 An approximation algorithm

While finding an optimal orientation is hard, it is easy to find an orientation that is close to
optimal.
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Given an ordering of we compute an orientation as follows. Initially,
we set . At step , we consider adding to where currently partitions

. If , we set . Otherwise, we
leave unchanged, which effectively adds to . After steps, we output .

Each decision of this greedy algorithm involves only the edges incident to the current frag-
ment . Given an ordering of , it runs in time and space for a graph of

vertices and edges.
The greedy algorithm guarantees an orientation of weight at least , where is

an optimal orientation. (We note that the following analysis is virtually identical to that of a
folklore heuristic for maximum weight cut.) To see this, first note that a trivial upper bound
on is the total weight of the graph,

If the greedy algorithm adds to at step , the weight of the orientation increases by

(4)

If it does not add to , the weight increases by

(5)

Denote the actual amount of increase at step by . Since the greedy algorithm chooses
the greater of (4) and (5),
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Summing over all steps,

This is a worst-case bound, and it holds for any order of the fragments. In a good order,
the difference in weight between being in and out of should be large for fragments appear-
ing early in the order. Otherwise, unrelated fragments that appear early may get an arbitrary
orientation.

We can determine an order as follows. Given , same, and opp, we form an undirected
graph with vertex set and edge weight function

Over this graph we compute a maximum weight spanning tree . Such a tree clusters vertices
by edge weight. We then select a root of greatest total distance from all other vertices, where
the distance between vertices and is the number of edges on the path connecting them in .
As tends toward a single path, tends toward an endpoint of the path. Finally, we order the
fragments depth-first in from . The intuition behind this heuristic is that we expect the
graph on which we compute a spanning tree to be the interval graph given by the correct layout
of the fragments, with some weak edges thrown in. For such a graph, the fragment order given
by the heuristic will tend towards the fragment order given by the underlying layout.

Constructing the graph takes time, where is the number of fragments and is
the number pairs of fragments with nonzero same or opp. Tree can be found in time [9].
We can locate in time by two passes over . The first pass computes the total distance
of each vertex to all vertices in the subtree rooted at bottom-up, along with the size of the
subtree at . The second pass uses this information to compute the total distance of each vertex
in the whole tree top-down, while keeping track of the vertex of maximum total distance.

Determining the fragment order then takes time, and space,
which dominates the time and space for the greedy algorithm.

3.3 An exact algorithm

Using the idea of processing fragments in order, we can also design an exact algorithm that
computes an optimal orientation. Given an ordering of fragments , let denote
the subset , and let denote . We compute an optimal orientation for

, using the solutions for smaller problems to solve larger ones.
Each problem is solved using the branch and bound technique. The computation can

be viewed as a binary tree of height , as shown in Figure 5. A node at height assigns an
orientation to , and a root to leaf path assigns an orientation to all fragments in . We can
arbitrarily assign the forward orientation to , since pairs of solutions with opposite orienta-
tions are equivalent.

As the exact algorithm explores the tree from the root to a node of height , it accumulates
an orientation of . On descending to height , it extends this orientation first by
adding to , which takes the left branch in the tree, and later returning to add to ,
which takes the right branch.

When considering a move, branches are eliminated using subproblems that have already
been solved. When tackling for instance, the solutions to are in hand. This
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Figure 5 The branch and bound search tree for problem . A root to leaf path assigns an orientation
to .

allows us to quickly compute an upper bound on the weight of any completion of to
a partition of .

For subsets and of , let us write for

the weight of orientation restricted to edges that have one endpoint in and one endpoint
in . For any partition of ,

(6)

Let and . For this choice of and we can upper bound each term of (6),
which represents the weight of an extension of to the fragments in , as follows.
The first term, , is at most the weight of an optimal orientation for , which is
known. The second term, , is exactly , which is the weight of the partial ori-
entation. The third term, , is at most

This bound for allows the fragments of to optimistically join or ,
independent of how they are partitioned in the first term.

The sum of the bounds for these three terms is an upper bound on for . Call this
upper bound . We can also maintain a lower bound on the weight of a solution to .
Initially, may be obtained by greedily adding to the solution for . Whenever our
search reaches a leaf corresponding to an orientation of greater weight, we raise . If we dis-
cover at height that , it is not worth searching the subtree further, and we backtrack.
In this way the exact algorithm avoids exploring the whole search tree.
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Evaluating the upper bound at a node takes time. The bounds for the first and
second terms of (6) can be looked up in constant time if the weights of solutions to subproblems
are saved and the weight of is accumulated while descending the tree. Bounding the third
term involves looking at no more than edges and vertices. If nodes are explored in the
search trees for through , the total time is , where .

The space for subproblems is , as only the weights of solutions need to be stored,
and the stack to traverse a tree has height at most . The total space then is .

A feature of these exact and approximation algorithms is that they lend themselves to a
hybrid algorithm that enjoys some of the advantages of both. Suppose the biologist places a
bound on the maximum number of nodes to explore in any search tree. When we run the exact
algorithm on problems , we count the number of nodes explored in the current tree.
If on problem this count exceeds the bound, we stop the exact algorithm, take the optimal
orientation for problem , and extend it with the greedy algorithm to an orientation of .

The argument of the previous section shows this hybrid algorithm achieves at least the fac-
tor of attained by the greedy algorithm. Moreover, it has the capacity to compute an opti-
mal orientation (and prove that it has found one) while always running in polynomial time.
Though we have solved problems of 500 fragments with the exact algorithm, some instances
of 250 fragments have proved difficult to solve to optimality. With a bound of say 500 nodes,
the transition from the exact algorithm to the approximation algorithm can be made at run time.

Finally, we note that all of these algorithms can accomodate orientation constraints. For
example, the user may know that some fragments should be forward and others reversed, or
that some pairs of fragments should have the same orientation while others should have oppo-
site orientations. Since all of these algorithms form an orientation one fragment at a time, any
constraint that applies to the fragment can be checked before an orientation decision. Thus,
constraints can be accomodated in time linear in the number of constrained fragments and con-
strained pairs.

4 Fragment layout

The fragment orientation computed by the second phase of our algorithm induces an oriented
subgraph of the overlap graph. In the third phase, we select edges from this subgraph that are
consistent with an interpretation of fragments as intervals of the line. These intervals repre-
sent substrings of the underlying sequence, and we call the ensemble of fragment intervals a
fragment layout. Section 4.1 describes the structure of a set of edges in an overlap graph that
corresponds to a layout. We call such a set a dovetail-chainbranching. Sections 4.2 through 4.5
describe our algorithm for computing an optimal dovetail-chain branching, and Section 4.6 de-
scribes how to compute alternate branchings for a user who desires alternate layouts.

4.1 The dovetail-chain branching problem

Consider a sequence that is a reconstruction for fragments . Every fragment matches
a substring of , say the substring from the th character to the th character of . Through this
substring, reconstruction associates the interval with fragment . We call the collection
of intervals for the fragments a fragment layout for .

Note that storing the orientations for the solutions to would take space.
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For a layout , let denote the interval for fragment . The length of , denoted
by , is , the length of the total interval covered by . Clearly a shortest re-
construction will have the shortest associated layout.

With every fragment layout we can also associate a set of edges in an overlap graph. For
fragments whose intervals are identical, we form an equivalence class, select one representa-
tive fragment for the class, and direct a containment edge from the representative to every other
fragment in its class. Now remove any fragment that is not a representative from consideration.
The remaining fragments can be totally ordered first by increasing left endpoint and second by
decreasing right endpoint. For any fragment whose interval is contained in another’s, there is
a least interval in the order that contains . We direct a containment edge from this least frag-
ment to . Now remove any fragment whose interval is contained in another’s. The remaining
fragments have increasing left and right endpoints. Direct a dovetail edge from a fragment to
its successor in the order if their intervals overlap. The resulting set of edges satisfies four prop-
erties:

(1) every vertex has at most one incoming edge,
(2) the edges do not form cycles,
(3) no two dovetail edges leave the same vertex, and
(4) no containment edge is followed by a dovetail edge .

A set of edges that satisfies properties (1) and (2) is called a branching. A branching may
also be characterized as a collection of vertex-disjoint trees with edges directed away from their
roots, which are the vertices with no in-edge. Each directed tree of the branching is called an
arborescence. A set of edges that in addition satisfies properties (3) and (4) we call a dovetail-
chain branching. Its dovetail edges form disjoint chains that procede from the roots.

Following Staden [35], we call a maximal set of fragments that cover a contiguous interval
in the layout, a contig. Note that the contigs of the layout correspond to the arborescences of
the branching.

Just as with every layout we can associate a dovetail-chain branching, with every branching
we can associate a fragment layout. For an overlap , let be the length of
the prefix of that is not aligned to . Given a branching of overlaps, we can construct a
contig for each arborescence of as follows. For a fragment in arborescence , we define

where
if is the root of
if is in (7)

For simplicity this lays out every contig from position zero. It should be understood that two
fragments overlap in the resulting layout only if their intervals intersect and they are in the same
arborescence. Layout can be computed in linear time by evaluating (7) top-down from the
roots of .

Recall from Section 2 that edges in our overlap graph are weighted by likelihood func-
tion . Each edge represents an alignment of maximum , where is the number
of matches in the alignment and is the number of errors. For a perfect alignment, .
Thus when , the weight of an edge is the length of the longest prefix of that can
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be overlapped with . If we write for the total weight of the edges in a branching , it
is not hard to show that, for the case of no error, the length of the layout induced by is

Since is a constant for any given input, a branching of maximum weight gives a layout
of minimum length. We take our problem to be the following.

Definition The maximum weight dovetail-chain branching problem, BRANCHING, is, given
a directed graph with edge weight function , with edges classified as either dovetails
or containments, find a dovetail-chain branching maximizing .

Kececioglu [18] generalizes the correspondence between dovetail-chain branchings and
layouts to the case of error, and reduces the sequence reconstruction problem to the maximum
weight dovetail-chain branching problem. The reduction requires two assumptions on fragment
error: that error is evenly distributed and approximate matching is transitive at the input error
rate. In particular he shows that given these assumptions, an algorithm for BRANCHING yields
a reconstruction feasible at error rate that is at most a factor longer than the shortest
reconstruction that is feasible at error rate .

This reduction is also one way of showing that BRANCHING is NP-complete: RECON-
STRUCT is NP-complete for , while the above result states that for this case BRANCHING
solves RECONSTRUCT exactly. Given that a polynomial time algorithm for BRANCHING is
unlikely, how can we find a maximum weight dovetail-chain branching in practice? Our strat-
egy is to relax the dovetail-chain constraint. We can compute a maximum weight branching,
which may not be dovetail-chain, in polynomial time. Moreover, branchings can be produced
in order of decreasing weight. Hence we generate branchings in order of weight, until finding
one satisfying the dovetail-chain constraint. The first one that we find is guaranteed to be a
dovetail-chain branching of maximum weight. Our premise is that for fragments at a low error
rate from a sequence with few repeats, few branchings have to be generated.

It shouldbe emphasized, however, that this approach requires exponential time in the worst-
case. Figure 6 gives a simple example where the maximum dovetail-chain branching has a rank
that is exponential in the number of vertices (though see Section 4.3 for techniques to deal with
such graphs). Since few users can wait for an exponential number of iterations, we place a limit
on the number of branchings generated. For each branching generated, we invoke a procedure
that greedily repairs any defects it may have. Of the branchings that are generated, the repaired
branching of maximum weight is returned as a solution. As the limit on iterations is a constant
and greedy repair is efficient, a dovetail-chain branching, not necessarily of maximum weight,
is delivered in polynomial time. A slight variant of greedy repair is known to be an approxi-
mation algorithm for BRANCHING.

Biologists often have additional conditions on a solution, besides length of reconstruction,
that are difficult to capture formally. In such circumstances it is desirable to see not one so-
lution but several, from which the truly best may be chosen. We show that alternate layouts
are easily computed and that our approach can accomodate various constraints. The next four
sections present our algorithm for dovetail-chain branchings, and the fifth section describes our
procedure for alternate layouts.
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n1 2

Figure 6 A graph for which a maximum weight dovetail-chain branching has exponential rank. All
edges are dovetails, so a dovetail-chain branching has only one edge, and is preceded by non-
dovetail-chain branchings of greater weight.

4.2 Generating branchings

Efficient algorithms are known for maximum weight branchings and for generating branch-
ings in order of decreasing weight. A maximum weight branching over a graph of edges
and vertices can be computed in time and space, as shown
by Gabow, Galil, Spencer and Tarjan [11]. The branchings of greatest weight can be gen-
erated in time and space, as shown by Camerini, Fratta and
Maffioli [3]. Our method of generating branchings is similar to Camerini et al., which ap-
plies the branchings algorithm of Tarjan [37], but has some differences. These differences are
due to our particular application, namely generating branchings to meet a dovetail-chain con-
straint, which allows us to apply the algorithm of Gabow et al. [11] to generate branchings
in time.

4.2.1 Forming constraints

Suppose we have computed a maximum weight branching, which is not dovetail-chain. Such a
branching contains a pair of dovetail edges and that leave a common vertex or a containment
edge that is followed by a dovetail edge . In both cases we say conflicts with .

No dovetail-chain branching will contain both and . Either contains neither
nor , but not , or but not , which can be expressed as two disjoint conditions:

(1) or
(2) and .

In thefirst case we can continue by searching for a maximum weight branching over the graph
. In the second case, where is part of the solution, we can remove all out-edges

from , all in-edges to , merge and into a single vertex to obtain graph , and con-
tinue by searching , while retaining as part of the solution. By solving both
problems recursively and returning the branching of greater weight, we will find a solution to
the original problem. Since the subproblems are of smaller size, we have made progress. Since
they partition the solution space, they give a solution to the larger problem.

Refining one of the subproblems gives three problems, then four problems, and so on. In
general, at any point in branching generation we have a collection of subproblems that partition
the space of dovetail-chain branchings. Each subproblem is represented by two sets of edges:
an in-set that must be contained by a dovetail-chain branching, and an out-set that must not
be contained. Also associated with each subproblem is the weight of the heaviest branching
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satisfying the in- and out-set constraints. This weight is an upper bound on the solution value
for the subproblem.

An iteration of the generator involvesfinding a subproblem of greatest associated weight
and computing a maximum weight branching meeting ’s constraints. If is dovetail-chain,
it is an optimal solution to the original problem, and we halt. ( has weight as great as any
solution to a subproblem.) If is not dovetail-chain, a pair of conflicting edges
is located, and is split into two subproblems. Let and be the in- and out-sets for .
One subproblem receives constraints and , and the other receives constraints
and . This follows a general method of Lawler [20] for generating next-best solutions
to combinatorial optimization problems.

The resulting collection of problems is conveniently represented by a computation tree.
Each node in the tree contains an in-list and an out-list, which consist of the edges in the in-
and out-sets, along with the weight of the heaviest branching meeting these edge constraints.
Internal nodes have two children, which refine their parent’s subproblem. Leaves encode the
current partition of the solution space. A heap of leaves prioritized by weight allows us to find
a subproblem of greatest upper bound by extracting a leaf of maximum priority.

4.2.2 Computing constrained branchings

One can find a branching of maximum weight meeting the in- and out-set constraints by trans-
forming the problem into one with no constraints. This transformation has two steps.

First, instead of solving a branchings problem, we solve a rooted spanning arborescence
problem. A rooted spanningarborescence is a branching where every vertex other than a speci-
fied root has an in-edge. The maximum weight branching problem can be reduced to to the max-
imum weight rooted spanning arborescence problem by adding an artificial root to the graph,
and adding edges of zero weight from the root to every vertex in the original graph. Choosing
an edge from the root to vertex in a rooted spanning arborescence means no in-edge to is
chosen in the corresponding branching. The branchings algorithms of Camerini et al. [3] and
Gabow et al. [11] actually compute maximum weight rooted spanning arborescences.

The second step of the transformation removes the edge constraints. Every edge in the out-
set is removed from the rooted graph, and for every edge in the in-set, all edges of the
form are removed where and are distinct. Clearly the set of unconstrained arbores-
cences over this new graph is the same as the set of constrained arborescences over the original
graph.

4.2.3 Time and space

The method we have outlined, which is essentially the method of Camerini et al. [3], simpli-
fied by the fact that we can more easily identify the edges and on which to decompose a
subproblem, can be implemented efficiently in terms of the number of iterations and the size
of the original graph.

Each branching generated requires at most three constrained branching computations, two
heap insertions, and one heap deletion. One of the branching computations is for recovering
the branching that meets the upper bound for the chosen subproblem, and the other two are
for bounding the weight of its children when they are inserted into the heap. Each maximum
weight branching computation involves reducing the constrained branching problem to an un-
constrained arborescence problem. The reduction takes time, and computing a maximum
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weight rooted spanning arborescence takes time [11].
The time for heap operations can be bounded as follows. The heap contains leaves of the

computation tree, and generating a branching creates one leaf. Thus the heap is of size .
Heap insertions and deletions take time logarithmic in the size of the heap, so the time per it-
eration for heap operations is .

Combining this with the above, the time per iteration is , and the time to
generate branchings is .

Space is required for the constrained branchings algorithm, the computation tree, and the
heap. Computing a branching takes space [11]. The heap uses constant space per
leaf, or space in all. The computation tree appears to require space—it has

nodes and each node has an in- and out-list of size —but this can be reduced to
constant space per node using the following idea of Gabow [10].

The in- and out-sets for a left child in the computation tree may be obtained from its par-
ent by adding one edge to ’s out-set to form ’s out-set, and by copying ’s in-set. The in-
and out-sets for a right child may be obtained from its parent and left brother by adding
one edge to ’s out-set to form ’s out-set, and by adding ’s edge to ’s in-set to form ’s
in-set. This being the case, instead of storing two edge lists at a node, we can store pointers to
its parent, its left brother, and the edge it adds to its parent’s out-set. Following these pointers
back to the root, we can recover the in- and out-sets for a node in time using constant
space er node, for a total of space for the tree. With this representation, the space for
generating branchings is .

4.3 Accelerating convergence

We now present two optimizations that accelerate convergence to a dovetail-chain branching.
The first optimization addresses edge conflicts.

Before computing a branching for a problem with in-set and out-set , we add to all
edges in the graph that conflict with an edge of . Certainly this is correct, as no dovetail-chain
branching for the problem can contain any of these edges. The edges conflicting with a given
set can be computed in time. In the example of Figure 6, this reduces the number
of branchings generated from to .

The second optimization addresses an inherent redundancy in branching generation. We
generate branchings as a means of generating layouts, but because the relation from branchings
to layouts is many-to-one, several generated branchings can result in the same layout. Factoring
out this redundancy requires a modification to the computation tree data structure, and a more
careful method of identifying edge conflicts.

We capture the set of edges in all branchings inducing the same layout as a given branch-
ing by the closure of . Informally, this set contains all edges in the graph that overlap frag-
ments in the same relative position as . Formally, the closure of a branching inducing lay-
out in overlap graph is the set

(In this definition, it should be understood that is in the closure only when and are
in the same arborescence of .) In words, we measure the difference between the placement of
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and in layout and in overlap . If this difference can be explained by the error rate,
is in the closure. Given a branching, we can compute its closure in time:

determining the layout takes time, after which testing an edge for membership takes
time.

Removing from a branching and replacing it with from the closure gives in
essence the same layout. This is exactly what we want to avoid. Formally, let the kin of an
edge with respect to branching and graph be the set

We form only when is a branching, so that the closure is well-defined.
The kin of can be computed in time: determining the layout for the closure takes

time, after which we only need to examine edges that enter and agree with the layout,
of which there can be at most .

We use kin as follows. Before computing a branching for a problem with in-set and
out-set that adds to the out-set of its parent, we augment with . We know

was removed from the branching of ’s parent, which contained set , because it cre-
ated a conflict. Adding to prevents the selection of another edge that places in
the same position. Note that obtaining involves recovering the out-set of ’s parent, which
requires computing another kin-set, which involves another out-set, and so on up the tree. Com-
puting all kin-sets could take time.

To retain the time complexity for recovering in- and out-sets, we modify the compu-
tation tree. A node now stores, along with edge that it adds to its parent’s out-set, a kin-list
for . This list contains , where is the in-set for the node and is the out-set for
its parent.

To recover an out-set for a node we follow node pointers back to the root as before, but now
we copy the kin-lists of the nodes visited as well. We recover in-sets as before. Recovering in-
and out-sets then takes time . When creating a node, we recover its in-set , its parent’s
out-set , compute , and store at the node, all in time . Thus
the second optimization does not increase the time complexity of branching generation.

Unfortunately the space complexity increases to in the worst-case, as the tree has
nodes and each kin-list can have edges. In practice, however, kin-sets have con-

stant size, as the in-degree of vertices is bounded by a constant (see Section 6.4). We call such
graphs sparse. For sparse graphs, the space for all kin-lists is , and the space complexity
of branching generation does not increase.

4.4 Resolving conflicts

When incorporating these optimizations we must be careful, since a representative branching
is being chosen for a layout. Consider two branchings and

that induce the same layout. Only is dovetail-chain. If the representative
that is generated for the layout is , a consistent layout will be rejected.

Consequently, it no longer suffices to test whether a generated branching is dovetail-
chain. We must ask whether there is a dovetail-chain branching over the graph that induces
the same layout as . If such a exists, we say it resolves the conflicts in , and we return
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and halt. If no exists, the conflict we use to generate subproblems must be one that cannot
be resolved. We now present a procedure for identifying irresolvable edge conflicts. As a side
effect, it will find a resolved branching when one exists.

Given a branching with conflicts, we compute its layout and closure . Over the con-
tainment edges in , we compute a maximum weight branching . Every fragment that is
contained by an edge of is removed from consideration. The remaining fragments are roots
of , and we sort them within contigs by increasing left endpoint in . For consecutive pairs of
fragments we look for a dovetail in . Call the set of dovetails that are found, .
If no dovetail exists for some pair of fragments, contains an irresolvable conflict. Otherwise,
resolved branching is returned. Note is dovetail-chain.

This procedure is correct, as one can show that a contained fragment in must have a con-
tainment in-edge in , and the remaining fragments must be related by a chain of dovetails in .
This chain is unique, as two distinct chains through the same set of fragments would create a
dovetail cycle, which is impossible for a given layout. Thus if there is a dovetail-chain branch-
ing in the graph that yields the given layout, our procedure finds it. Moreover, the resolved
branching is unique up to containment edges. By using containments of maximum weight, the
procedure finds an optimal resolved branching.

If a dovetail chain is not found, what pair of edges in forms an irresolvable conflict? Cer-
tainly the first consecutive pair with no dovetail in is the source of a conflict
in . Depending on whether one fragment is a descendant of the other, there are two cases.

Suppose without loss of generality is a descendant of , and let be the path from
to in . Since is not contained in , must end in a dovetail edge . Since and are
adjacent in the layout and , must begin with a containment . We choose for our
conflicting pair . It is irresolvable, as there is no edge .

Now suppose neither nor is a descendant of the other. Let be the path from their
common ancestor to , and be the path from this ancestor to . Since and are not
contained in , both and must end in a dovetail edge. Let these final edges be and .
Since , this pair is again an irresolvable conflict.

In both cases, the conflicting pair can be located in time by walking up . Determin-
ing layout takes time , and forming closure takes time . Sorting the fragment
intervals by left endpoint takes time. Verifying the dovetail chain takes time .
Thus we can find a resolved branching, or an irresolvable conflict, in time,
which is within the complexity of branching generation.

Before moving on to the next section, we review how the closure optimizations and conflict
resolution are incorporated into our generator.

An iteration consists of removing a problem of greatest upper bound from the heap, recov-
ering the branching meeting the bound, and splitting the problem into two subproblems. To
recover a branching, we determine its in- and out-sets and compute a maximum weight branch-
ing that meets these constraints. To determine the constraints we walk up the computation tree,
collecting an in-set and an out-set . We augment with the kin-sets encountered during the
walk, and all edges conflicting with . The recovered branching is tested for irresolvable edge

In general we cannot claim that , hence may not be a maximum weight dovetail-chain branch-
ing. In the absence of error, however, the overlaps in must be as long as the overlaps in , which does im-
ply . Thus for low error rates it is reasonable to assume that the weight of is close to the weight
of . In such a situation, cannot be far from optimal, and is certainly worth reporting. Section 4.6 discusses how
to generate alternates.
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conflicts. If none exist, an equivalent dovetail-chain branching is returned, and we halt. Oth-
erwise, an irresolvable conflict is identified, two subproblems are placed in the heap, and we
iterate. A dovetail-chain branching is delivered in time, where is the
number of iterations. Space is worst-case, and for sparse graphs.

4.5 Repairing irresolvable conflicts

On every iteration that fails to produce a dovetail-chain branching, conflicts in the generated
branching are repaired by a greedy procedure to give a dovetail-chain branching . Of these
repaired branchings, one of maximum weight over all iterations is retained. In the event that
the generator exceeds the limit on iterations, we return a maximum weight repaired branching.

To repair a non-dovetail-chain branching , we locate its forbidden subgraphs and remove
their edges. Note that the resulting branching is dovetail-chain. Edges in are ordered
by decreasing weight and considered for inclusion in . If including an edge in preserves the
branching property and the dovetail-chain property, it is added to . After all edges have been
considered, is returned.

Locating and removing the forbidden subgraphs of takes time. Sorting the edges
in takes time. Testing an edge for the dovetail-chain property
can be done in time by maintaining two boolean variables for each fragment. One variable
records whether the fragment has a containment in-edge in , and the other records whether it
has a dovetail out-edge. Including containment preserves the dovetail-chain property
if has no dovetail out-edge, while including dovetail preserves the dovetail-chain
property if has no dovetail out-edge and no containment in-edge. Including an edge
preserves the branching property if has no in-edge and does not create a cycle. Since

forms a cycle if and only if and are members of the same arborescence, we can
test for cycle creation in essentially constant time by maintaining a partition of fragments into
arborescences with disjoint sets [37]. Thus the dominant step is sorting the edges. In short
greedy repair can be performed in time worst-case.

Interestingly it is asymptoticallymore expensive to greedily repair a branching than to com-
pute one of maximum weight. This is in the worst-case, however. For the sparse graphs of
practice, , and the time for greedy repair is .

We note that greedy repair is essentially a greedy algorithm for dovetail-chain branchings,
started from a partial branching. In a sense it is partially greedy, since the initial branching is
obtained by a global optimization. Tarhio and Ukkonen [36] and Turner [38] analyze the totally
greedy algorithm on overlap graphs with , and show that it finds a solution of weight at
least the maximum. For overlap graphs with , the tightest analysis we know of for
the totally greedy algorithm gives a factor of . In fact there are graphs where totally greedy
performs better than partially greedy, and vice versa [18].

Even so, we conjecture that the partially greedy algorithm achieves at least a factor of .
Moreover, the weight of the last branching generated is an upper bound on the weight of an
optimal dovetail-chain branching. If we terminate without finding an optimal solution, we can
report how far from optimal our solution is. This is not possible with a purely greedy strategy.

4.6 Producing alternates

Sometimes the biologist has additional criteria for a reconstruction that are difficult to formal-
ize or incorporate into an algorithm. The biologist may have a rough idea of the length of the
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solution, or know that a section of the reconstruction containing repeats is not correct. In short,
the biologist may demand an alternate solution, and may wish to specify additional constraints.

4.6.1 Strongly independent alternates

We use the closure of a branching to generate alternate solutions. If closures and of two
branchings differ, their layouts differ. Requiring in addition that and en-
sures that one layout is not contained in the other. In general, suppose the closures of the first

solutions are , , , . We say the th branching is strongly independent of the first
branchings if

This guarantees that every branching induces a configuration not seen before. While we do not
know how to generate strongly independent branchings on-line in order of weight, there are at
most of them, so we can afford to generate them all and sort them.

To generate an alternate layout, we find the heaviest edge in the graph not in the union of
the closures of the previous dovetail-chain branchings. We then invoke our generator with the
constraint that the chosen edge is contained in the branching. This simply involves adding
to the in-set at the root of the computation tree and forcing greedy repair to retain .

Generating alternates takes time on top of branching generation.
Before computing any alternates we form a sorted list of all the edges in the graph. As each
alternate is produced, we compute its closure and remove its closure edges from the list. To
produce the next alternate, we seed the branching generator with the edge at the head of the
list. Sorting the edges takes time, and computing the closure and updating the list
takes time for each alternate.

Producing all alternates in order of weight requires
an additional sort, and can take additional space to store
the branchings. The space can be reduced to at the cost of doubling
the time by storing only the seed edges and regenerating an alternate from its seed once their
order has been established.

To summarize, strongly independent alternates can be generated off-line in order of weight
in time and space, where is the maxi-
mum number of branchings examined for an alternate.

4.6.2 User-constrained alternates

We can also produce alternates from constraints provided by the user. Biologists sometimes
know the order in which a subset of the fragments should overlap, say from a directed sequenc-
ing method or a restriction map. Othertimes they may simply know that a configuration of frag-
ments is incorrect, and wish to prevent it from appearing again. We can express some of this
information with in- and out-sets of edges.

When the order of some fragments is known, we retain in the graph only those edges that
are consistent with the ordering. All inconsistent edges are placed into our out-set. We note that
this can fail to enforce a partial order on fragments. For example, if fragment should follow
fragment but nothing is known about fragment , we cannot rule out and
individually yet together they form a path placing before . When a total order on some
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fragments is known and no fragments are allowed in-between, we can enforce the order by
placing a dovetail chain into our in-set.

On the other hand, while the order for the layout may not be known, the biologistmay know
that what is given is incorrect. Here the user might select a portion of a contig in a generated
layout and ask that the fragments selected be completely rearranged. In this case we would
compute a closure from the sublayout on the fragments, and place these edges into our out-set.
Note that this constraint is very severe, however.

Finally, if the user wishes to freeze a sublayout we can use our conflict resolution procedure
of Section 4.4 to determine a branching inducing just the sublayout, and place these edges into
our in-set.

5 Multiple sequence alignment

At this stage we have a branching that specifies a consistent layout of the fragments. The out-
put of our algorithm is a reconstructed sequence. In this phase we obtain a sequence from the
branching by (1) forming the closure of the branching, which consists of all overlaps that agree
with the layout, (2) merging these overlaps into a multiple sequence alignment, and (3) voting
on a consensus sequence for the alignment. This procedure can recover a sequence whose error
is far less than that of any one fragment.

5.1 The maximum weight trace problem

In the last section we defined the closure of a branching, which contains all edges in the graph
that overlap fragments in the same relative position as the induced layout. The multiple se-
quence alignment that we seek for a layout should agree with these overlaps. Exact agree-
ment, however, is not always possible. We settle for a multiple alignment that is close to the
pairwise alignments, and formalize a notion of closeness as follows.

An edge in the closure that aligns and can be represented
by a list of pairs of positions, , , , , where
and . A pair matches characters and .

We treat each pair as a constraint on our multiple alignment, namely, that both characters
must appear in the same column of the alignment. As Figure 7 shows, it may not be possible
to satisfy all the constraints in a collection of pairwise alignments. We may have to settle for
a subset of the constraints. To discriminate among subsets we weight each constraint by the
similarity of the pair of characters that are matched, and seek a subset that is satisfiable and of
maximum total weight.

To formalize when constraintsare satisfiable, we define an alignmentgraph whose
vertices correspond to sequence characters, and whose edges correspond to pairs of char-
acters matched by the alignments. Over the vertices we define a partial order . In this order,

if and are both characters of a sequence , and character precedes in . Essen-
tially, the order of characters between columns in any legal alignment must respect .

In an alignment graph every subset induces a collection of connected

A multiple sequence alignment of sequences is a matrix where row

gives . An entry may equal the null character , which is the identity under concatenation.
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Figure 7 Pairwise alignments may not form a multiple alignment. (a) Three pairwise alignments
of , , and . Edges join matched characters. (b) The induced connected com-
ponents, which form a cycle under .

components that partition . For components and , let if there is an
and a such that . Relation may not be a partial order, for it is possible to
have both and when . When relation on the components of is
a partial order, the constraints of are satisfiable: every component corresponds to a column
of the alignment, and any topological ordering of the components that respects is a valid
order for the columns.

A topological order exists precisely when does not contain a cycle. In other words the
constraints of are satisfiable if and only if on the components of is acyclic. We call
a satisfiable set a multiple sequence trace. This generalizes the standard notion of trace in
sequence comparison [31, page 12].

Given a trace, we can form a multiple sequence alignment by determining its connected
components and topologically sorting them. For a trace of edges over a graph of vertices,
finding the connected components takes time. The topological sort takes time linear
in the size of the relation, which can be represented by less than ordered pairs. Thus we can
recover a multiple alignment from a trace in time. Since simply reading the input
and outputing the alignment requires time, we concentrate on finding traces rather
than computing alignments. Our problem is the following.

Definition The maximum weight trace
problem, TRACE, is, given an alignment graph with edge weight function , find
a trace maximizing .

TRACE is NP-complete [18] and remains so even when, as in our application, the edges
between any two sequences form an alignment and the length of a sequence is bounded by a
constant.

We next present a fast heuristic for maximum weight trace, and in Section 5.3, adapt it to
the instances that arise in sequence reconstruction.

The connected components of induced by are the maximal sets such that every pair of
vertices in is connected by a path in . Maximal means there is no vertex outside connected to a vertex in
by .

A topological order for a set with partial order is a total ordering of the elements of that respects .



DNA sequence assembly 26

5.2 A fast heuristic

Given the NP-completeness of TRACE, our strategy is to design an algorithm that is fast and
in practice delivers near-optimal traces. Our heuristic is based on the well-known observation
that a tree of pairwise alignments is a trace. In other words, given an alignment graph ,
consider choosing a pairwise trace between every two sequences. A tree over the sequences of
these pairwise traces gives a multiple sequence trace for .

Note that in our alignment graphs, the edges between any two sequences already form a
pairwise trace. Since any tree of these pairwise traces gives a multiple sequence trace, a simple
heuristic is to choose a tree of maximum total weight.

We can apply this as follows. The pairwise traces from which we select a tree correspond
to the overlaps in the closure of our branching. Treat each overlap as an undirected edge, and
weight it by the sum of the similarities of the characters matched in the overlap. (Section 5.3.5
defines the similarity measure we use.) Over these edges compute a maximum weight spanning
tree.

Computing the closure takes time for an overlap graph of overlaps and frag-
ments. For overlaps with a total of pairs of matched characters, weighting the overlaps takes

time. For a closure of overlaps, computing a maximum weight spanning tree takes
time [9].

This delivers a trace in time. Kececioglu [18] shows the resulting
trace has weight at least of the maximum. This bound is tight, but pessimistic. Frequently the
alignment graphs that arise can be partitioned into subgraphs of at most fragments, where

is the maximum number of fragments that mutually overlap in the layout. We call
the coverage depth of the layout, which in practice is a constant, usually between 5 and 10.

On such inputs, the multitrace is within a factor of of optimal. For a coverage depth of 6,
this means the heuristic achieves a factor of .

Instances that meet even the coverage depth bound appear unlikely to occur in practice.
Real data has few errors, which lends structure to the pairwise traces. We can refine the heuristic
to take advantage of this structure.

5.3 A sliding window variation

At the low error rates of current practice, our alignment graphs have a regular underlying struc-
ture. When no error is present, the sequences are identical, and the alignment graph is a series
of columns, each column a complete subgraph. When a rare error is present, its effect on this
structure is to displace or delete some edges local to the defect. For such graphs, most edges in a
pairwise trace will coincide with the trace of and induced by pairwise traces
and . In other words, the structure of pairwise traces tends to be transitive due to high
edge transitivity in the near-complete subgraphs. In such a situation the heuristic performs well
since most trees of pairwise traces induce an alignment of near-optimal weight.

We can further improve these alignments by adapting to local variation in sequence simi-
larity. Errors tend to cluster at fragment ends, so instead of using one tree across a fragment,
we allow the tree to adapt as errors arise, switching to a tree that favors similar sequences. To
do this, we start with the alignment produced by the heuristic. A window containing a fixed

This observation, expressed in different language, can be found in many papers. Perhaps the first occurrence
is in [29].
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number of columns is then swept across the alignment. The width of the window is a parame-
ter to the algorithm. Over the alignment subgraph defined by the characters in the window, we
compute a maximum weight spanning tree. The first column of the alignment induced by the
tree is output. These characters are removed from the window, and the column to the right of
the window is added. This advances the window, and the process is repeated.

The window itself is represented by a window graph. This graph consists of supervertices,
which represent the sequences spanned by the window, i.e. sequences with a character in the
window, and superedges, which represent pairwise traces between the spanned sequences. The
restriction of the alignment graph to the window is given by a left and a right boundary. These
boundaries are the position of the leftmost character in the window, and the rightmost character
in the window, for each spanned sequence. Supervertices are attributed with a left position, for
the character just inside the left boundary, and a right position, for the character just outside the
right boundary.

We assume for now that each pairwise trace is given by a list of matches in left to right order.
Superedges are attributed with a left match, which points to the first match on the list inside the
left boundary, and a right match, which points to the first match outside the right boundary.
Superedges also store the total weight of the matches between the left and right boundaries.

In this sliding window variation, the window can be viewed as a generator of columns. The
next three sections describe the steps in column generation: how we update the window when
advancing the left boundary, how we advance the right boundary, and how we compute a span-
ning tree over the window graph incrementally. Many of these details are simply bookkeeping,
but are given for completeness. The final sections specify our representation of pairwise traces,
our similarity function for weighting trace edges, our voting function for consensus characters,
and a column compression optimization.

5.3.1 Advancing the left boundary

A spanning tree over the window graph selects pairwise traces whose matches form a multi-
ple sequence trace on the characters in the window. These matches form connected components
of characters in the alignment graph. The column generated by the window is an initial com-
ponent under of characters on the left boundary. Given our window representation, we can
find an initial component by a depth-first search over .

We first order the children in left to right according to the layout, and pick for the root
of the leftmost fragment in the layout. Our depth-first search traverses this tree, passing up
the initial component in an alignment over the subtrees. The component is represented by a list
of pointers to sequences; the non-null characters in the column are the left boundary characters
of the sequences on this list. Spanned sequences not on the list contribute null characters to the
column.

When the search visits a node of , the component list for the subtree is initialized to
sequence . Its children are then examined in order. For each child , the left match in the
superedge to is examined. We identify four cases, as illustrated in Figure 8. Cases (c) and (d)
are handled together.

Case a (The match touches the left boundary character of , but not .) In this case the bound-
ary characters of and are in different components. Furthermore, the component contain-
ing must precede the component containing , since the boundary character of precedes
the character matched with .
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Figure 8 Left matches of and . Cases (a) through (d) are distinguishedby whether or not the match
touches a left boundary character of the window.

In this situation, we recursively search the subtree rooted at . When this search returns
and passes up a component , we short-circuit the search of ’s children and simply return .

Case b (The match touches the boundary characters of and .) In this case and are in
the same component. Recursively search the subtree rooted at , and let be the component
returned by the search. If is a member of , we append the members of onto ’s list and
continue the search from the next child of . Otherwise, precedes the component contain-
ing . In that case we can short-circuit the search from and simply pass up .

Cases c and d (The match touches either the boundary character of but not , or neither
nor .) Again the components of and are distinct, but now either precedes , or they
are incomparable.

In either case we retain ’s component for the generated column, and instead of searching
’s subtree, continue the search from ’s remaining children.

The component returned from the root gives the column generated.
We can account for the time tofind the initial component by charging operations to the edges

of . The operations are concatenating component lists, and testing whether a child is in the
component it passes up. With doubly linked lists, concatenation can be performed in constant
time. Each node knows whether it is in the component it passes up. By passing this information
onto its parent, a test can be performed in constant time.

Charging these operations to the edge from a child to its parent, each edge is charged a
constant amount of time. The time then to compute a column is linear in the size of , which
for a layout of coverage depth , is .

Having determined the first column of the alignment in the window, we advance the left
boundary. We increment the left position of each sequence with a character in the column,
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which effectively removes the character from the window. If this character is the last in the
sequence, we delete its supervertex and all incident superedges from the window graph. Oth-
erwise, we retain the supervertex and update its incident superedges. If the left match of a su-
peredge involves the character in the column, we advance the left match pointer to the next
match in the pairwise trace and decrease the weight of the superedge by the match weight. All
this can be done in time linear in the size of the window graph. Section 5.3.3 describes how we
determine the tree .

5.3.2 Advancing the right boundary

Advancing the right boundary involves adding a column on the right. We determine this column
exactly as we determined the first column in the window, namely by traversing a tree over the
sequences depth-first, except now the tree is fixed by the branching.

Once we have determined the column, we examine its characters. If the character is from
a new sequence (one that is not in the window) we create a supervertex for the sequence. All
overlaps in the closure incident to the sequence are examined, and if the alignment is with a
sequence in the window graph, a superedge is created. Since each sequence is inserted into the
window graph once, the total time for insertion is linear in the total number of fragments and
overlaps in the closure. When a superedge is created, its weight is initialized to zero, and the
left and right match pointers are set to the first match of the pairwise trace.

Afer creating any new supervertices and edges, the right position is incremented for every
sequence with a character in the new column. We also examine the superedges incident to these
sequences. If the right match in the superedge touches characters that are both in the window,
we increase the weight of the superedge by the weight of the match. If either character in the
right match is in the window, we advance the right match pointer to the next match in the trace.

When we remove a column from the left and add one on the right, we try to maintain the
window at roughly the same width. If we only ever add one column, the window can shrink.
This will happen, for example, when the column removed contains a character from every se-
quence, and the column added contains only one character. On the other hand if we always
add a column, the window may expand. This happens when the column removed contains few
characters and the column added contains many. To maintain the size of the window, we use
the following rule. A column is added while half the spanned sequences that extend beyond the
right boundary have less than characters, where is the window width. Sometimes this rule
adds no columns, and sometimes it adds many. It ensures that the majority of the sequences are
at the window width, and tends to maintain the volume of the window. Checking the rule takes

time for spanned sequences. Since determining the column on the right takes at least
this much time, it does not increase the time complexity.

5.3.3 Computing the spanning tree

The tree we use to determine the first column in the window is a maximum weight spanning tree
over the window graph. As we noted in Section 5.2, a maximum weight spanning tree can be
found in time for a graph of vertices and edges. For a layout of coverage
depth , this is time.

In practice we recommend a different spanning tree algorithm. The time
algorithm requires a Fibonacci heap [9] or in practice a pairing heap [8] and since a spanning
tree is computed for every column, the overhead of these data structures is unappealing.
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Moreover, our spanning tree problems often vary only slightly from window to window,
in which case it is unnecessary to repeatedly compute a tree from scratch. When a column is
emitted that contains few characters, as is the case when an insertion error has occurred, the
weight of only a few edges is changed. Incremental spanning tree algorithms are available that
can quickly recompute an optimal tree after the weight of one edge in the graph has changed.
However when a column is emitted that contains many characters, all identical, as is the case
when a deletion error has occured, the weight of nearly every edge in the graph is changed, all
by the same amount. This can require invocationsof an incremental algorithm to arrive at
the same tree as the initial one. An incremental algorithm that avoids the overhead of a pairing
heap, while performing gracefully at both extremes, is preferable.

A well-known algorithm with these properties is Kruskal’s. Recall that this algorithm (1) starts
from the empty tree, (2) sorts the edges by non-increasing weight, and (3) considering them
in order, adds an edge to the tree if it does not create a cycle. This can be accomplished in
time , the complexity being dominated by the sort of step (2). Notice, however,
that if we retain the sorted edge list from the previous column, this list will be partially sorted
for the current column. An insertion sort, for example, on an element list with elements or

pairs of elements out of order, takes time. In the common case where
few edge weights have changed, or nearly all weights have changed uniformly, this is fast.

5.3.4 Representing pairwise traces

Other than the list of matches in the pairwise traces, all data structures are linear in the size
of the window graph. (In fact the sliding window algorithm never constructs the entire align-
ment graph or multiple alignment matrix.) Except for matches, this is linear in the number of
fragments and overlaps in the closure.

The space for matches can be kept small by representing pairwise traces with edit scripts.
A script specifies the insertions, deletions, and substitutions to edit one sequence into the other.
For low error rates and long sequences, this is a substantial savings over a list of matched char-
acters.

Edit scripts change the algorithm slightly, as our basic operation on an alignment is to ask
for the match at a given position. Notice however that these queries come left to right across a
sequence. (For a window boundary, we only need to deliver the first match to the right of the
boundary, and update this match when the boundary is advanced.) We can represent an edit
script with a pair of vectors giving the ascending positions of unmatched characters in both the
sequences. For each superedge we maintain the pair of positions at the current match and two
pointers into the edit script giving the next unmatched character in each sequence. With this
representation, the next match on the boundary can be delivered and updated with no increase in
time or space complexity. Finding the next match may require skipping over several unmatched
characters, but the total time is proportional to the number of alignment columns and the length
of the sequences.

The time can be reduced to using a balanced tree to perform the in-
sertions [24, pages 222–224] though this is unnecessary for our small window graphs.
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5.3.5 Weighting trace edges

Biologists often denote the nucleotides of the DNA sequence for a fragment with ambiguous
base codes. An ambiguous base code is a subset of , and represents the set of pos-
sible nucleotides at a sequence position that cannot be resolved uniquely.

Each character in our sequence then is really a set of letters. We can encode each set with
a bit-vector, since only four bits are needed for the DNA alphabet, and each vector will fit in
a byte. When computing pairwise alignments during overlap graph construction, we consider
two characters to match if their encoded sets intersect. Intersection can be tested in constant
time with a bitwise-and operation.

When computing multiple sequence alignments, we favor more precise matches by giving
such trace edges more weight. The weight of an edge between characters with sets and is

The denominator is never zero since and are never empty. This gives an exact match unit
weight, an ambiguous match somewhat less, and a complete mismatch zero weight.

We can compute a weight in time. The intersection and union can be computed with
bitwise-and and bitwise-or operations, and the cardinality of the resulting set can be computed
by table look-up.

5.3.6 Voting on a consensus

Our reconstructed sequence is determined by consensus from the multiple sequence alignment.
Each character in a column places a vote for each letter in its set, where a null character is
equivalent to the empty set. For each letter in the alphabet, the votes are tallied. The consensus
character is the set of letters that receive at least votes, where is the number of sequences
spanned by the column.

This rule minimizes the total number of insertions, deletions, and substitutions to convert
the consensus character into its column. For a layout of coverage depth , the time to determine
such a character is .

5.3.7 Compressing columns

The last detail is column compression. As described in Section 5.3.1, two characters are placed
in the same column only when there is a path of matches that join them in the trace given by the
spanning tree. This policy can overlook matches outside the tree that join characters in adjacent
columns. Since we compute a consensus from the multiple alignment by voting, we want to
merge adjacent columns whenever possible. If characters are spread across several columns,
their vote gets divided. In the extreme, their vote may be sufficiently divided to prevent them
from appearing in the consensus, which can cause a deletion error in the reconstruction.

We can prevent this to some extent as follows. Generated columns are filtered through a
press before being output. This is a simple data structure containing a set of sequences from
the window graph. For each sequence in the set, the press holds a non-null character; these
characters form a column not yet output.

Recall that we also represent a column generated from the window as a set of sequences
with non-null characters. When a new column is generated, we compare it to the one in the
press. If the sets are disjoint, we form their union, effectively compressing the two columns.
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Otherwise there is some sequence with a non-null character in both the press and the generated
column. In this case we output the column in the press and replace it with the one from the
window.

Column compression takes time proportional to the number of non-null characters in the
columns that enter and leave the press, which does not increase the time complexity for multiple
alignment.

To summarize, given an alignment graph of vertices induced by a closure of over-
laps from a layout with coverage depth , the sliding window algorithm computes a multiple
sequence alignment of columns in time, and space.

6 Experimental results

To explore the viability of this approach to sequence reconstruction, we have implemented a
software package embodying the preceding suite of algorithms [19]. In both the orientation and
layout phases, the exact algorithms are run first. If the size of a search tree becomes too large,
for example when , the phases switch to the approximation algorithms to produce a
solution. This section presents results from tests of this implementation on simulated sequenc-
ing data. By using simulated data we could be certain of the correct solution to each test. These
experiments do not constitute an exhaustive or conclusive study. Our goal was simply to get a
feel for the performance of our methods.

The experiments were conducted as follows. Given a sequence, we sampled it at randomly
chosen intervals to form a collection of substrings. All substrings were of the same length,
and each was reverse complemented with probability . With the introduction of error, this
collection of substrings constituted our input fragments.

To introduce error at rate into a substring of length we formed insertions, dele-
tions, and substitutions by repeatedly selecting an insertion, deletion, or substitution at ran-
dom while satisfying

Since the relationship between the error in the input and the error in the output was of interest,
we wanted to keep the edit distance between overlapping fragments as close as possible to the
input error rate. Care was taken to ensure that any character was edited at most once when
generating the input.

The input parameters for the experiments were the sampled sequence, the error rate, the
number of fragments, and the substring length, which from now on we call the fragment length.
Since we recorded the positions of the substrings that were sampled, we knew the true layout
of the fragments and the correct reconstructed sequence, and could compare this to the output
of our software. The software in addition required a match significance and error distribution
threshold for overlap graph construction, and a window width for multiple sequence alignment.
For the experiments we used a match significance threshold of 10, an error distribution thresh-
old of 5 percent, and a window width of 4.

Twelve experiments were performed in all, and their parameters are given in Table 2. For
the first group of experiments, numbered 1 through 3, we generated a random sequence of
length 50,000 with characters drawn uniformly and independentlyfrom the alphabet .
We then sampled this sequence with 500 fragments of length 500, a sample of roughly 250,000 char-
acters. Sample size divided by sequence length is the number of genome equivalents, which for



DNA sequence assembly 33

Table 2 Experiment parameters.

Sequence Sequence Fragment Number of Genome Error
Group Experiment type length length fragments equivalents rate

1 1 random 50,000 500 500 5 2.5 %
2 5.0
3 10.0

2 4 human 50,000 500 500 5 0.0
5 2.5
6 5.0
7 10.0

3 8 human 50,000 250 1,000 5 2.5
9 5.0

4 10 human 50,000 1,000 250 5 2.5
11 5.0

5 12 human 73,360 1,000 367 5 2.5

all experiments was held at 5. These values (500 fragments of length 500 and 5 genome equiv-
alents) are intended to reflect laboratory practice. The error rates we chose (2.5, 5, and 10 per-
cent) far excede those encountered in practice, which are often quoted at less than 1 percent.
Our intention here was to explore the robustness of our approach to error in the data.

A random sequence has no structure, while biological sequences contain repeats. In the re-
maining experiments, numbered 4 through 12, we used the human -like globin gene cluster se-
quence [23]. This 73,360 character sequence contains many approximate repeats, and presents
a challenging reconstruction problem. Thirteen short interspersedAlu repeats are present, nine
in the forward direction and four in the reverse, as well as eight long interspersed L1Hs re-
peats, of which two are forward and six reversed. The Alu repeats are well separated and each
is roughly 300 bases long. The L1Hs repeats are recursive in structure, and contain as many as
2,000 bases. In addition, the sequence contains many exact repeats of ten to fifteen bases. It
is our understanding that this degree of repetition is unusual. We chose the sequence because
instances of this difficulty apparently arise, and we were interested in testing the limits of our
approach. Experiments 4 through 11 took the first 50,000 characters of the human gene cluster
sequence. The first 50,000 nucleotides contain all but two of the Alu repeats and one of the
L1Hs repeats.

We point out that within groups, fragments were formed from the same collection of sub-
strings; only the error rate varied. Moreover between the first and second groups the position
of the substrings as well as the location of errors was the same; only the underlying sequence
varied. Thus any difference in output between Groups 1 and 2 is due to the structure of the
sequence, rather than the pattern of sampling.

The effect of fragment length was examined in the third and fourth groups. Motivated by
the results in Group 4, we decided to perform Experiment 12 in which the entire gene cluster
sequence was sampled at 5 genome equivalents by fragments of length 1,000.

6.1 Synopsis of results

The experiments may be divided into Experiments 1 through 3 on the random sequence, and
Experiments 4 through 12 on the biological sequence. The point to keep in mind is that the



DNA sequence assembly 34

first set of experiments contains essentially no repeats, while the second set contains many. On
the random sequence experiments, the exact algorithm found layouts that were provably op-
timal, as the maximum weight branchings were already dovetail chain. On the biological se-
quence experiments, however, the exact algorithms could not solve to optimality Experiments 4
through 7. Moreover, the greedy algorithms found the optimal solutions of the exact algorithms
on Experiments 1 through 3, and found solutions equivalent to the exact algorithms on Exper-
iments 4 through 7. In light of this, on Experiments 8 through 12 we ran only the greedy algo-
rithms, by limiting the search with .

The lesson we draw from this experience is that the exact algorithms work well in the ab-
sence of repeats, but for a sequence as repetitive as the human gene cluster sequence, they are
incapable of finding an optimal solution. Moreover the greedy algorithms appear to work just
as well, and produce layouts of acceptable quality.

We now present detailed results with respect to various performance measures. Those of
primary interest are the quality of the layout and consensus sequence, and we report these first.
Layout statistics are for the greedy algorithms as just explained. We follow with some inter-
esting parameters of the overlap graphs and multiple sequence alignments, report computation
times, and describe how the software was run.

6.2 Layout quality

Four measures of layout quality are summarized in Table 3. The first measure, number of con-
tigs, is expressed as a composite number . Here is the number of contigs in the com-
puted layout, is the number in which every fragment was correctly ordered, and is the num-
ber of contigs in the correct layout, given that some edges were erroneously culled from the
overlap graph. In other words is the number of contigs in a perfect reconstruction that is re-
stricted to the overlaps in the graph. In all experiments the number of contigs in the true layout
is minus the number of incorrect culls.

All incorrect culls, the second measure, occurred because the score of an overlap was be-
low the overlap threshold. To give an example, the one incorrect cull in Experiments 8 and 9
occurred because the substrings involved had an overlap in the true layout of only thirteen char-
acters. With deletion errors, the score for this overlap was less than the threshold of 10, causing
it to be culled during overlap graph construction. While the true layout consisted of seven con-
tigs, without this overlap it broke into eight. To permit a fair comparison with the computed
layout—which can be formed only on the basis of overlaps in the graph—we report the num-
ber of contigs in the correct layout as eight for these two experiments, and give in a separate
column the number of incorrect culls. Correct layout from now on means the true layout given
incorrect culls.

The third measure is the number of incorrect adjacencies. Counting contigs that are com-
pletely correct is a coarse measurement of quality. For instance, while only six of the seven
contigs computed in Experiment 4 were completely correct, much of the seventh contig was
correct as well. We took as a measure of the degree of correctness the number of pairs of frag-
ments that were adjacent in layout order in both the computed layout and the correct layout,
where fragments are ordered first by increasing left endpoint and second by decreasing right
endpoint. To count the number of incorrect adjacencies, we tallied the number of pairs adja-
cent in one order but not the other, and took the maximum of the tallies for the two orders.
In Table 3, incorrect adjacencies are expressed as this count, followed by the total number of
adjacencies in the correct layout.
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Table 3 Layout quality.

Fragment Number of Error Number of Incorrect Incorrect Overlap
Experiment length fragments rate contigs culls adjacencies savings

1 500 500 2.5 % 6 6 6 0 0 494 0
2 5.0 6 6 6 0 0 494 0
3 10.0 8 8 8 2 0 492 0
4 500 500 0.0 7 6 6 0 9 494 268
5 2.5 7 6 6 0 16 494 767
6 5.0 7 5 6 0 19 494 1,076
7 10.0 10 9 8 2 27 492 994
8 250 1,000 2.5 8 7 8 1 21 992 824
9 5.0 8 6 8 1 23 992 1,110
10 1,000 250 2.5 4 2 3 1 7 247 -56
11 5.0 3 1 2 0 10 248 2,164
12 1,000 367 2.5 6 5 5 0 5 362 784

The number of contigs is expressedas the number in the computed layout, followed by the number in
which every fragment is correctly ordered, followed by the number in the correct layout given that some overlaps
were culled.

The number of incorrect adjacencies is expressed as the maximum of the number of pairs of fragments
adjacent in the computed layout order or the correct order but not both, followed by the total number of pairs in
the correct order.

As an example, consider a layout of six fragments into two contigs, correctly ordered
and . Suppose we take fragment 5 and move it after fragment 3, breaking the layout into

, , and . This layout has one pair which is not present in the original or-
der, while the correct layout has two pairs, and , not present in the incorrect order.
We count this as two incorrect adjacencies.

The last measure is overlap savings. This is the weight of the branching inducing the com-
puted layout minus the weight of the branching over the same overlap graph inducing the cor-
rect layout. A positive quantity means that the computed layout has greater overlap, or is in a
sense shorter.

The most striking feature of Table 3 is that all the random sequence experiments, and none
of the biological sequence experiments, were solved correctly. This suggests that the exact and
greedy algorithms work well in the absence of repeats. In the presence of repeats, the greedy
algorithm found a layout shorter than the correct one for all except Experiment 10, and at error
rates of 5 percent or less it correctly determined over 95% of the adjacencies. Perhaps with the
methods of Section 4.6 for producing alternate layouts and accomodating layout constraints, a
biologist could correct the remaining 5%.

As a general trend within a group, the compression and rearrangement within layouts in-
creased at higher error rates. This can be explained by approximate repeats in the gene cluster
sequence, since our criterion of minimizing layout length will compress approximate repeats
assuming they are long and occur at a low error rate. Comparing the second, third, and fourth
groups at the same error rate, the number of incorrect adjacencies increased with the number
of fragments in absolute terms, but as a fraction of the total number of adjacencies, there is no
discernable relation. This is probably due to changes in the pattern of repeats that were sampled
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Table 4 Consensus error.

Output error
Input error In sample At coverage With correction

Experiment rate tally rate tally rate tally rate
5 1 in 40 11 6163 1 in 560 5 5379 1 in 1075 0 5374 0 in 5374
6 1 in 20 29 6158 1 in 212 3 5367 1 in 1789 1 5365 1 in 5365
7 1 in 10 41 6154 1 in 150 9 5422 1 in 602 0 5413 0 in 5413

The output error tally is expressed as the number of insertion, deletion, and substitution errors between
the computed consensussequenceand the correct sequence, followed by the number of characters in the consensus
sequence, over a sample of the output.

when the fragment length varied across groups.
One statistic not presented in Table 3 is the number of incorrect orientations. This is because

for all twelve experiments, the relative orientation of fragments was correctly determined in all
contigs, even when a contig contained incorrectly placed fragments. This is somewhat surpris-
ing since, not counting the experiments within a group at varying error rates, there were more
than 2,500 orientations to determine, of which roughly half were reverse complements. Either
the internal reverse complementarity of the gene cluster sequence is sufficiently simple, though
reverse complement repeats are present, or fragment orientation is easier than fragment layout.

6.3 Consensus error

Measures of the error in the reconstructed sequence are given in Table 4. These also require
some explanation.

We examined the consensus sequence in Experiments 5 through 7 for two contigs that were
correctly laid out in all three experiments. These consensus sequences were compared to the
correct sequence by counting the number of insertion, deletion, and substitution errors. The
raw error is given in column in sample under tally as the error count followed by the number
of characters in the sample. The next column expresses the error as a rate, for example, 1 error
in 560 characters.

Most of the errors in the consensus occurred when only one or two fragments participated
in the voting. When only one fragment votes, neither the presence or absence of an error can
be detected. When two vote, an error can be detected, but not how to correct it. Consequently,
counting errors at a coverage of one or two fragments misrepresents the error rate, since few
users would accept such a weak consensus. Column at coverage gives the error in the
sample when three or more fragments participated in the voting.

Of the seventeen errors at coverage at least three, all but one were insertion errors caused
by the configuration of Figure 9. This configuration is characterized by two adjacent columns
where the first half of the rows contains a-, the middle row contains aa, and the last half
contains -a. Of course the choice of character a is arbitrary, as well as the order of the two
columns, and the order of the rows.

Suppose both halves contain at least rows, where counts the total number of
rows. Since each column then contains at least characters, the voting procedure of Sec-
tion 5 will interpret the alignment as the result of deletions, and correct them by output-
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a- -a
...

...
a- -a
aa aa
-a -a
...

...
-a -a
AA A

Figure 9 A typical configuration causing an error in the consensus, and its correction.

ingAA for the consensus. Consider sliding the characters of the top half one column to the right;
this also gives a valid alignment. Our alignment algorithm of Section 5, which approximates
TRACE, may not distinguishbetween these two configurations, or may even prefer the first con-
figuration to the second. Our consensus algorithm on the other hand will interpret the second
configuration as the result of one insertion, and output a single A. This is a more parsimonious
explanation of the data, and in our experiments, it was the correct one.

The configuration of Figure 9 is not hard to recognize and correct prior to voting. Column
with correction gives the error in the sample, at coverage at least three, taking this into account.

It is clear from the table that the error in the reconstructed sequence at a coverage of three
or more is already less than 1 in 1,000 for input rates of 5 percent or less. With the correction
described above, it is less than 1 in 5,000. Of course, we sampled little more than 5,000 char-
acters, so this statistic may be inaccurate.

Nevertheless, 1 in 5,000 is a dramatic improvement over an error of 1 in 20. These experi-
ments were at an average coverage of five (see Section 6.4), which indicates rapid convergence
to the underlying sequence. Perhaps a coverage of eight would yield output of sufficient accu-
racy for most conceivable applications.

6.4 Coverage depth and vertex degree

In Sections 4 and 5 we claimed that, in practice, the coverage depth of a layout, and the ver-
tex degree in an overlap graph, are both small constants relative to the number of fragments.
Table 5 presents some statistics for these two parameters. Average coverage depth was com-
puted by summing the number of spanned sequences over all columns of the multiple sequence
alignment, and dividing by the number of columns. Average vertex degree was computed by
dividing the number of edges in the overlap graph by the number of vertices. Maximum vertex
degree was computed by counting the number of in-edges and out-edges of each vertex, and
taking the maximum of the two. Taking the sum would yield a figure that should be compared
with twice the average degree.

The data supports our assumption that both the expected coverage depth and vertex degree
are near the number of genome equivalents, which in practice is a constant. The maximum
values are much higher, but still more than an order of magnitude less than the number of frag-
ments.
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Table 5 Coverage depth and vertex degree.

Number of Error Genome Coverage depth Vertex degree
Experiment fragments rate equivalents average maximum average maximum

1 500 2.5 % 5 5.1 14 5.0 17
2 5.0 5.1 14 5.0 16
3 10.0 5.2 14 5.2 17
4 500 0.0 5 5.1 14 5.2 17
5 2.5 5.2 15 5.3 17
6 5.0 5.2 15 5.6 17
7 10.0 5.3 16 6.3 19
8 1000 2.5 5 5.2 19 5.4 30
9 5.0 5.2 19 5.6 30
10 250 2.5 5 5.1 12 5.2 14
11 5.0 5.2 12 5.4 15
12 367 2.5 5 5.2 13 5.3 14

Average coverage depth is the sum over all columns of the alignment of the number of spanned sequences
divided by the total number of columns.

Average vertex degree is the number of edges in the overlap graph divided by the number of vertices. Maximum
vertex degree is the maximum number of in-edges or out-edges for any vertex.

6.5 Computation time

Our software took as input the fragments, the error rate, and some additional parameters. These
parameters were the overlap graph thresholds, the multiple alignment window width, and the
maximum search tree size. As mentioned earlier, for all experiments we used a match signifi-
cance threshold of 10, an error distribution threshold of 5 percent, and a window width of 4. For
the search trees we initially tried an unbounded number of nodes for fragment orientation, and
an unbounded number of generated branchings for fragment layout. Optimal solutions were
found on Experiments 1 through 3, the random sequence group; maximum weight branchings
for these experiments were dovetail chain. We were unable, however, to find an optimal ori-
entation or layout for Experiments 4 through 7 within overnight runs. Hence we decided to
forego branch and bound and use greedy extension for fragment orientation, and greedy repair
for dovetail-chain branchings, on Experiments 4 through 12. One greedy orientation was com-
puted, and one maximum weight branching was generated. As all fragments were correctly
oriented and all layouts except Experiment 10 had an amount of overlap at or exceeding that
of the correct solution, it appears that the greedy algorithms perform surprisingly well.

Table 6 gives computation times. Overlap time is the time for overlap graph construction,
layout time is the time for fragment orientation and layout by the greedy algorithms (the algo-
rithms that produced layouts for Table 3), and alignment time is the time for multiple alignment
and consensus voting. Times are in units of hours, seconds, and minutes on a six-processor Sil-
icon Graphics Iris 4D/300GTX running at 33 megahertz with 16 megabytes of RAM. Our code
did not exploit any parallelism in the machine.

As Table 6 shows, nearly all the running time was taken by overlap graph construction. The
data supports a linear growth in overlap time as a function of error rate, which agrees with the
worst-case time bound of for fragments of total length at error rate . Experiments 1
through 11 all have roughly the same number of input characters, so another study would be
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Table 6 Computation time.

Fragment Number of Error Overlap Layout Alignment
Experiment length fragments rate time time time

1 500 500 2.5 % 0.9 hour 6 sec 2.9 min
2 5.0 1.8 6 2.9
3 10.0 2.5 7 3.0
4 500 500 0.0 0.4 4 2.8
5 2.5 1.1 6 3.0
6 5.0 1.8 6 2.8
7 10.0 3.3 8 3.0
8 250 1,000 2.5 1.3 15 4.3
9 5.0 1.8 16 4.4
10 1,000 250 2.5 1.2 2 2.5
11 5.0 2.4 3 2.5
12 1,000 367 2.5 2.5 5 4.5

necessary to observe a quadratic growth in input length.
We point out that while overlap time is on the order of hours, it may be amortized over the

period of data acquisition. As the sequence for each fragment is obtained, the overlap graph
can be updated with the insertion of one vertex and the comparison of the new fragment to
those currently in the graph. If we divide the time to compute the overlap graph by the number
of fragments, the amortized time is less than 10 seconds per fragment for 500 fragments of
length 500 at 2.5 percent error. For 250 fragments of length 1,000 at 2.5 percent error the time
is less than 5 seconds, though response will of course degrade for the last fragments inserted.
Note that the time to compute a layout is also on the order of 5 and 10 seconds. This suggests
that for problems of current size, it is possible to deliver an updated layout as each fragment
is obtained. And as Section 6.2 indicates, the layout may be of acceptable quality even for
problematic repetitive sequences.

7 Conclusion

A four phase algorithm for sequence reconstruction has been presented. For a problem involv-
ing fragments of total length , the first phase constructs a graph of overlaps within error
rate in time . Generally, the length of the underlying sequence is known approxi-
mately, and experimentalists sample fragments until is between and . Ratio is the
number of genome equivalents sampled, and is always a small constant. In such a case, the ex-
pected outdegree of a vertex in the overlap graph is , implying that the number of edges is
in expectation . Orientation and layout phases then take time , where is
the size of their search space. Under most conditions convergence is quick, and performance in
practice is basically . For thefinal multiple alignment phase, time is taken.
Thus under empirical conditions the algorithm runs in roughly time.

The most time consuming aspect of the computation in practice is the comparison of frag-
ments during overlap graph construction. (Ironically the only phase that is not NP-complete.)
Current work focuses on trying to lever recent methods for fast database searching to produce
a sub-quadratic algorithm for this phase.
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Another weakness of our method is that it artificially separates orientation and layout. (See [18]
for an explanation of why this is necessary, given our choice of a relaxation to maximum weight
branchings.) As we have noted, solving each of these problems optimally does not guarantee
an optimal solution to the combined reconstruction problem. What is desired is an algorithm
that solves both simultaneously. This can be done with a graph theoretic formulation that uses
a relaxation to maximum weight matchings, which is the subject of a future paper.
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