SUPPORTING FAULT-TOLERANT PARALLEL
PROGRAMMING IN LINDA

(Ph.D. Dissertation)

David Edward Bakken

TR 94-23

August 8, 1994

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

This work was supported in part by the National Science Foundation under grant CCR-9003161 and the
Office of Naval Research under grant NO0014-91-J-1015.

SUPPORTING FAULT-TOLERANT PARALLEL
PROGRAMMING IN LINDA

by

David Edward Bakken

Copyright (C) David Edward Bakken 1994

A Dissertation Submitted to the Faculty of the
DEPARTMENT OF COMPUTER SCIENCE
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
In the Graduate College
THE UNIVERSITY OF ARIZONA

1994

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University Library
to be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for
extended quotation from or reproduction of the manuscript in whole or in part may be
granted by the copyright holder.

SIGNED:

ACKNOWLEDGMENTS

| wishto expresssincere, profound, and profuse thanksto my advisor, Rick Schlichting.
His encouragement, guidance, friendship, and humor have been a delight to experience.
He has greatly honed my research and writing skills and has been aresearcher to venerate
and emulate. | thank Greg Andrewsfor al he taught me in so many different ways about
concurrent programming, research, and writing. | thank him and Larry Peterson for their
contributionsto my research and for serving on my committee. And | thank Mary Bailey
for serving as a substitute on my final committee and for reviewing this dissertation.

Others have contributed directly to this research. | thank Vic Thomas and Shivakant
Mishra for their many discussions regarding this research, and Shivakant for developing
Consul. | thank Jerry Leichter, LRW Systems, and GTE Laboratories for providing the
Linda precompiler that was used as a starting point for the FT-Linda precompiler. | thank
Rob Rubin, Rick Snodgrass, Dennis Shasha, and Tom Wilkes for their useful comments
on FT-Linda. | thank Dhananjay Mahagjan and Sandy Miller for their work on Consul.
| thank Ron Riter and Frank McCormick for teaching me so much about software and
systems during my time at Boeing; these lessons were invaluable in graduate school
and will no doubt continue to be so during the rest of my career. | thank Brad Glade for
suggesting read-only tuple spaces. | thank the National Science Foundation for supporting
this work through grant CCR-9003161 and the Office of Naval Research through grant
N00014-91-J-1015.

Many people have made my stay in Tucson delightful. | thank the department’s
system administrators and office staff for keeping things running so very smoothly. |
thank my fellow graduate students Doug Arnett, Nina Bhatti, Peter Bigot, Wanda Chiu,
Peter Druschel, Curtis Dyreson, Vincent Freeh, Patrick Homer, Clint Jeffery, Nick Kline,
David Lowenthal, Vic Thomas, Beth Weiss, and Andrey Yestts for their friendship. |
thank Anwar Abdulla, Yousef Akeel, Harvey Bostrom, Nancy Nelson, and Nayla Yateem
for making my stay in Tucson more pleasant, each in their own ways. | am thankful for
the sweet fellowship of the members of the prayer group, especially Fred and Ruth Fox,
Derek and Shannon Parks, and Craig and Mary Bell.

| thank my parents for their love and support over the years, and | thank my brother
as well as Gram and Joanne. And | can never hope to thank my dear wife, Beth, or my
precious children, Abby and Adam, enough for their love and encouragement during my
studies. Enduring my grad school habit was difficult for them all.

Finally, and foremosgt, | thank God for providing me away to heaven through His Son,
Jesus Christ.

Dedicated to the memory of my twin brother
Gregory Harold Bakken
January 2, 1961 — August 16, 1987

TABLE OF CONTENTS

LISTOFFIGURES e 13
LISTOFTABLES 15
ABSTRACT e 17
CHAPTER 1: INTRODUCTION 19
1.1 Motivationfor Parallel Programming 19
1.2 Architecturesfor Pardlel Programming 20
1.3 Simplifying Parallel Programming 21
131 Fault Tolerance Abstractions 22

13.2 Process CoordinationMechanisms 24

14 Linda. e 25

15 FT-Linda. e 26

1.6 DissertationOutline o 27
CHAPTER 2: LINDA AND FAILURES 29
21 LindaOveview 29
2.2 ProblemswithLindaSemantics 31
23 ProblemswithFailures. 32
24 Implementing Stability and Atomicity 35
25 Summary. 37
CHAPTER 3: FT-LINDA e 39
31 StableTupleSpaces 39
3.2 Featuresfor AtomicExecution. 41
321 AtomicGuarded Statement 41

322 AtomicTupleTransfer 45

33 TupleSpaceSemantics. 47
34 ReaedWork 438
3.5 Possble ExtensonstoFT-Linda. 51
351 Additional Tuple Space Attributes 51

35.2 Nested AGS 52

353 Notification of AGS Branch Execution. 53

354 TupleSpaceClocks 53

355 TupleSpacePartitions L. 53

10

356 GuardEXpressions 54

35.7 TSCreationinan AGS. 54

3.6 Summary. 55
CHAPTER 4: PROGRAMMING WITH FT-LINDA 57
4.1 Highly DependableSystems 57
41.1 Replicated Server 57

412 RecoverableServer 60

413 Genegrd Transaction Facility 63

4.2 Padle Applications 70
421 Fault-Tolerant Divideand Conquer 70

422 Barriers 71

4.3 HandlingMainProcessFailures 8l
44 SUMMAIY o o e e e e e e e e e e e 82
CHAPTER 5: IMPLEMENTATION AND PERFORMANCE 85
51 Overview 85
52 MagorDataStructureso 86
53 FT-LCC e 88
54 AGSRequestProcessing. 95
54.1 GengrddCase 95
54.2 Examples. 97

55 Ratonaefor AGSRedtrictions L. 100
55.1 Dataflow Restrictions 100

55.2 Blocking OperationsintheAGSBody 101

55.3 Function Calls, Expressions, and Conditional Execution 101

554 Redtrictionsin Similar Languages 102

5.5.5 Summary 103

5.6 Initid PerformanceResults L. 103
57 Optimizations 104
58 FutureExtensions 105
5.8.1 Reintegrationof FalledHosts 105

5.8.2 Non-Full Replication 106
5.83 Network Partitions 107

5.9 Summary. 107
CHAPTER6: CONCLUSIONS e 111
6.1 Summary. 111
6.2 FutureWork 112

APPENDIX A: FT-LINDA IMPLEMENTATION NOTES 115

APPENDIX B: FT-LINDA REPLICATED SERVER 117
APPENDIX C: FT-LINDA RECOVERABLE SERVER EXAMPLE 121
APPENDIX D: FT-LINDA GENERAL TRANSACTION MANAGER EXAMPLE 127
D.1 Specification 127
D.2 Manager e 128
D.3 SampleUser 136
D.4 User Template (tfransactionclient.c) 140
APPENDIX E: FT-LINDA BAG-OF-TASKSEXAMPLE 143
APPENDIX F: FT-LINDA DIVIDE AND CONQUER EXAMPLE 147
APPENDIX G: FT-LINDA BARRIER EXAMPLE 153
APPENDIX H: MAJOR DATA STRUCTURES 159

REFERENCES 165

12

21
22
2.3

31
3.2
3.3
34

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16
417
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3
5.4
5.5

13

LIST OF FIGURES

Digtributed VariableswithLinda. 33
Bag-of-TasksWorker 34
State Machine Approach 36
Lost Tuple Solution for (Static) Bag-of-TasksWorker 43
Bag-of-TasksMonitor Process 44
AGSDigunction. 45
Fault-Tolerant (Dynamic) Bag-of-TasksWorker 47
Replicated Server ClientRequest 58
ServerReplica 59
RecoverableServer 61
Recoverable Server Monitor Process. 62
Transaction Facility Interface 64
Transaction Facility Initialization and Finalization Procedures 65
Transaction Initidization. 66
Modifying aTransaction Variable 67
Transaction Abortand Commit L. 68
Printing an Atomic Snapshot of all Variables 69
Transaction Monitor Process 69
LindaDivideand Conquer Worker 70
FT-Linda Divideand Conquer Worker 71
Tree-structured barriero 73
Linda Shared Counter Barrier Initialization 74
Linda Shared Counter Barrier Worker 75
LindaBarrier. 76
FT-LindaBarrier Initidization 77
FT-LindaBarrierWorker 78
FT-LindaBarrier Monitor 79
SimpleResult Synthesis L 82
Complex Result Synthesis 83
RuntimeStructure 86
TupleHashTable 87
BlockedHashTable 88
FT-LCC Structure 89
Outer AGS GC Fragment for count Update 93

14

5.6 Inner AGS GC Fragment for count Update
57 AGSRegquest MessageFlow

5.8 Non-Full Replication

LIST OF TABLES

3.1 LindaOpsandtheir FT-LindaEquivalents.

5.1 FT-Linda Parameter Parsing

5.2 FT-Linda Operationson Various Architectures (usec)

15

16

17

ABSTRACT

As people are becoming increasingly dependent on computerized systems, the need
for these systemsto be dependableisalso increasing. However, programming dependable
systemsisdiffcult, especially when paralelismisinvolved. Thisisduein part to the fact
that very few high-level programming languages support both fault-toleranceand parall€el
programming.

Thisdissertation addresses this problem by presenting FT-Linda, ahigh-level language
for programming fault-tolerant parallel programs. FT-Lindais based on Linda, alanguage
for programming parallel applications whose most notable feature is a distributed shared
memory called tuple space. FT-Linda extends Linda by providing support to allow a
program to tolerate failures in the underlying computing platform. The distinguishing
features of FT-Linda are stable tuple spaces and atomic execution of multiple tuple space
operations. The former is atype of stable storage in which tuple values are guaranteed to
persist acrossfailures, whilethelatter allows collections of tuple operationsto be executed
inan al-or-nothing fashion despitefailuresand concurrency. Example FT-Lindaprograms
are given for both dependable systems and parallel applications.

The design and implementation of FT-Lindaare presented in detail. The key technique
used is the replicated state machine approach to constructing fault-tolerant distributed
programs. Here, tuple spaceisreplicated to providefailureresilience, and thereplicasare
sent a message describing the atomic sequence of tuple space operationsto perform. This
strategy allows an efficient implementation in which only a single multicast message is
needed for each atomic sequence of tuple space operations.

An implementation of FT-Linda for a network of workstations is also described.
FT-Linda is being implemented using Consul, a communication substrate that supports
fault-tolerant distributed programming. Consul is built in turn with the x-kernel, an
operating system kernel that provides support for composing network protocols. Each of
the components of the implementation has been built and tested.

18

CHAPTER 1
INTRODUCTION

Computers are being relied upon to assist humans in an ever-increasing number and
variety of ways. Further, these applications have become increasingly sophisticated and
powerful. To keep pace with the corresponding increased demand for faster computers,
computer manufacturershave built parallel machinesthat allow subproblemsto be solved
simultaneoudly. Parallel programs running on these computers are now used to solve a
widevariety of programs, including scientific computations, engineering design programs,
financia transaction systems, and much more [AkI89, And91].

Parallel programming is much harder than sequential programming for a number of
reasons. Coordinating the processorsisdifficult and error-prone. Also, there are different
architecturesthat run parallel programs, and programswritten on one cannot generally be
run on another. Finally, one of the processorsinvolved in the parallel computation could
fail, leaving the othersin an erroneous state.

Different abstractions and programming languages have been developed to help pro-
grammerscopewith the difficultiesof parallel programming. Onesuch languageisLinda,
which provides a powerful abstraction for communication and synchronization called tu-
ple space. However, Linda does not allow programmersto compensate for the failures of
a subset of the computersinvolved in a given computation. This limitsits usefulness for
many long-running scientific computations and for dependable systems, which are ones
that arerelied upon to function properly with avery high probability. This dissertation ad-
dresses Linda’slack of provisionsfor dealing with failuresby analyzing the failure modes
of typical Linda applications and by proposing extensions that allow Linda programs to
cope with such failures.

1.1 Motivation for Parallel Programming

Parallel programming involves writing programs that consist of multiple processes exe-
cuting simultaneoudly. This activity includes subdividing the problem to be solved into
subproblems, and then programming the sequential solution to each subproblem. The
latter requires programming the ways in which the processes that solve the subprob-
lems communicate and coordinate. This communication and coordination can be through
physically shared memory or by message passing.

There arethree main motivationsfor paralel programming: performance, economics,
and dependability. First, while computers have been increasing in speed, the demands
of computer users have kept up with these increases, and in some cases surpassed them.

19

20

In fact, for many important problems, even today’s fastest uniprocessor supercomputer
cannot execute as fast as its users would like and could profitably use. Examples of
such problems include environmental and economic modelling, real-time speech and
sight recognition, weather forecasting, molecular modelling, and aircraft testing [AkI89].
Parallel programming enables these problemsto be solved more efficiently by performing
multiple tasks simultaneoudly.

The second reason for parallel programming is economics. It is generally cheaper to
build aparallel computer with the same or even more aggregate computational power than
afast uniprocessor. The former can be constructed of relatively inexpensive, off-the-shelf
components, because each processor can be much dower than the uniprocessor’s sole
processor. The latter, however, must use |low-volume components constructed from more
exotic and expensive materials to achieve significantly better performance than can be
achieved with a single off-the-shelf component [HP90].

The third reason for parallel programming involves dependability. A system or com-
ponent is said to be dependable if reliance can justifiably be placed on the service it
delivers[Lap9l]. Computers are increasingly relied upon in situations where their fail-
ures could result in economic loss or even loss of life. For example, the 1990 failure
of an AT&T long distance network was caused by the malfunction of a single computer
[Neu92, Jac90]. In such applications, the dependability of computersis a vital concern.
Architectures on which parallel programs are executed have redundancy inherent in their
multiple processors, and thus they offer at least the potentia to tolerate some failures
while still providing the service or finishing the computation that has been assigned to
them. Uniprocessors, on the other hand, have only one processor and thus suffer from a
single point of failure, i.e, the failure of the processor can cause the failure of the entire
machine.

1.2 Architecturesfor Parallel Programming

A number of different architecturesfor parallel programming have been developed. They
vary mainly in the number of processors and the ways in which the processors can
communicate with each other. We examine three categories in the spectrum of paralel
computer architecturesthat together comprisethevast magjority of parallel computersinuse
today: shared memory multiprocessors, distributed memory computers, and distributed
systems.

The first architecture for parallel programming is the shared memory multiprocessor,
which are sometimes called closely coupled machines or ssimply multiprocessors. These
are paralel computers with multiple processors that share the same memory unit. The
processesin aparallel program running on such acomputer communicate by reading from
and writing to a shared memory. This memory isfairly quick to access. Since processes
on different CPUs communicate with each other with such low latency, interprocess
communication (1PC) isvery quick with these computers. However, the path to the shared
memory, itsbus, isabottleneck if too many processorsare added, and thus multiprocessors

21

do not scale well.

The next architecture is the distributed memory computer, also known as the multi-
computer. Here, each processor has fast, private memory. However, a processor may
not access memory on another processor. Rather, processors communicate by sending
messages over high-speed message passing hardware. This message passing hardware
does not have asingle bottleneck as a multiprocessor does, and thus multicomputersscale
better than multiprocessorsin the number of processors. However, amulticomputer’sIPC
latency is higher than a multiprocessor’s.

The third architecture for parallel programming is the distributed system. A dis-
tributed system consists of multiple computers connected by a network. However, unlike
the multiprocessor or the multicomputer, these computers are physically separated. Pro-
cesses on different computers typically communicate with latencies on the order of afew
millisecondsfor computersin the same building and on the order of afew secondsor more
for computers thousands of miles away. The latency for this IPC is much slower than a
multicomputer’s, but and the physical separation of the processorsin a distributed system
offers advantages for dependable computing. Examples of distributed systems include
workstation clusters connected by alocal area network (LAN), machines on the Internet
cooperating to solve a problem, and the computers on an airplane used for controlling its
various functions such as adjusting its control surfaces and plotting its course.

1.3 Simplifying Parallel Programming

Parallel programming is increasing in both popularity and diversity, but writing parallel
programs is difficult for a number of reasons.First, parallel programs are smply more
complicated; they have to deal with concurrency, something that sequential programs do
not have to do [And91]. For example, a procedure performing an operation on acomplex
datastructurethat operates correctly on auniprocessor will generally not function properly
if multiple processes simultaneously call that procedure. A second reason that parallel
programming is more difficult concerns coping with partial failures, i.e., the failure of
part of the underlying computing platform. Some applications have to be able to tolerate
partial failures and keep executing correctly. This makes programming more difficult;
for example, the uniprocessor procedure mentioned above that operates on a complex
data structure would likely leave that data structure in an erroneous state if it failed
while executing in the middle of the procedure body. A fina reason why writing parallel
programs is more difficult regards portability. Programs that are written for one kind of
processor or one kind of parallel architecture will not generally run on another. Portability
isaserious problem given the high cost of devel oping software and the frequency at which
new parallel computers become available.

Abstractions to simplify the task of the programmer fall in two main categories. fault
tolerance and process coordination. Fault tolerance abstractions provide powerful models
and mechanisms for the programmer to deal with failures in the underlying computing
platform [MS92, Jal94, Cri9l]. Process coordination mechanisms allow multiple pro-

22

cesses to communicate and coordinate [And9l]. These two categories overlap, but they
differ so are described separately below.

1.3.1 Fault Tolerance Abstractions

Fault-tolerant abstractions allow a programmer to construct fault-tolerant software, i.e.,
software that can continue to provide service despite failures. These abstractions come
in many forms and are structured so that each abstraction is built on lower-level ones.
Failure models specify a component’s acceptabl e behavior, especially the ways in which
it may fail, i.e.,, deviate from its specified behavior. All other abstractions described
below assume a given failure model; i.e., they will tolerate specific failures. Fault-
tolerant services fall under two categories. One kind provides functionality similar to
that which standard hardware or operating systems provide but with improved semantics
in the presence of failures. The other kind of fault-tolerant service provides consistent
information to all processes involved in a paralel computation. Finally, fault tolerance
structuring paradigms are canonical program structuring techniques to help smplify the
construction of fault tolerant software.

Failure Models

Failure models provide a way for reasoning about the behavior of components in the
presence of failures by specifying assumptions about the effects of such failures. Failure
models form a hierarchy, from weak to strong [MS92]: a given faillure model permits
all failluresin all stronger models plus some additional ones. A weak failure assumption
assumes little about the behavior of the components and isthus closer to the real situation
with standard, off-the-shelf components. However, it is much more difficult for the
programmer to use, because there are many ways (and combinationsthereof) in which the
components may fail. Indeed, one of the magjor challenges is to develop failure models
and other abstractions that are powerful enough to be useful yet smple enough to allow
an efficient implementation.

The weakest failure model is Byzantine or arbitrary [LSP82]. Here components may
fail in arbitrary ways. The timing failure model assumes a component will respond to
an input with the correct value, but not necessarily within a given timing specification
[CASD85]. The omission failure model assumes that a component may fail to respond
to an input [CASDS85]. A stronger model yet is crash or fail-silent, where a component
fails without making any incorrect state transitions [PSB*88]. The strongest model is
fail-stop, which adds to the crash model the assumption that the component failsin away
that is detectable by other components [SS83].

A systemwith agivenfailuremodel can beconstructed from componentswith aweaker
failure model. For example, [Cri91] gives an example of constructing a storage service
that will tolerate one read omission failure from two elementary storage servers with
read omission failure semantics. Also, the TCP/IP protocol is built on top of unreliable

23

protocols, yet it providesreliable, ordered delivery of a sequence of bytes [Com88].

Fault-Tolerant Services

One category of fault-tolerant service provides functionality smilar to standard hardware
or operating systems, but with improved semantics in the presence of failures. This
category includes stable storage, atomic actions, and resilient processes. The contents
of a stable storage are guaranteed to survive failures [Lam81]. Atomic actions allow
a number of computations to be seen as an indivisible unit by other processes despite
concurrency and failure [Lam81]. A resilient process can be restarted and then continue
to correctly execute even if the processor on which it is executing fails; techniques to
construct resilient processes — for example, checkpointing— are discussed in [MS92].

The other category of fault-tolerant service provides consistent information to all
processes involved in a parallel program, which is especially necessary in a distributed
system with no memory or clock shared among the processors. The abstractions that
these services offer are generally concerned with determining and preserving the causal
relation among various events that occur on different processors in a distributed system
[Lam78]. That is, if events « and b occur at times T, and 7, respectively, could « have
affected the execution of 6? Thisis simple to ascertain if both « and 6 occur on the same
processor, because T, and T}, were obtained from the same local clock. However, if they
occurred on different machinesin adistributed system, we cannot naively assume that the
clocks are synchronized to reflect potential causality.

Thefault-tolerant servicesthat provide cons stent information includescommon global
time, multicast, and membership services. Common global time provides a distributed
clock service that maintains potential causality among events despite failures [RSB90].
For example, in the scenario above, if 7, > T,, and both were read from the common
global time service, then event « could not have affected the execution of 6, because « did
not happen beforeb. A multicast service delivers a message to each processin agroup of
processes such that the message delivered to each processin aconsistent order relativeto
al other messages despite failures and concurrency [BJ87, CASD85, PBS89, GMS91].
Thisisvery important in many different kinds of fault-tolerant programs, especially those
constructed using the state machine approach described below. Finally, a membership
service provides processes in a group consistent information about the set of functioning
processors at any given time [VM90].

Fault Tolerance Structuring Paradigms

Fault tolerance structuring paradigms are canonical program structuring techniques that
have been devel oped in conjunction with the above abstractions and servicesto help pro-
grammers structure fault-tolerant distributed programs. As such, each paradigm applies
to anumber and variety of different applications. This greatly reduces the complexity of
devel oping such programs.

24

Three mgjor paradigms are object/action, primary/backup, and state machines. The
object/action paradigm involves passive objects that export actions, which are operations
to modify the long-lived state of the object [Gra86]. These actions are serializable,
which means that the effect of any concurrent execution of actions on the same object is
equivalent to some serial sequence. They are aso recoverable, i.e. executed completely
or not at all. These actions are called transactions in the database context.

The primary/backup paradigm features a service implemented by multiple processes,
the primary processis active, while the backup processes are passive [AD76, BMST92].
Only the active process responds to requests for the service; in the case of the falure
of the primary process, one backup process will become the primary, starting from a
checkpointed state.

A replicated state machine consists of a collection of servers [Sch90]. Each client
request ismulticast to each server replica, whereit is processed deterministically. Because
each replicaprocesses each request, the state machine approach is sometimescalled active
replication, while the primary/backup paradigm is called passive replication. The state
machine approach is described in more detail in Section 2.4.

1.3.2 Process Coordination M echanisms

Fault-tolerance abstractions hel p aprogrammer write parallel programsthat can copewith
failures; process coordination mechanisms provide the programmer with techniques that
allow different processes to communicate and synchronize. Process coordination mecha-
nismsinclude remote procedurecall, message passing, shared memories, and coordination
languages. These mechanisms may be provided to the programmer either through an ex-
plicitly paralel language or through libraries of procedures for a sequential language.
Parallel programming languages provide high-level abstractions for programmersto use.
These generally permit a cleaner integration of the sequential and concurrent features of
the language than do libraries of procedures. Examples of such languages include Ada
[DoD83], Orca [Bal90], and SR [AQ93]. Libraries of procedures alow the program-
mer to leverage experience with an existing language and reuse existing code. They
can also support many languages, allowing processes written with different languages to
communicate.

Remote procedure call (RPC) [Nel81, BN84] is like a normal procedure cal, ex-
cept the invocation statement and the procedure body are executed by two different
processes, potentially on different machines. RPC is a fundamental building block for
distributed systems today, including client/server interactions and many distributed op-
erating systems such as Amoeba [TM81]. It is also supported in many distributed
programming languages, including Aeolus [WL86], Argus [LS83], Avalon [HW87], and
Emerald [BHJL86]. Message passing allows processes on different computers to ex-
change messages to communicate and synchronize. PVM [Sun90] and MPI [For93b,
For934] are two of the more well-known libraries of message passing libraries, many
parallel programming languages explicitly provide message passing aswell [And91].

25

A shared memory is memory that can be accessed by more than one process. It
can be implemented in a multiprocessor by smply providing a shared memory bus that
connectsall processors to the memory. A distributed shared memory (DSM) providesthe
illusion of a physicaly shared memory that is available to al processes in a distributed
system [NL91]. The regions of the DSM are either replicated on all computers or are
passed among them as needed; this is done by the language’'s implementation and is
transparent to the programmer. DSMs thus allow distributed systems and multicomputers
to be programmed much more like a multiprocessor. Munin is an example of a system
that implementsaDSM [CBZ91].

Coordination languages augment an existing computational language such as FOR-
TRAN or C to alow different processes to communicate in a uniform fashion with each
other and with their environment [GC92]. A coordination language is completely orthog-
onal to the computational language. Coordination languages thus provide in a uniform
fashion many of the services such as process-process and process-environment commu-
nication typically provided by an operating system. A coordination language can thus be
used by aprocess to perform 1/O, communicate with auser, or communicate directly with
another process, regardless of the location and lifetime of that process.

14 Linda

Linda is a coordination language that provides a collection of primitives for process
creation and interprocess communication that can be added to existing languages [Gel 85,
CG89]. Themain abstraction provided by Lindaistuple space (TS), an associative shared
memory. The abstraction is implemented by the Linda implementation transparently to
USer Processes.

Thetuple space primitivesprovided by Lindaallow processesto deposit tuplesinto TS
and to withdraw or read tuples whose contents match a pattern. Thus, tuple space provides
for associative access, in which information is retrieved by content rather than address.
Tuple space also provides temporal decoupling, because communicating processes do not
have to exist at the same time, and spatial decoupling, because processes do not have to
know each other’sidentity. These propertiesmake Linda especially easy for use by appli-
cation programmers[CS93, ACG86, CG88, CG90]. Lindaimplementationsare available
on a number of different architectures [CG86, Lei89, Bj092, SBA93, CG93, Zen90]
and for a number of different languages [Lei89, J&l90, Has92, Cia93, SC91]. Linda
has been used in many real-world applications, including VLS| design, oil exploration,
pharmaceutical research, fluid-flow systems, and stock purchase and anaysis programs
[CS93].

Despite these advantages, one significant deficiency of Linda is failures can cause
Linda programs to fail. For example, the semantics of tuple space primitives are not
well-defined should a processor crash, nor are features provided that allow programmers
to deal with the effect of such afailure. The impact of these omissions has been twofold.
First, programmers who use Linda to write general parallel applications cannot take

26

advantage of fault-tolerance techniques, for example, to recover along-running scientific
application after afallure. Second, despite the language’s overall apped, it has generally
been impossible to use Linda to write critical applications such as process control or
telephone switching in which dealing with failuresis crucial.

1.5 FT-Linda

In this dissertation, we describe FT-Linda, a version of Linda that provides support for
programming fault-tolerant parallel applications. To do this, FT-Lindaincludestwo major
enhancements. stable tuple spaces and support for atomic execution of TS operations.
The former is a type of stable storage in which the contents are guaranteed to persist
across failures; the latter allows collections of tuple operations to be executed in an all-
or-nothing fashion despite failures and concurrency. Also, we provide additiona Linda
primitivesto allow tuples to be transferred between tuple spaces atomically. The specific
design of these enhancements has been based on examining common program structuring
paradigms— both those used for Lindaand those found in fault-tol erant applications— to
determine what features are needed in each situation. In addition, the designisin keeping
withthe“minimalist” philosophy of Lindaand permitsan efficient implementation. These
features help distinguish FT-Linda from other efforts aimed at introducing fault-tolerance
into Linda[Xu88, XL89, Kam90, AS91, Kam9l, CD94, CKM92, PTHR93, JS94].

FT-Lindais being implemented using Consul, acommunication substrate for building
fault-tolerant systems [Mis92, MPS93b, MPS93a], and the x-kernel, an operating system
kernel that provides support for composing network protocols [HP91]. Stable TSs are
realized using the replicated state machine approach, where tuples are replicated on
multiple processors to provide failureresilience and then updated using atomic multicast.
Atomic execution of multipletuple space operationsisachieved by using asinglemulticast
message to update replicas. The focus in the implementation has been on tolerating
processor crash failures, though the language design is general and could be implemented
assuming other failuremodels. Further, the current implementation focuses on distributed
systems, because their inherent redundancy and physical separation make them attractive
candidates for dependable computing.

The major contributions of this dissertation are:

¢ Ananalysisof thefalluremodes of typical Lindaprogramsand of Linda'satomicity
requirements — at what level itsoperations should berealized in an “al or nothing”
fashion despite failuresand concurrency.

e Extensionsto Lindato help tolerate failures, namely stable tuple spaces and atomic
execution of multiple tuple space operations.

¢ Anefficient implementation design for theresultinglanguage, FT-Linda. Anatomic
sequence of tuple space operations only requires one multicast message, and FT-

27

Linda's costs of processing an operation is comparable to an optimized Linda
implementation.

Other contributions include better semantics for Linda, even in the absence of failures;
multipletuple spaces with attributesthat allow different kinds of tuple spacesto be created,;
primitivesto allow the transfer of tuples between different tuple spaces; and digunction,
which alows one from a number of matching tuples to be selected.

1.6 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes Linda
in detail and discusses its failure modes. Alternatives for extending Linda to deal with
failures are described; this also serves as a motivation for the next chapter and further
delineates the contributions of this dissertation.

Chapter 3 describes FT-Linda, our version of Linda to help it tolerate failures. It
describes in detail FT-Linda's stable tuple spaces and atomic execution of multiple tuple
space operations. The way these features can be used to help toleratefailuresisillustrated
using a series of examples.

Chapter 4 gives more examples of how both applications and system programswritten
in FT-Linda can tolerate failures. It then shows how FT-Linda programs can handle the
failure of the main or master process.

Chapter 5 describes the implementation of FT-Linda. First it describes the compiler,
and then how the runtime system is implemented on top of Consul and the x-kernel.
It then describes initial performance results, optimizations, and future extensions to the
implementation.

Chapter 6 offers some concluding remarksand futureresearch directionsfor FT-Linda.

28

CHAPTER 2
LINDA AND FAILURES

Lindaisacoordinationlanguagethat issmpleto useyet powerful. However, problems
with its semantics and its lack of facilities to handle failures makes it inappropriate for
long-running scientific applications and dependabl e systems, domains for which it would
otherwise be suitable [WL88, CGM92, PTHR93, BLL94].

This chapter provides the background information and motivation for our extensions
toLinda. Firgt, it givesan overview of Linda. Next, it discusses semantic limitations of
Linda that are a problem even in the absence of failures. It then examines the problems
Linda programs have in the presence of failures, followed by design alternatives for
providing fault-tolerance to Linda; this motivates our particular design choices. These
design choices are tightly intertwined with the particular language extensions we offer
and with the way in which we implement them, topics for Chapters 3 and 5, respectively.

2.1 LindaOverview

Lindaisaparallel programming language based on a communication abstraction known
astuple space (TS) [Gel85, ACG86, CG89, GC92, CGI0]. Tuple space is an associative
(i.e., content-addressable) unordered bag of data elements called tuples. Processes are
created in the context of a given TS, which they use as a means for communicating and
synchronizing. A tuple consists of alogical name and zero or more values. An example
of atupleis (* N”,100,true). Here, the tuple consists of the logical name N and the data
values 100 and true. Tuples are immutable, i.e., they cannot be changed once placed in
the TS by a process.

The basic operations defined on a TS are the deposit and withdrawal of tuples. The
out operation deposits atuple. For example, executing

out (“N”,100,t rue)

causesthetuple (* N”, 100,true) to be deposited. As another example, if 7 equals 100 and
boolvar equalstrue, then the operation

out (“N”,z,boolvar)

will aso cause the same tuple, (“/N”, 100,true), to be deposited. An out operation is
asynchronous, i.e. the process performing the out need only wait for the arguments to

29

30

be evaluated and marshalled; it does not have to block until the corresponding tuple is
actually deposited into TS.

The in operation withdraws a tuple matching the specified parameters, which collec-
tively are known as the template of the operation. To match atuple, the in must have the
same number of parameters, and each parameter must match the corresponding value in
the tuple. The parametersto in can either be actuals or formals. An actual is a value that
can be specified aseither aliteral value or with avariable’ sname; in the latter the value of
the variable will be used as the actual. To match avaluein atuple, the value of an actua
in atemplate must be of the same type and value as the corresponding value in the tuple.

A formal is either avariable or type name, and is distinguished from an actual by the
use of a question mark as the first character. Formals automatically match any value of
the same typein atuple. If the formal is a variable name, then the operation assigns the
corresponding value from the tuple to the variable. Thisisthe mechanism through which
different processesin aLinda program receive datafrom other processes. For example, if
1 isdeclared as an integer variable and b as a boolean, then executing

i n(“N”,%,7b)

will withdraw atuple named NV that has an integer as its first argument and a boolean as
its second (and last) one, and will assign to : and 6 the respective values from the tuple. If
thereisno such tuple, then the processwill block until oneispresent. Asanother example,
executing

in(“N”,100,true)

will withdraw atuple named N whose second argument is an integer with value 100 and
whose third argument is a boolean with value true. Here, the parameters of in are all
actuals, so executing this operation does not give the program new data, likeit would if it
had formal variables. Such an operation may, however, be useful for synchronization.

Formals are legal in out operations, but such usage is rare in practice. In this case,
because an out does not withdraw or inspect a tuple, the formal variable is not assigned
avalue. Rather, avauelesstypeis placed in the appropriate field in the tuple; it must be
matched by an actual, not aformal, in the template for the corresponding Linda operation
that withdraws or inspects the tuple.

The Linda rd operation is like in except it does not withdraw the tuple. That is, it
waits for a matching tuple and assigns values from the tuple to formal variables in its
template. Unlikein, however, it leaves the matching tuplein TS.

Operations rdp and inp are non-blocking versions of rd and in, respectively. If an
appropriate tuple is found when one of these operations is executed, trueis returned as
the functional value and and the operation behaves like its non-blocking counterpart; if

31

no such tupleis found, false is returned and the values of any formal parameters remain
unchanged.

The final Linda primitive is eval, which is used for process creation. In particular,
invoking

eval (“func”, func(args))

will create a process to execute func with args as parameters, and also deposit an active
tuple in TS. This tuple may not be matched by any TS operation, but when func returns
the tuple will become anormal “inactive” tuple containing the return value of func.

Few applications seem to need the coupling of process creation and tuple depositing
that eval offers, and it has a number of semantic and implementation problems [Lei89].
Asaresult, itisnot examined further in thisdissertation; FT-Lindaprovidesan alternative
mechanism for process creation.

Finaly, TS may outlive any process in the program and may even persist after termi-
nation of the program that created it. Thus, Linda allows temporal uncoupling because
two processes that communicate do not have to have overlapping lifetimes. Linda aso
allows spatial uncoupling because processes need not know theidentity of processeswith
which they communicate.! These properties allow Linda programs to be powerful, yet
simple and flexible.

2.2 Problemswith Linda Semantics

While Linda has many advantages, it is not without its deficiencies. Consider the boolean
operationsinp and rdp. When they return false, they are making avery strong statement
about the global state of TS: they are indicating that no matching tuple exists anywhere
in TS. This has historically been considered too expensive to implement for a distributed
system or on a multicomputer [Lei89, Bjo92]. Thus, implementations of Linda for such
systems generally do not offer inp and rdp or they offer aweaker best effort semantics.
Here, inp and rdp are not guaranteed to find a matching tuple; they may return false even
if amatching tupleexistsin TS.

Also, because out is asynchronous, there is no guarantee as to when the tuple it
specifieswill be deposited into TS. This, coupled with a best effort semantics for inp and
rdp, makes some Linda code deceptive. Consider the following example from [Lei 89,
Bj092], which is used to argue that inp and rdp should not be supported:

11f they do need to know, a process identifier or handle can be included in the tuple. See Section 4.1.2
for an example.

32

process P1 process P2
out (“A”) in(“B")
out (“B”) if (inp(“A”)) then

print (‘‘Mist succeed!’’)

The problem is a naive programmer may believe that this code is synchronized properly
so that the inp must succeed. However, thisis not the case with either asynchronous outs
or with best effort semanticsfor inp, or both. With asynchronous outs, thetuple“ B” may
be deposited in TS before“ A”, so “ A” isnot yet present in TS when the inp checksfor it.
And with best effort semantics for inp, inp is not guaranteed to find the tuple “ A”, even
if itispresentinTS.

Note that these semantic problems occur even in the absence of failures. They are
discussed further in Section 3.3, where alternatives are provided.

2.3 Problemswith Failures

Linda programs also have problemsin the presence of failures. In particular, as noted in
Chapter 1, the effects of processor failures, i. e., crash failures, on TSisnot considered in
standard definitions of the language or most implementations. In examining how Lindais
currently used to program parallel applications and would likely be used for fault-tolerant
applications, two fundamental deficiencies areapparent. Thefirstislack of tuple stability.
That is, the language contains no provisions for guaranteeing that tuples will remain
available following a processor faillure. Given that tuple space is the means by which
processes communicate and synchronize, it is easy to imagine the problems that would
be caused if certain key tuples arelost or corrupted by failure. Moreover, a stable storage
facility isakey requirement for the use of many fault-tolerance techniques. For example,
checkpoint and recovery is atechnique based on saving key valuesin stable storage so that
an application process can recover to some intermediate state following afaillure [KT87].
This technique cannot be implemented with Lindain the absence of tuple stability, given
that TS isthe only means for interprocess communication in aLinda program.

The second deficiency can be characterized aslack of sufficient atomicity. Informally,
a computation that modifies shared state is atomic if, from the perspective of other
computations, al itsmodifications appear to take place instantaneoudy despite concurrent
access and failures. In Linda, of course, the shared state isthe TS and the computationsin
guestion are TS operations. The key hereisthat Linda provides only single-op atomicity,
i.e., atomicexecutionfor only asingle TSoperation. Thus, theintermediate statesresulting
from a series of TS operations may be visible to other processes.

Providing multi-op atomicity, ameansto execute multiple TS operationsatomically, is
important for using Lindato program fault-tolerant applications. For example, distributed
consensus, in which multiple processes in a distributed system reach agreement on some
common value, is an important building block for many fault-tolerant systems [TS92].

33

Initialization
out (“count”, value)

| nspection
rd(“count”, Tvalue)

Updat i ng
i n(“count”, Toldvalue)
out (“count”, newvalue)

Figure 2.1: Distributed Variables with Linda

However, Linda with single-op atomicity has been shown to be insufficient to reach
distributed consensus with more than two processes in the presence of failures or with
arbitrarily slow (or busy) processors [Seg93]. The key is lack of sufficient (multi-op)
atomicity.

Even typical Linda programs cannot be structured to handle failureswith only single-
op atomicity. To illustrate this, we consider specific problems that arise in two common
Linda programming paradigms:. the distributed variable and the bag-of-tasks. Both these
paradigms are used to solve awide variety of problems, meaning that deficienciesin these
two paradigms are applicable to alarge class of Linda programs.

Distributed Variable

The simplest paradigm is the distributed variable. Here, one tuple containing the name
and value of the variableiskept in TS. Figure 2.1 shows how typical operations on such
avariable named count might beimplemented. Thefirst operationinitializesthe variable
count to value. To ingpect the value of count, rd isused as shown. Finally, updating the
valueinvolveswithdrawing the tuple and depositing anew tuple with thenew value. Note
that the tuple must be withdrawn with in and not just read with rd to guarantee mutually
exclusive access to the variable and uniqueness of the resulting tuple.

Unfortunately, if the possibility of aprocessor crash is considered, the protocol has a
window of vulnerability. Specifically, if the processor executing the process in question
fails after withdrawing the old tuple but before replacing it with the new one, that tuple
will be lost because it is present only in the volatile memory of the failed processor. We
call this problem thelost tuple problem. The result is that processes attempting to inspect
or modify the distributed variable will block forever. The problem is due to the inability
to execute the in and subsequent out as an atomic unit with respect to failures.

process wor ker
while true do
i n(“subtask”, ?subtask_args)
cal c(subtask_args, var result_args)
for (all new subtasks created by this subtask)
out (“subtask”, new_subtask_args)
out (“result”, result_args)
end while
end proc

Figure 2.2: Bag-of-Tasks Worker

Bag-of-Tasks

Linda lends itself nicely to a method of parallel programming called the bag-of-tasks
or replicated worker programming paradigm [ACG86, CG88]. In this paradigm, the
task to be solved is partitioned into independent subtasks. These subtasks are placed
in a shared data structure called a bag, and each process in a pool of identical workers
then repeatedly retrieves a subtask description from the bag, solves it, and outputs the
solution. In solving it, the process may use only the subtask arguments and possibly non-
varying global data, which meansthat the same answer will be computed regardless of the
processor that computes it and the time at which it is computed. Among the advantages
of this programming approach are transparent scalability, automatic load balancing, and
ease of utilizing idle workstation cycles [GK92, CGKW93, Kam94]. And, aswe show in
Chapter 3, it can easily be extended to tolerate failures.

Realizing this approach in Linda is done by having the TS function as the bag. The
TSis seeded with subtask tuples, where each such tuple contains argumentsthat describe
the given subtask to be solved. The collection of subtask tuples can thus be viewed as
describing the entire problem.

The actions taken by a generic worker are shown in Figure 2.2. The initia step is
to withdraw a tuple describing the subtask to be performed; the logical name “ subtask”
is used as a distinguishing label to identify tuples containing subtask arguments. The
worker computes the results, which are subsequently output to TS with the identifying
label “result”. Also, any new subtask tuplesthat this subtask generatesareplaced into TS
(thiswould actually be donein the procedure calc, but is shown outside the procedure for
clarity). If the computation portion of any worker in the program generates new subtask
tuples, then we say that the solution uses a dynamic bag-of-tasks structure. If no new
subtask tuples are generated, then we call the solution a static bag-of-tasks structure; in
this case, amaster process is assumed to subdivide the problem and seed the TS with all
appropriate subtask tuples.

Termination detection—ascertaining that all subtasks have been computed—can be

35

accomplished by any one of a number of techniques, including worker deadlock or by
keeping a count of the number of subtasks that have been computed. The actual way in
which the programisterminatedisirrelevant for our purposes, and so isignored hereafter.

The bag-of-tasks paradigm suffers from two problems when failures are considered.
Thefirst is again the lost tuple problem. Specifically, if the processor fails after a worker
has withdrawn the subtask tuple but before depositing the result tuple, that result will
never be computed. Thisis because, during this period, the only representation of that
tuple isin the (volatile) memory of the processor. When the processor fails, then, that
subtask tupleisirretrievably lost.

The second problem is a somewhat different problem, which we call the duplicate
tuple problem. This problem occurs if the processor fails after the worker has generated
some new subtasks but before it has deposited the result tuple. In this case, assuming the
lost tuple problem is solved, another worker will later process the subtask, generating the
same new subtasks that are already in TS. Such an occurrence can lead to the program
producing incorrect results—for example, the process that consumesthe result tuples may
expect a fixed number of result tuples—in addition to wasted computation. The cause of
the problemisagain lack of sufficient atomicity. What is needed in this case is some way
to deposit all the new subtask tuples and the result tuple into TS in one atomic step.

2.4 Implementing Stability and Atomicity

Given the problems identified above, the challenge is to develop reasonable approaches
to implementing stable TSs and atomic execution within Linda. For stable TSs, choices
range from using hardware devices that approximate the failure-free characteristics of
stable storage (e.g., disks) to replicating the values in the volatile memory of multiple
processors so that failure of (some number of) processors can be tolerated without losing
values. In situations where stable values must also be shared among multiple processors
asisthe case here, replication is amore appropriate choice.

To redize a replicated TS, we use the replicated state machine approach (SMA)
introduced in Chapter 1. In this technique, an application is implemented as a state
machine that maintains state variables, which encode the application’s state. These
variables are modified by commands that the state machine exports; a client of the state
machine sends it a request to execute a command. To provide resilience to failures, the
state machine is replicated on multiple independent processors, and an ordered atomic
multicast, also mentioned in Chapter 1, isused to deliver commandsto all replicasreliably
and in the same order.2 For commands that require a reply, one or more state machine
replicas will send a reply message to the client. If the commands are deterministic and
executed atomically with respect to concurrent access, then the state variables of each
replicawill remain consistent. The SMA isthe basisfor alarge number of fault-tolerant
distributed systems [BSS91, MPS93a, Pow91].

2This ordering can be relaxed in some cases; see [Sch90].

36

client; client, clienty,
W . W . W .
atomic atomic atomic
multicast multicast multicast
! y
L _ _
atomic atomic atomic
multicast multicast multicast
cmd 5 cmd 5 cmd 5
cmd ¢ cmd ¢ cmd ¢
v v v
SM, SM, SMy,

Figure 2.3: State Machine Approach

TheSMA isillustratedin Figure2.3. Herethe M clientsuse atomic multicast to submit
commands to the V replicas of the state machine. This ensures that the state machines
receive the same sequence of command messages, even in the presence of failures and
concurrency.

To use the SMA to provide tuple stability for Linda, then, each state machine replica
maintains an identical copy of TS. These copies, which we call tuple space replicas, will
be kept consistent with each other, because each replica receives the same sequence of
TS operations and processes them in the same, deterministic manner. Having multiple
identical copiesof TSthusallowsthefailure of some of these copiesto betolerated while
still preserving the TS abstraction at higher levels.

Given the use of replication to realize stable TSs, the next step isto consider schemes
for implementing atomic execution of multiple tuple operations that use this TS. Such
a scheme must guarantee, in effect, that either all or none of the TS operations are
executed at either al or none of the functioning processors hosting copies of the tuple
gpace. Additionally, other processes must not be allowed concurrent access to TS while
an update isin progress.

A number of schemes would satisfy these requirements. For example, techniques
based on the two-phase commit protocol for implementing general database transactions
could beused [Gra78, Lam81]. While sufficient, thesetechniquesare expensive, requiring
multiple rounds of message passing between the processors hosting replicas. At least part
of the reason for the heavyweight nature of the technique is that it supports atomic
execution of essentially arbitrary computations. While important in a database context,
such afacility is stronger than necessary in our situation where only simple sequences of

37

tuple operations require atomicity. Accordingly, a smpler scheme is desired even if it
provides aless genera solution.

We believe agood compromise isto exploit the characteristics of the replicated state
machine approach to implement atomicity. Recall that each command in this scheme is
executed atomically; that is, acommand isconsidered asingle unit that iseither applied as
awholeor not at al, isapplied at either al functioning processors or none (as guaranteed
by the atomic multicast), and is executed without interleaving by each replica. Given
this, asimple scheme for atomically executing multiple TS operationsisto treat the entire
sequenceas, in essence, asingle state machinecommand. The operationsare disseminated
together to all replicas in a single multicast message. This is then executed at each TS
replica by its TS manager, the process that operates on the TS replica, as dictated by the
seria order in which commands are processed by each TS manager. This technique has
thevirtueof being simpletoimplement and requiresfewer messages than the transactional
approach,® while still supporting the level of atomicity needed to realize fault tolerancein
many Linda applications.

This broad outline of an implementation strategy serves not only to describe aterna-
tives, but also to motivate the specific design of our extensions to Linda for achieving
fault tolerance. The extensions and implementation are perhaps more sophisticated than
implied by this discusson—for example, provisions for synchronization and a limited
form of more general atomic execution are also provided—yet the overall design philoso-
phy follows the two precepts inherent in the above discussion. First, the extensions must
provide enough functionality to allow convenient programming of fault-tolerant applica-
tionsin Linda. Second, the execution cost must be kept to a minimum. The trick has
been to balance the often conflicting demands of these two goals, while till providing
mechanisms that preserve the design philosophy and semantic integrity established by the
origina designers of Linda

25 Summary

This chapter describes Linda, a coordination language that offers both simplicity and
power. Its features are described, and problems with its semantics and with failures are
then discussed. Alternatives for providing fault-tolernace to Linda are outlined, and our
design based on the replicated state machine approach is described.

Linda s main abstraction istuple space, an associative, unordered bag of tuples. Linda
provides primitives to deposit tuples into tuple space as well as to withdraw and inspect
tuplesthat match a specified template. These primitivescan be used to allow the processes
in aparalel program to communicate and synchronize in a simple yet powerful manner.

3This comparison assumes that the transaction’sdata or logs are replicated. If not, then the transactional
approach may require fewer message (zero to FT-Linda's one). However, in this case the fault-tolerance
guarantees of the transaction will be far weaker than FT-Linda's, because the failure of a single device or
computer can halt the entire transactional system.

38

Linda' s semantics are lacking, however, even in the absence of failures. Its best effort
semantics means that the boolean primitives are not guaranteed to find a matching tuple
even though one exists. And Linda's asynchronous outs mean that tuples generated by a
single process may appear in tuple space in adifferent order than specified by the process.

Linda programsalso have problemsin the presence of failures. It lackstuple stability,
meaning that tuples are not guaranteed to survive a processor failure. Linda's single-op
atomicity is aso inadequate for handling failures. With many common Linda paradigms,
a tuple is withdrawn and represented only in the volatile memory of a process. If this
process fails, the tuple will beirretrievably lost.

Thereareanumber of waysinwhich stability and multi-op atomicity could be provided
to Linda. Stability could be provided by using a stable storage or by replicating the values
on multiple processors. For FT-Linda, we use the latter approach, the replicated state
machine approach. Multi-op atomicity could be provided by either adding transactions
to Linda or by allowing a (less general) sequence of TS operations to be executed by
replicated TS managers. We use the latter approach, which is aso the replicated state
machine approach.

CHAPTER 3
FT-LINDA

FT-Lindaisavariant of Linda designed to facilitate the construction of fault-tolerant
applications by including features for tuple stability, multi-op atomicity, and strong se-
mantics[BS91, BS94, SBT94]. The system model assumed by the language consists of a
collection of processors connected by a network with no physically shared memory. For
example, it could be adistributed system in which processors are connected by alocal-area
network, or a multicomputer such as a hypercube with a faster and more sophisticated
interconnect. FT-Linda could be implemented on a multiprocessor, but the single points
of failure that multiprocessors have would make it largely pointless.

Processors are assumed to suffer only fail-silent failures, in which execution halts
without undergoing any incorrect state transitions or generating spurious messages. The
FT-Linda runtime system, in turn, converts such failuresinto fail-stop failures [SS83] by
providing failurenotificationin theform of adistinguished failuretuplethat gets deposited
into TS. We a so assume that processors remain failed for the duration of the computation
and are not reintegrated back into the system;! extensionsto allow such reintegration are
considered in Section 5.8.1.

To support the main additions to the languages, FT-Linda has provisions for creating
processes and for allocating unique system-wide process identifiers. A processis created
using the create function, which takes as arguments the name of the function to be
started as a process, the host machine on which to start it, alogical process ID (LPID),
and initialization arguments. There must be a 1:1 correspondence between processes
and LPIDs at any given time, but different processes may assume the same LPID at
different times. A unique LPID istypically generated prior to invoking create by using
the new _Ipid routine. A process can determineits LPID using the routine my _{pid.

The remainder of this chapter is organized as follows. Firgt, it discusses FT-Linda's
provisionsfor stable tuple spaces and atomic execution of multipletuple space operations.
It then gives the semantics of FT-Linda's tuple space are then given. Finally, it describes
possible extensionsto FT-Linda.

3.1 Stable Tuple Spaces

To address the problem of data stability, FT-Linda includes the ability to define a stable
tuple space. However, not wanting to mandate that every application use such a TS

! Notethat the computation that was running on the failed processor can—and often will—berecovered
using another physical processor.

39

40

given its inherent implementation overhead, this abstraction is included as part of more
encompassing provisions. Specifically, FT-Linda allows the programmer to create and
use an arbitrary number of TSs with varying attributes. The programmer specifies these
attributes when creating the TSs, and a TS handle is returned to facilitate access to that
TS. ThisTS handleis afirst-class object that is subsequently passed as the first argument
to other TS primitivessuch asin and out, placed into tuples, etc.

FT-Linda currently supports two attributes for tuple spaces: resilience and scope.’
The resilience attribute, either stable or volatile, specifies the behavior of the TS in the
presence of failures. In particular, tuplesin a stable TS will survive processor failures,
while those in a volatile TS have no such guarantee. The number of processor failures
that can be tolerated by a stable TS without loss or corruption of tuples depends on the
number of copies maintained by the implementation, a parameter specified at system
configuration time. Given N such copies, tupleswill survive given no morethan vV — 1
failures, assuming no network partitions.®

The scope attribute, either shared or private, indicates which processes may access a
given TS. A shared TS can be used by any process; such a TS is analogous to the single
TSincurrentversonsof Linda. A private TS, on the other hand, may be used only by the
singlelogical processwhose LPID is specified asan argument in the TS creation primitive
(described below). Asaready noted, a process can only haveasingle LPID at atime, and
only one process in the system at atime can have agiven LPID.

Allowing access to private TSs based on the notion of alogical process allows the
work of a process that has failed to be taken over by another newly-created process. To
do this, the failure is first detected by waiting for the failure tuple associated with the
processor on which it was executing. At this point, anew processis created with the same
LPID. Once thisis done, the new process can use any of the private TSs that were being
used by the failed process, assuming, of course, that they were also declared to be stable.
Such a scenario is demonstrated in Section 4.1.2.

A single stable shared TS s created when the program is started, and can be accessed
using the handle T'Smain. Other tuple spaces are created using the FT-Linda primitive
ts_create. Thisfunctiontakestheresilience and scope attributes asarguments, and returns
aTS handle, A third argument, the LPID of the logical process that can accessthe TS, is
required in the case of private TSs. To destroy a TS, the primitive ts_destroy is called
with the appropriate handle as argument. Subsequent attempts to use the handle result in
an exceptional condition.

As noted in Chapter 2, stability is implemented by replicating tuples on multiple
machines. Asaresult, aTS created with the stable attribute, whether shared or private, is
also called areplicated tuple space. Conversely, a TS created with attributes volatile and
privateis called alocal tuple space, because its tuples are only stored on the processor on
which the TS was created, or it is called a scratch tuple space, because it is often used to

2Other possible attributes are discussed in Section 3.5.1
3Section 5.8.3 discusses handling network partitions.

41

hold intermediate results that will either be discarded or merged with a shared TS using
primitives described bel ow.

Different types of TSs have different uses. For example, a stable and private TS can
be used by a process such as a server that must have some of its state survive failure so
that it can be reincarnated. Replication is necessary for thistype of TS, even though it is
not shared, because it must be stable. An example of thisuseisgivenin Section4.1.2. A
scratch TS, on the other hand, need not be replicated and thus can have very fast access
times. Additionally such a TS can be used in conjunction with the provisions for atomic
execution of TS operations introduced shortly to provide duplicate atomicity.

3.2 Featuresfor Atomic Execution

Two features are provided in FT-Linda to support atomic execution: atomic guarded
statements and atomic tuple transfer primitives. Atomic guarded statements are used
to execute sequences of TS operations atomically, potentially after blocking; the atomic
tupletransfer primitivesmove and copy alow collections of tuplesto be moved or copied
between tuple spaces atomically. Each is addressed in turn below.

3.2.1 Atomic Guarded Statement

An atomic guarded statement (AGS) provides all-or-nothing execution of multiple tuple
operations despite failures or concurrent access to TS by other processes.

Simple Case

The smplest case of the AGS is

(guard = body)

where the angle brackets are used to denote atomic execution. The guard can be any
of in, inp, rd, rdp, or true, while the body is a series of in, rd, out, move and copy
operations, or a null body denoted by skip. The process executing an AGS is blocked
until the guard either succeeds or fails, as defined below. If it succeeds, the body isthen
executed in such away that the guard and body are an atomic unit; if it fails, the body is
not executed. In either case, execution continues with the next statement after the AGS.
Informally, a guard succeeds if either a matching tuple is found or the value trueis
returned. The specifics are as follows. A true guard succeeds immediately. A guard of
in or rd succeeds once there is a matching tuple in the named TS, which may happen
immediately, at some timein the future, or never. A guard of inp or rdp succeedsif there
isamatching tuplein TS when execution of the AGS begins. Conversely, aguard failsif
theguardisaninp or rdp and thereisno matching tuplein TS when the AGS is executed.
A boolean operation used as a guard may be preceded by not, which inverts the success

42

| Lindaop | FT-Linda equivalent |
out(...) (true=out(...))
other_op(...) | (other_op(...) = SKip)

Table 3.1: Linda Ops and their FT-Linda Equivalents

semantics for the guard in the expected way. Note that in this case, execution of an AGS
may have an effect even though the guard fails and the body is not executed; for example,
if the failing guard is“not inp(...)"”, amatching tuple still gets withdrawn from TS and
any formalsassigned their corresponding values. However, the body will not be executed
because the guard failed.

An atomic guarded statement with boolean guards can also be used within an expres-
sion. The value of the statement in this case istaken to be trueif the guard succeeds and
false otherwise. This facility can be used, for example, within the boolean of aloop or
conditional statement to control execution flow.

Only one operation—the guard—is allowed to block in an AGS. Thus, if anin or rd
in the body does not find a matching tuplein TS, an exceptional conditionis declared and
the program is aborted. The implementation strategy also leads to afew other restrictions
on what can be done in the body, most of which involve data flow between local and
replicated TSs. These restrictions are explained further in Section 5.5.1.

Finally, our implementation strategy dictatesthat Linda TS operations not appear out-
side of an AGS. Table 3.1 givesthe FT-Linda equivalent of standard Linda TS operations;
init, other_op may bein, inp, rd, or rdp. It would be easy to implement a preprocessor to
trandate the standard Linda operationsinto these equivalentsif desired. For convenience,
we use the standard Linda notation for single TS operations below.

Using Atomic Guarded Statements

The AGS can be used to solve atomicity problems of the sort demonstrated earlier in
Chapter 2. For example, consider the lost tuple problem that occurs in the bag-of-tasks
paradigm when a failure interrupts execution after a subtask tuple has been withdrawn
but before the result tuple is deposited. Recall that the essence of the problem was that
there was a window of vulnerability where the subtask was not represented in some form
in TS. Specifically, it was not in TS in some form after the worker withdrew the subtask
tuple and before it deposited the corresponding result tuple. We remove this window of
vulnerability by maintaining aversion of the subtask tuplein TS while the subtask isbeing
solved. Thiswill ensure that the subtask is represented in TS in some form at all times,
and thusit can be recovered if the worker processfails.

To implement this solution in FT-Linda, then, an in_progress tuple is deposited into
TS atomically when the subtask tuple is withdrawn, and then removed atomically when
the result tuple is deposited. This in_progress tuple completely describes the subtask
tuple. It alsoindicates the host on which the worker is executing, so if that host failsit can

43

TSmain is {stable, shared}
process worker ()
while true do

(in (TSmain, “subtask”, 7subtask_args) =
out (7T'Smain, “in_progress”, my_hostid, subtask_args))

cal ¢ (subtask_args, var result_args)
(in(TSmain, “in_progress”, my_hostid, subtask_args) =
out (7' Smain, “result”, result_args))
end while
end wor ker

Figure3.1: Lost Tuple Solution for (Static) Bag-of-Tasks Worker

be ascertained which subtasks need to be recovered from their in_progress counterparts.

The codefor the static version of the bag-of-task worker demonstrating this technique
isshown in Figure 3.1. Here, the worker deposits the in_progress tuple atomicaly with
withdrawing the subtask tuple. It later withdrawsthis:n_progress tuple atomically with
depositing theresult tuple. This scheme ensuresthat the subtask is represented in exactly
one formin T'Smain at al times, either as a subtask tuple, an in_progress tuple, or a
result tuple.

To complete this example, we also now consider the problem of regenerating the lost
subtask tuplefromthein_progress tuple. Thisjobis performed by a monitor process. In
general, applications need a set of monitor processes for each window of vulnerability, a
region of code where a failure would require some recovery, e.g., the regeneration of the
subtask tuplesfrom in_progress ones. One monitor process is created on each machine
hosting a TS replica. This ensures that the failure guarantees for monitor processes are
exactly as strong as those for stable TSs. there is at least one monitor process from a
given set that has not failed if and only if thereis at least one TS replica that has not
failed. Having some TS replica hosts without a monitor process is possible but provides
weaker failure guarantees. In particular, a stable TS might still be available in this case
yet essentially inaccessible because all monitor processes had failed.

The monitor process for bag-of-tasksworker isgivenin Figure 3.2. The monitor waits
for a failure tuple indicating the failure of a host and then attempts to recover subtask
tuplesfor all in_progress tuplesassociated with the failed host. Notethat, even though all
monitor processes execute this code, each subtask tuple will be recovered only once due
to the atomic semantics of the AGS. The failure identifier passed to the monitor process
upon initialization is used to match particular failure tuples with monitor processes. This
identifier is generated by a call to an FT-Linda routine, which also registers it with the

process nonitor (failure_id)
while true do
i n(T'Smain, “ failure”, failure_id, Thost)
recover subtask tuples fromthe failed host

whil e { inp(TSmain, “in_progress”, host, 7Tsubtask_args) =
out (7Smain, “subtask”, subtask_args)) do
noop

end while
end while
end nonitor

Figure 3.2: Bag-of-Tasks Monitor Process

language runtime system. When a host failure occurs, one failure tuple is deposited into
T Smain for each registered failure identifier.

Note that to guarantee recovery from worker failures, the failure IDs of monitor
processes must be registered before any workers are created. Otherwise, a window of
vulnerability would exist between the creation of theworker and registration of thefailure
ID. Should the worker fail, in this case no monitor process would receive notification of
this failure, and any subtask the worker was executing while it failed would thus not be
recovered.

Note also that each monitor process is guaranteed to get exactly one failure tuple
for each failure. This property is guaranteed by Consul’s membership service, which
generates one failure notification per failure event. This allows the monitor processes to
keep consistent information about failures, e.g. the crash counts for each host.

Further ways in which the atomic guarded statement can be used are demonstrated in
Chapter 4.

Digunctive Case

The AGS has a digunctive case that allows more than one guard/body pair, as shown in
Figure 3.3. A process executing this statement blocks until at |east one guard succeeds, or
all guards fail. To simplify the semantics, and to fit into a programming language's type
system, the guards in a given statement must al be the same type of operation, i.e, all
true, all blocking operations(in or rd), or all boolean operations (inp or rdp). Inaddition,
if the guards are boolean, either all or none of the guards may be negated. If the guards
aredl true, then all guards succeed immediately; in this case, thefirst is chosen and the
corresponding body executed. If the guards are al blocking, then the set of guards that
would succeed if executed immediately—that is, those for which thereisamatching tuple

45

(

or

guard; = body,

guards = bodys
or

or

guard, = body,

)

Figure 3.3: AGS Digunction

inthe named TS when the statement starts—is determined. If the size of that set isat least
one, then one is selected deterministically by the implementation, and the corresponding
guard and body executed. Otherwise, the process executing the AGS blocks until aguard
succeeds. If the guards are all boolean, then the set of guards that would succeed at the
time execution is commenced is again determined. If the size of the set is at least one,
then the selection and execution is done as before. If, however, the set isempty, the AGS
will immediately return false and no body will be executed.

An example using digunction isgiven in Section 4.1.1.

3.2.2 Atomic Tuple Transfer

FT-Linda provides primitivesthat allow tuplesto be moved or copied atomically between
TSs. The two primitivesare of the form

transfer_op(TS from, TSto [, template])

Here, transfer_op is either move or copy, 7S from is the source TS, and 7T'Sto is
the destination TS. The template is optional and consists of alogical name and zero or
more arguments, i.e., exactly what would follow the TS handle in aregular FT-Linda TS
operation. If thetemplateispresent, only matching tuples are moved or copied; otherwise,
the operation is applied to all the tuplesin the source TS. Also, because the templatein a
transfer command may match more than one tuple, any formal variablesin template are
used only for thelir type, i.e., they are not assigned a new value by the operation.

Although similar to a series of in (or rd) and out operations, these two primitives
provide useful functionality, even independent of their atomic aspect. To see this, note
that a

46

move(7S from, TSto)

would move the same tuples as executing

in(7TS from, 7t)
out (7'Sto, t)

for each tuple ¢ in 7S from, assuming no other processes accesses 1'S from while these
in-out pairs are in progress.* Moreover, even if the tuplesin 7'S from are al of the
same tuple signature, an ordered list of types, the above move islikely to be much more
efficient than its Linda equivalent:

while inp(75Sfrom,?t) do
out (1T'Sto, 1)

as we shall see in Chapter 5, Of course, move and copy are aso atomic with respect to
both failures and concurrency, while the equivalent sequence of inps and outs would not
be, even if combined in a series of AGSs:

while ((inp(TSfrom,?t) = out(TSte, t))) do
noop

Inthis case, other processes could observethe intermediate stepshere. That is, they could
have accessto T'Sto when the move operation being simulated was only partially finished,
i.e. when some but not all of the tuples had been moved.

As an example of how a move primitive might be used in practice, consider the
dynamic bag-of-tasks application from Chapter 2. Recall that this particular paradigm
suffered from both the lost tuple and the duplicate tuple problems. A way to solve these
problemsis shown in Figure 3.4. Thisis smilar to the static case shown in Figure 3.1
except that here, T'Sscratch is a scratch TS that the worker uses to prevent duplicate
tuples. To do this, all new subtask tuplesaswell asthe result tuple are first deposited into
this TS . Then, the in_progress tuple is removed atomically with the moving of all the
tuples from T'Sscratch to T'Smain. 1f the worker fails before executing the final AGS
that performs this task, the subtask will be recovered as before, and another worker will
compute the same result and generate the same new subtasks. In this case, any result and
subtask tuplesin 7'Sscratch will be lost, of course, which is desirable. However, if the
worker fails after the fina AGS, then the new subtask tuples are already in astable TS.

Finally, note that a monitor process similar to that for the static worker case, givenin
Figure 3.2, would be needed here as well. The complete source code for this exampleis
in Appendix E.

4This example is not legal Linda because it treats tuples as first-class objects. However, it serves to
make the point.

a7

process worker()
TSscratch : = ts_create(vol atile, private, mylpid())
whil e true do

(in (TSmain, “subtask”, 7subtask_args) =
out (7T'Smain, “in_progress”, my_hostid, subtask_args))

cal ¢ (subtask_args, var res_args)

for (all new subtasks created by this subtask)
out (T'Sseratch, “subtask”, new_subtask_args)

out (T'Sseratch, “result”, res_args)

(in(TSmain, “in_progress”, my_hostid, subtask_args) =
nmove (7Sscratch, TSmain))

end while
end wor ker

Figure 3.4: Fault-Tolerant (Dynamic) Bag-of-Tasks Worker

3.3 Tuple Space Semantics

FT-Linda offers semantics that rectify the shortcomings discussed in Section 2.2. These
semantics are smple to provide, given that the SMA guarantees that each TS replica
receives the same sequence of TS operations, and by the way each replica processes these
operations.

First, inp and rdp in our scheme provide absolute guarantees as to whether thereisa
matching tuplein TS, a property that we call strong inp/rdp semantics. That is, if inp or
rdp returnsfalse, FT-Linda guarantees that there is no matching tuplein TS. Of all other
distributed Linda implementations of which we are aware, only PLinda [AS91, JS94]
and MOM [CD94] offer smilar semantics. Strong inp/rdp semantics can be very useful
because they make a strong statement about the global state of the TS and hence of the
parallel application or system built using FT-Linda

FT-Linda also provides oldest matching semantics, meaning that in, inp, rd, and rdp
always return the oldest matching tuple if one exists. These semantics are exploited in
the digunctive version of an AGS as well to select the guard and body to be executed if
more than one guard succeeds. Oldest matching semantics can be very useful for some
applications, as shown in Section 4.1.2.

Finally, unlike standard versions of Linda, out operationsin FT-Linda are not com-
pletely asynchronous. In particular, the order in which out operations in a process are
applied intheir respective TSsis guaranteed to be identical to the order in which they are
initiated, which is not the case when out operations are asynchronous. This sequential
ordering property reduces the number of possible outcomesthat can result from executing

48

acollection of out operations, thereby ssimplifying the programming process.
As an example of the differences in TS semantics between Linda and FT-Linda,
consider the Linda fragment from Section 2.2:

process P1 process P2
out (“A”) in(“B")
out (“B”) if (inp(“A”)) then

print (‘‘Mist succeed!’’)

Recall that the problem hereis that a programmer may assume that the inp must always
succeed, which is not true without both the strong inp/rdp semantics and the sequential
ordering properties. To implement the above code fragment in FT-Linda, we could group
each process's operations in a single AGS or implement each op as its own AGS. For
example, the following implements the semantics likely intended by the programmer:

process P1 process P2
(true = (in(“B") = skip)
out (“A") if ((inp(“A") = skip)) then
out (“B”) print (‘‘Mist succeed!’")

)

The other grouping alternatives work in the same way; in all cases the inp will succeed.

3.4 Reated Work

A number of other efforts have addressed the problem of providing support for fault-
tolerance in Linda. These include enhanced runtime systems, resilient processes and
data, and transactions. We discuss each in turn, as well as other research projects with
(non-fault-tolerant) features related to FT-Linda's. We then conclude this section by
summarizing the unique language features of our extensions.

Enhanced Linda Runtime Systems

One class of fault-tolerant versions of Linda does not extend Linda per se, but rather
focuses on adding functionality to the implementation. [XL89, Xu88] give a design for
making the standard Linda TS stable. The design isbased on replicating tuples on a subset
of the nodes, and then using locks and ageneral commit protocol to perform updates. This
replication technique takes advantage of Linda's semantics so workers suffer little delay
when performing TS operations. Specifically, out and rd are unaffected by these locks; a
worker performing an out need not wait until the tuple is deposited into TS, and aworker
performing ard need only wait until one of the replicas has responded with a matching
tuple.

49

This technique works as follows. An out stores atuple at all TS replicas, and an in
removes one from all replicas; ard can read from any replica. The out is performed in
the background, so the worker is not delayed. A rd broadcasts arequest to al replicas;
the worker can proceed when the first reply, which contains all matches for the template
at that replica, arrives (assuming there are any matches). An in must acquire locks for
the signature it wishes to match from all replicas. It broadcasts its request to all replicas.
The replicas each send a reply message, indicating whether the lock was granted and, if
S0, including a copy of all matching tuples. If the worker receiveslocksfrom all replicas,
it ascertains if there is a matching tuple in al the matching sets it received. If so, the
worker’s node chooses one and | ets the worker proceed, while in the background it sends
amessage to the other replicas informing them of the tuple selected. However, if not all
locks were acquired, or there was no matching tuple in the intersection of the tuples sent
by the replicas, the worker sends messages to all replicas releasing the locks, and then
starts over.

Processor failures and recoveries and network partitions are handled in [XL89, Xu88]
using aview change agorithm based on the virtual partitions protocol in [ASC85]. This
alows all workersthat are in a mgority partition to continue to use TS despite network
partitions.

[PTHRO3] aso implementsastable TS by replication, but uses centralized algorithms
to serialize tuple operations and achieve replica consistency for single TS operations. In
this scheme, processes attach themselves to the particular subspaces (portions of TS) to
whichthey reference. The degree of replicationisdictated by the number of nodes sharing
a subspace; all nodes using a particular subspace have aloca copy of it. The node with
the lowest node I D from among these TS replicasfor agiven subspace isthe control node.
Requests to delete atuple (i.e, in the implementation of in) are sent to this control node.
The other replicas are then each sent amessage indicating which tupleto delete fromtheir
copy of the subspace.

MTS [CKM92] addresses the issue of relaxing the consistency of the TS replicas
to improve performance. With MTS, there is a replica of TS on each node and three
different consistencies from which the programmer can choose, depending in the pattern
of usage for a given tuple’'s signature. Weak consistency can be used if there are neither
simultaneous ins nor rds on that signature. To implement this, the in routine selects
the tuple it deletes, then sends an erase message to the other replicas instructing them
which tuple to delete from TS. Non-exclusive consistency can be used in the absence of
simultaneous ins on that signature. The node performing the in selects the tuple to be
deleted, sends a delete message to all other replicas to tell them which tuple to delete,
and then waits for repliesfrom al the replicas. Finally, strict consistency may be used in
any situation. It uses a two-phase commit protocol similar to that described above from
[XL89, Xu88].

While all these schemes are undoubtedly useful, we note again that adding only this
type of functionality without extending the language has been shown to be inadequate for
realizing common fault-tolerance paradigms [Seg93]. Also, unlike our approach, most

50

scenarios in the above schemes require multiple messages to update the TS replicas.

Resilient Processes and Data

Whilethe above schemes provided resilient data, another project [Kam90] aimsto achieve
fault-toleranceby also providing resilient processes. 1t accomplishesthisby checkpointing
TSand process states and writing logs of TS operations. Processes unilaterally checkpoint
their state to a stable storage as well as the message logs recording what TS operations
they have performed. If a process fails, this message log is replayed to reconstruct the
process state.

Whilethe scheme iscurrently only adesign that was never implemented, it appearsto
have a significant message overhead. It also mandatesthat all processes beresilient. This
overhead is not necessary in many cases, such as the bag-of-tasks paradigm, as shown
in Chapter 3. In this paradigm, a given worker process does not have to be resilient, so
long as any subtask afailed worker was executing is recovered and executed by another
worker. Also, this scheme has no provisions for atomic execution of TS operations. The
user can construct them (e.g., with a tuple functioning as a binary semaphore), but this
seems less attractive than an explicitly atomic construct.

Transactionsand Linda

Two projectshave added transactionsto Linda. PLindaallowsthe programmer to combine
Lindatuple space operationsin atransaction, and providesfor resilient processesthat are
automatically restarted after failure [AS91, JS94]. The programmer can choose one of
two modes to ensure the resilience of TS. In the first mode, al updates a transaction
makes are logged to disk before the transaction iscommitted. Inthe second, theentire TS
is periodically checkpointed to disk; the system ensures there are no active transactions
during this checkpointing. PLinda handles failed or dow processors, processes, and
networks. This design is sufficient for fault tolerance—indeed, it is more general than
what FT-Linda provides.

PLinda hasitslimitations, however. 1ts TS and checkpoints and are not replicated, so
if thedisk suffersaloss of data failure (such asahead crash), the program will fail. Also,
if the host the disk is attached to fails, then the program cannot progress until that host
recovers. Further, as discussed above, many applications do not need the overhead of a
resilient process. (This overhead seems to be much less than that in [Kam90, Kam91],
however, in part because PLinda provides a mechanism for a process to log its private
state.)

MOM provides a kind of lightweight transaction [CD94]. It extends in to return a
tuple identifier and out to include the identifier of its parent tuple (e.g., the subtask it was
generated by). It then providesadone(:d_{ist) primitivethat commitsall in operationsin
1d_list and all out operations whose parents are in id_l:st plus al 1/0O performed by the
process during the transaction. MOM provides mechanisms to allow the user to construct

51

alimited form of resilient processes. Finally, it also provides oldest-matching semantics.

However, MOM aso has limitations, partly due to its intended origina domain of
long-running, fault-tolerant space systems. One limitation is that its primitives are only
designed to support the bag-of-tasks paradigm. Also, it assumes the user can associate
a timeout with a subtask tuple, so if the in operation does not find a match within this
time the transaction will automatically be aborted. Further, MOM also does not replicate
its checkpoint information, so it suffers from the same single point of failurethat PLinda
does.

Other FeaturesRelated to FT-Linda

Other features similar to those provided in FT-Linda have also been proposed at various
times. [Gel89] briefly introduces composed statements, which provide a form of dis-
junction and conjunction. [Bjo92] includes an optimization that collapses in-out pairs
on the same tuple pattern; it requires restrictions similar to FT-Linda's opcodes. [Lei89]
discusses the idea of multiple tuple spaces, and some of the properties that might be
supported in such a scheme. Support for digunction has also been discussed in [Gel85,
Lei89] and in the context of the Linda Program Builder [AG91a, AG91b]. The latter
offers the abstraction of digunction by mapping it onto ordinary Linda operations and
hiding the details from the user. None of these efforts consider fault-tolerance.

Summary

FT-Linda has many novel features that distinguish it from other efforts to provide fault-
tolerance to Linda. It isunique in that it is the only design that uses the state machine
approach to implement this fault tolerance. It is aso the only Linda variant to provide
multi-op atomicity that is not transaction-based. Its provisions to allow the creation of
multiple TSs of different kinds are unique, as areitstupletransfer primitives. FT-Lindais
theonly Lindaversion we are aware of to support digunction, and its collection of strong
semantic featuresis unique.

3.5 Possble Extensonsto FT-Linda

A number of features are attractive candidates for addition to FT-Linda: additional at-
tributes for tuple spaces, nested AGSs, AGS branch notification, tuple space clocks, tuple
gpace partitions, guard flags, and allowing TS creation and destruction primitivesin the
AGS.

3.5.1 Additional Tuple Space Attributes

Two additional attributesfor tuple spaces might also be considered. Thefirstisencryption.
With this scheme, attribute values can be unencrypted or encrypted. The latter would
imply that all datain the TS are encrypted, while with the former they would not be. This

52

attribute would, of course, be specified when the TS is created. The encrypting of actuals
will take place in apart of the FT-Lindaruntime system that isin the user process address
space, for security reasons, and the encryption key will be stored there. Thisway, the key
never leaves the user’s address space.

Sincetuplematching isbased only on equality testing, not on other relational operators
(e.g., greater than) or ranges, Linda implementations typically implement matching by
doing a byte by byte comparison of the actual in the template and the corresponding value
in the tuple. As aresult, this scheme will still work on encrypted tuple spaces, provided
that the actuals in both the out that generates tuple and in (or other operator) that triesto
match it are encrypted with the same key. Thus, the TS managers would not need to be
changed to implement this encryption of data.

Note that this encryption scheme can be used in conjunction with a private TS to
ensure that only one process can actually access the data. If thisis not done, any process
could withdraw tuples from the encrypted TS. Also, it could possibly learn something
useful from the number and kind of tuples in that TS. Of course, the removal of those
tuples could also be harmful in and of itself.

A second possible attribute is to indicate write permissions. A read-write TS may
be modified at any time, exactly as TSs currently are in FT-Linda. However, read-only
TSs may not be written after they have been initialized. In such a scheme, the tuple
space would be seeded by its creator, which would then call an FT-Linda primitive to
announce that the tuple space’sinitialization is complete. After thispoint, the TS may not
be modified, i.e., it may not be operated on by out, in, inp, move, or as a destination for
copy. Since the TS will no longer change, it could be replicated on each computer and
perhapsin each address space. Such atuple space could be used to disseminate efficiently
global data that does not change yet may be accessed often, e.g. the two matrices to be
multiplied together.

352 Nested AGS

The multiple branches of a digunctive AGS are the only form of conditional execution
within an AGS. However, the only form of conditional execution this digunction allows
isto choose which branch is to be executed. Once thisdecision is made, every operation
in the body will be executed. An extension to FT-Linda that would alow another form
of conditional execution — within the body — is to alow nested AGSs. One possible
syntax is.

(guard, =

(guardy = bodyy)

)

Of course, body, could, in turn, have one of its elements be another AGS, and so forth.

53

Recall that to implement the AGS efficiently, we mandate that no TS operation in the
body may block. Thus, to alow nested AGSs, in and rd would not be allowed to block
in the guards of an AGS that isnot at the outer level, because those guards are part of the
body of an enclosing AGS. Thus, in practice their boolean counterparts would most likely
be used.

3.5.3 Notification of AGS Branch Execution

Onedifficulty in using the digunctional form of the AGSisthat often the code following a
digunctive AGS will need to know which branch was executed. This takes extra coding,
e.g., either by adding an extraformal variable somewhere in each branch, or by an extra
out in each branch to deposit a distinguished tuple into a scratch TS. The FT-Linda
implementation could directly indicate which branch was executed in a number of ways,
for example, with aper-processvariablesmilar toUnix’ser r no variableor withalibrary
routine that returnsthis information.

3.54 Tuple Space Clocks

Another possible extension would be to provide common global time [Lam78]. This has
been suggested in a Linda context in the tuple space clock suggested in [Lei89]. Here,
the author notes the usefulness of such a clock that preserves potential causality for a
distributed program, then states

Theinteresting question iswhether thereisa semanticsfor weak clockswhich
allows them to be useful in writing parallel programs, but still admits of an
efficient implementation.

Such a clock would be trivial to provide in FT-Linda. Recall that each replicated TS
manager recelvesthe same sequence of AGSs contai ning the same sequence of operations.
A running count of this sequence of operations can thus serve as a clock. The value of
the clock could be placed in a distinguished tuple (that must not be withdrawn) or made
available in some other fashion to the FT-Linda program.

This clock would preserve potential causality, assuming that processes communicate
only through TS. For example, suppose process A reads value time 4 and then deposits a
tupleinto TS. If process B withdrawsthat tuple and thenreadstimeg, time 4, must beless
than tzmepg. Conversely, if we know process ' dealt with event C' at timec, process D
dealt with event D at timep, and timec > timep, then event C' could not have affected
event D.

3.5.5 Tuple Space Partitions

There isone set of replicated TS managersin the current FT-Linda implementation (to be
described in Chapter 5) that implements all replicated TSs. However, in generd, there
could be many different unrelated application programs using replicated TSs. It would

54

thus be desirable to allow unrelated applications to have different sets of replicated TS
managers, each managing itsown set of TSs. This could significantly reduce the workload
for each of the replicated TS managers.

To accomplishthis, areplicated TSwould be created in the context of agiven partition;
a partition could be well-known, dynamically alocated by the runtime system, or both.
Each partition would then be managed by a different set of replicated TS managers. An
AGS could only contain TSs from one partition, because to allow more would require
coordination between different sets of TS managers. Finaly, T'Smain would be created
in its own partition.

3.5.6 Guard Expressions

An AGS'sguardsarein effect akind of scheduling expression that dictates which branch
will be chosen and when that branch will be executed. This expression can currently be
empty (true) or aLinda TS operation (in, inp, rd, or rdp). This can be extended further
to allow a boolean expression to also influence the selection of a guard. Such a boolean
expression would be called aguard expression. Example guards might appear asfollows:

e cxpryandin(...) =
o crpro =

e cxprgandinp(...) =

A guard whose guard expression is false would not be eligible for executionin TS; i.e., if
the guard has a TS operation, the TS manager would not even search for amatching tuple
for it.

This guard expression would make FT-Linda's guards more similar to constructs in
other concurrent languages. The notion of a guarded communication statement was
introduced in [Dij79]; its guard contained both an optional expression and an optional
communication statement. The guarded expression has since been used in various forms
in paralel programming languages such as CSP [Hoa78], Ada[DoD83], SR[A093], and
Orca[Ba90].

Recall that inadigunctive AGS, to smplify the semanticsand tofitinto aprogramming
language’ stype system, al guards must be the same: either al absent (true), blocking (in
or rd), or boolean (inp or rdp). This same restriction would hold. for example, because
the three guards are blocking, absent, and boolean, respectively, they could not be used in
the same AGS. No other restrictionswould be required to add guard flags to the language;
the guard flag smply narrowsthe list of eligible guards before the AGS request is sent to
the TS managers.

357 TSCreationinan AGS

In some cases, it is desirable to move tuples to another TS to operate on them, and then
either return the tuples or a synthesized result in their place. With this technique, the

55

TS handle must be left as a placeholder to allow the recovery of those tuplesin case the
process operating on them fails. For example, a process may use the following:

safets:=ts_create(stabl e, shared)

(true =
out (7' Smain, “safets”, my_host, safets)
nmove(7' Smain, safets)
copy(safets, TSscratch)

)

Operate sonehow on tuples in TSseratch
to produce result tuple

(true =
i n(TSmain, “safets”,my_host,safets)
out (7' Smain, “result”,result)

)

ts_destroy(safe_ts)

The problem with this scenario isthat of the host fails either right before the first AGS or
right after the last AGS, then ¢s_sa fe will never be destroyed. The accumulation of such
orphaned TSs could be a serious problem in along-running application.

This can be avoided by allowing a TS to be created and destroyed inside an AGS. In
the above scenario, the creation and the destruction of ¢s_sa fe would be inside the first
andlast AGS, respectively. Additionally, because variableassignment isnot allowedin an
AGS, the TS creation primitivewould take the TS handle as an additional argument. With
thisextension, ¢s_sa f e could not be orphaned, because its creation and destruction would
be atomic with the depositing and withdrawing of the placeholder TS handle, respectively.

Thisaddition would be very simpletoimplement. Indeed, thecommandsto create and
destroy areplicated TS are aready broadcast to the replicated TS managers in messages
generated by t s_creat e() andt s_destroy(), respectively. It would thusbe trivid
to allow these operations to also be combined in an AGS with other TS operations.

3.6 Summary

Thischapter describes FT-Linda, aversion of Lindathat allows Linda programsto tolerate
the crash failures of some of the computersinvolved with the computation. FT-Linda sup-
ports the creation of multiple tuple spaces with different attributes. It also has provisions
for atomic execution, and it a so features strong semantics. Thischapter also surveysother
versions of Linda designed to provide support for fault-tolerance. Finally, this chapter
surveys possible extensions to FT-Linda

56

FT-Lindasupportstwo attributesfor tuple spaces: resilience and scope. Theresilience
specifies the behavior of the tuple space in the presence of failures; it can be either stable
or volatile. The scope attribute — shared or private — indicates which processes may
access the tuple space. Both attributes must be specified when the tuple space is created.

FT-Linda has two provisions for atomic execution, the atomic guarded statement and
tuple transfer primitives. The atomic guarded statement allows a sequence of tuple space
operationsto be performedin an all-or-nothing fashion despite concurrency and failures. It
can be used to construct a static bag-of -tasksworker, the failure of which can be recovered
from by a monitor process. The atomic guarded statement also has a digunctive form
that specifies multiple sequences of tuple space operations, zero or one of which will be
executed atomically. FT-Linda stuple transfer primitivesthat allow tuplesto be moved or
copied atomically between tuple spaces. This can be used, in conjunction with the atomic
guarded statement and monitor processes, to create a fault-tolerant dynamic bag-of-tasks
worker.

FT-Linda offers strong semantics that are useful for fault-tolerant parallel program-
ming. Its Strong inp/rdp semantics provide absolute guarantees that the boolean primi-
tiveswill find amatching tupleif one exists. FT-Linda's oldest matching semantics mean
that the oldest tuple that matches the given template will be selected by that operation.
Finally, its sequential ordering property ensures that tuple space operations from a given
process will be applied in their respective tuple spaces in the order prescribed in that
process's code.

Other projects have provided fault-tolerant support for Linda. One class provides
resilient tuple spaces but does not extend Linda any; thisis not sufficient to solve the dis-
tributed consensus problem. Another design provides both resilient processand resilience
tuple spaces. Two projects — PLinda and MOM — have added transactional support to
Linda.

FT-Linda could be extended in a number of directions. These include additional
tuple space attributes, nested atomic guarded statements, tuple space clocks, tuple space
partitions, and guard expressions.

CHAPTER 4
PROGRAMMING WITH FT-LINDA

This chapter illustrates FT-Linda's applicability to a wide range of problems. It
presentsfive examplesfrom FT-Linda stwo primary domains: highly dependable systems
and parallel programming, For simplicity, we only concern ourselves in these examples
with the failure of worker or server processes; the final section in this chapter discusses
handling the failure of the main/master process.

4.1 Highly Dependable Systems

This section gives FT-Linda implementations of three system-level applications. First, it
gives a replicated server example. This is an example of programming replicated state
machines in FT-Linda. Next, it presents an FT-Linda recoverable server — an example
of the primary/backup approach [AD76, BMST92]. Since the server is not replicated,
there are no redundant server computationsin the absence of failures. Finally, thissection
presents an FT-Linda implementation of a transaction facility. This demonstrates the
utility of FT-Linda stupletransfer primitives, and the ability of the language to implement
abstractions more powerful than the atomic guarded statement (AGS). Transactions are,
of course, an example of the object-action paradigm introduced in Section 1.3.1 [Gra86].

411 Replicated Server

In this example, a process implements a service that is invoked by client processes by
issuing requests for that service. To provide availability of the service when failures
occur, the server isreplicated on multiple machinesin a distributed system. To maintain
consi stency between servers, requests must be executed in the same order at every replica.

Thekey toimplementing thisapproach in FT-Lindaisorderingtherequestsin afailure-
resilient way. We accomplish this by using the Linda distributed variable paradigm in the
form of a sequence tuple for each service. The vaue of this tuple starts at zero and is
incremented each time a client makes arequest, meaning that thereis exactly one request
per sequence number for each service and that a sequence number uniquely identifies a
request. This strategy results in atotal ordering of requests that also preserves causality
between clients, assuming that clients communicate only using TS. This sequence number
isalso used to ensure that server replicas process each request exactly once.

An FT-Linda implementation of a generic replicated server follows. First, however,
for each server (not each server replica), the following is performed at initialization time
to create the sequence tuple:

57

58

(in (“sequence”, sid,7sequence) =
out (“sequence”, sid, PLUS(sequence, 1))
out (“request”, sid, sequence,service_name, service_id, args)

if (a reply is needed for service)
i n(“reply”, sid,sequence, Treply_args)

Figure 4.1: Replicated Server Client Request

out (“sequence”, serverid,0)

The server_od uniquely identifies the (logical) server with which the sequence tuple is
associated.

Given this tuple, then, a client generates a request by executing the code shown in
Figure 4.1. Here, the client does three things: withdraws the sequence tuple, deposits a
new sequence tuple, and deposits its request; after thisit withdraws the appropriate reply
tupleif necessary. Thesethree actionsmust be performed atomically. To seethis, consider
what would happen given failures at inopportune times. If the processor on which the
client is executing fails between thein and the out, the sequence tuple would be lost, and
all clients and server replicas would block forever. Similarly, if afailure occurs between
the two outs, there would be no request tuple corresponding with the given sequence
number, so the server replicas would block forever.

Two additional aspects of the client code are worth pointing out. First, note that
the client includes a service_name and service id in the request tuple. Thisinformation
specifieswhich of theservicesby server sid istobeinvoked. Theredundancy isneeded for
structuring the server, as will be seen below. Second, note the PLUS inthe TS operation
depositing the updated sequence tuple. This opcode results in the value of the sequence
tuple that was withdrawn in the previous in being incremented when it is deposited back
into TS . These opcodes, which aso include such common operations like MIN, MAX,
and MINUS, areintended to allow alimited form of computation within atomic guarded
statements. As aready mentioned above, general computations—including the use of
expressions or user functions in arguments to TS operations—are not allowed due to
their implied implementation overhead. For example, among other things, it would mean
having to transfer the code for the computation to all processors hosting TS replicas so that
it could be executed at the appropriate time. Also, these general computations must be
executed, in essence, in acritical section—that is, while the runtime system is processing
the AGS in question—which could severely degrade overall performance.

The code for a generic server replica that retrieves and services request tuples is
given in Figure 4.2. The server waits for a request with the current sequence number
using the digunctive version of the AGS, one branch (i.e., guard/body pair) for each

59

seq =0
| oop forever

rd(7'Smain, “request”, my_sm_id,seq, servicey, 7servicenum,7x) = SKip
or

or
rd(I'Smain, “request”, my_sm_id, seq, service,, ?servicenum,?a,?b,7c¢) = sKip

)

case servicenum Of

each service does out (“reply”, my-sm_id, seq,reply_args) if
the service returns an answer to the client
1: servicey(x)

n: .s.e.rvicen(a, b, ¢)
end case
seq := seq+ 1
end | oop

Figure 4.2: Server Replica

service offered by the server. When a request with the current sequence number arrives,
the server uses the assignment of the service_id in the tuple to variable servicenum
to record which service was invoked. This tactic is necessary because normal variable
assignment to record the selection is not permitted within an atomic guarded statement.
Finaly, after withdrawing the request tuple, the server executes a procedure (not shown)
that implements the specified service. This procedure performs the computation, and, if
necessary, deposits areply tuple.

An alternate way of ascertaining which branch was executed is to have each branch
deposit a distinguished tuple into a scratch TS in which one field indicates which branch
was executed. For example, branch 3 would execute:

out (7'Sscratch,“branch”, 3)

A third aternative is to extend FT-Linda to indicate this directly, as discussed above in
Section 3.5.3.

Note that in the above scheme, some tuples get deposited into TS but not withdrawn.
In particular, request tuplesare not withdrawn, and neither arereply tuplesfromall but one
of the replicas. If leaving these tuplesin TS is undesirable, a garbage collection scheme
could be used. To do this for request tuples, the sequence number of the last request

60

processed by each server replicawould first need to be maintained. Since no request with
an earlier sequence number could till be in the midst of processing, such tuples could be
withdrawn. A ssmilar scheme could be used to collect extrareply tuples as well.

The complete source code for thisexampleisin Appendix B.

4.1.2 Recoverable Server

Another strategy for realizing ahighly available service isto use arecoverable server. In
thisstrategy, only asingle server processisused instead of the multiple processesasinthe
previous section. This saves computational resources if no failure occurs, but also raises
the possibility that the server may cease to function should the processor on which it is
executing fail. To deal with thissituation, the server is constructed to save key partsof its
state in stable storage so that it can be recovered on another processor after afailure. The
downside of this approach when compared to the replicated server approach is, of course,
the unavailability of the service during the time required to recover the server.

In our FT-Linda implementation of a recoverable server, a stable TS functions as a
stable storage in which values needed for recovery are stored. Monitor processes on
every processor wait for notification of the failure of the processor on which the server is
executing; should this occur, each attempts to create a new server. Distributed consensus
isused to select the one that actually succeeds.

An FT-Linda implementation of such a recoverable server and its clients follows.
For smplicity, we assume that the server only provides one service, and that the service
requires a reply; multiple services would be handled with digunction as in the previous
example. We aso assume that the following is executed upon initialization to create the
server:

server Ipid := new_Ipid()

server T'S_handle := ts_create(St abl e, private, server.pid)
out (T'Smain, “server_handle”, serverid, server T'S_handle)
out (7T Smain, “server_registry” ,server_id,servelpid, host)
creat e(server, host, server.pid, server_id)

This alocates an LPID for the server, creates a private but stable tuple space for its use,
places the handle for thistuple space in the globally-accessible TS T'Smain, and creates
the server. Thefinal out operation creates aregistry tuple that records which processor is
executing the server. Thistupleisused in failure handling, as described below.

61

process server(my-_id)
Read in handle of private TS
rd(7’'Smain, “server_handle”, my_id, 7T Sserver)
Read in state if present in TSserver, otherwise initialize it there

state . = initial_state
(not rdp(TSserver, “state”, my_id, ?state) =
out (T'Sserver, “state”, my_id, initial_state)

)

| oop forever
(in(TSmain, “request”, my.id, ?clientpid, Targs) =
out (T'Smain, “in_progress”, my_id, clientlpid, args)

)

calculate service & its reply, change state, do out put

(in(TSmain, “in_progress”, my_id, clientlpid, args) =
out (T'Smain, “reply”, my_id, reply_args)
i n(T'Sserver, “state”, my_id, 7old_state)
out (T'Sserver, “state”, my_id, state)

)

end | oop

end server

Figure 4.3: Recoverable Server

The code used by client processorsto request serviceis:

out (7 Smain, “request”, serverad, clientApid, args)
i n(T'Smain, “reply”, serverid, clientIpid, Treply_args)

Note that no sequence tuple is needed for the client of a recoverable server, because
there is only one actual server process at any given time. Another function this tuple
performsin Section 4.1.1, beyond ordering requests for the server, is to ensure that the
client withdraws the reply tuple corresponding to its request. To ensure this without the
sequence tuple, the client includes its LPID in the request tuple, the server includesit in
the reply tuple, and then the client withdraws the reply tuplewithitsLPID iniit.

The server itself isgiven in Figure 4.3. The server first reads itsinitial state and TS
handle from T'Smain, and then enters an infinite loop that withdraws requests and leaves
an in_progress tuple as in previous examples. Finadly, it performs the service, updates
the state tuple, and outputs a reply.

62

process monitor(failure_id, server_id)
| oop
(i n(TSmonitor, “ failure”, failure_id,Thost) = skip)
see if server server_id was running on failed host

if ((rdp(TSmain, “server_registry”, server_id,?serverpid, host) = skip))
t hen

Regenerate request tuple if found

(inp(TSmain, “in_progress”, server_id, ?clientpid, %Targs) =
out (7Smain, “request”, server_id, clientlpid, args))

Attenpt to start new incarnation of failed server
if((inp(TSmain, “server_registry”, server_id, Tserver.pid, host) =
out (T'Smain, “server_registry”, server_id, server.pid, my_host)))
t hen

create (server, my_host, server_lpid, server_id)

end if
end if

end | oop

end monitor

Figure 4.4: Recoverable Server Monitor Process

When a processor fails, two actions must be taken. First, any in_progress tuple
associated with a failed server must be withdrawn and the corresponding request tuple
recovered. Second, the failed server itself must be recreated on a functioning processor.
To perform these actions, however, we need to know if the failed processor was in fact
executing a server. This information is determined using the registry tuples alluded to
above.

A monitor process strategy similar to the bag-of-tasks example is used to implement
these two actions. Here, it is structured to monitor asingle server, athough it could easily
bemodified to handletheentire set of serversinasystem. ThecodeisshowninFigure4.4.
The monitor handles the failure of its server by first dealing with apossible in_progress
tuple; if present, one such monitor will succeed in regenerating the associated request
tuple. The next step is to attempt to create a new incarnation of the server, a task that
requires cooperation among the monitor processes on each machine to ensure that only
oneis created. Thisisimplemented by having the monitor processes synchronize using
theregistry tuplein aform of distributed consensus to agree on which should start the new
incarnation. The selected process then creates the new server, while the others smply
continue.

The above scheme features one recoverable server process executing at any given

63

time. However, this scheme could easily be modified for performance reasons by having
multiple recoverable servers working on different requests in paralel. This would only
require dight modificationsto the above scheme. For example, the monitor process could
not assume there was at most one in_progress tuple and thus would have to loop until it
found no more. Note that this scheme is different from the replicated server scheme in
Section 4.1.1. With this scheme, there are multiple primary/backup serversimplementing
the same service, but they operate independently on different requests. In the replicated
server example, on the other hand, all servers execute each request submitted.

Therecovery codefor therecoverableserverismorecomplicated thanfor thereplicated
server intheprevioussection. Fortunately, however, failuresareusually infrequent rel ative
to client requests, so the additional cost of the recovery codewill rarely be paidin practice.
Also, thanksto FT-Linda's ol dest-matching semantics, a sequence tuple does not have to
be maintained, as it does with the replicated server. These benefits accrue for each client
request and, for many applications, far outweigh the extra costs incurred for each failure.
Those applications that cannot tolerate the fail-over time of the recoverable server may
need to use the replicated server instead.

The complete source code for this exampleisin Appendix C.

4.1.3 General Transaction Facility

A transaction is a sequence of actionsthat must be performed in an all-or-nothing fashion
despite failures and concurrency. Although similar to an AGS, a transaction is more
general, because the latter can feature arbitrary computations and, in the Linda context,
an indefinite number of TS operations. However, we can construct a transaction from a
sequence of AGSs. Inthissubsection, we give an FT-Lindaimplementation of alibrary of
procedures that provide transactions to user-level processes. The interfacefor thislibrary
isgiven in Figure4.5. For simplicity, we assume that variable identifiers are well-known
or ascertainable, and that variables are ssmply integers.

To initialize the system, init_transaction_library() is called once, followed by cre-
ate var() for every variable to be involved in any transaction. After this point, usage
of transactions may begin. To perform a transaction, start_transaction() is called with a
list of the variables to be involved with the transaction; it returns a unique transaction
identifier (TID). After this, modify_var() is called each time avariable is to be modified,
followed by either commit() or abort(). Finally, we provide print_variables() to print out
an atomic snapshot of all variables. Note that the user of this transaction library has only
to be aware of thisinterface, not of the fact that it isimplemented with FT-Linda.

To implement this transaction facility, we maintain one lock tuple and one variable
tuple for each variable created. Recall that in the fault-tolerant bag-of-tasks solution in
Section 3.2.1, asubtask being worked on was kept in an alternate form (an “in_progress”
tuple) in T'Smain. We call such atuple a placeholder or a placeholder tuple, and say
that the origina tupleis in its placeholder form. In this transaction manager, then, to
implement both stability of and mutual exclusion on a variable’s tuples, we will convert

Types

type tidt is int # Transaction ID
type vart is int # Variable ID
type val t is int # Variable Val ue

Transacti on procedures

procedur e init_transaction_library()

procedure create_var(var_t wvar_id, val t init_val)

procedure destroyvar(var_t wvar_id)

procedur e start_transaction(var t wvar_idlist[], int num_vars) returns tid.-t
procedure modify var(tidt tid, var_t war_id, val t new_val)

procedure abort(tidt tid)

procedure commit(tid_t tid)

procedur e print_variables(String message)

Figure4.5: Transaction Facility Interface

these tuplesinto their placeholder formswhen their variableis being used in atransaction.
Also, during a transaction, two scratch TSs are kept, one with the starting values of all
variables in the transaction, and the other with the current values of al variables in the
transaction. Maintaining these two scratch TSs makes it smple to abort or commit all
changestothevariableswith asingle AGS consisting primarily of afew move operations.
Finally, because the transaction facility isimplemented asalibrary of routineslinked into
the user’s address space, the monitor processes are the only processes created — there
are no server or other system processes of any kind. Thus, the only thing the monitor
processes have to do isto abort any transactions that were being executed by a user on a
host that failed.

In the following figures we describe the FT-Linda implementation of the routines
given in Figure 4.5. For simplicity, these implementations do not concern themselves
with checking for user errors, eg. testing if a variable used in a transaction has been
created previoudly.

Figure 4.6 gives the routines to initialize the transaction facility.! The two things
that init_transaction_facility() has to do is to create a tuple storing the current TID and
also create the monitor processes. To create a variable, create var() creates two tuples
in T"Smain, one for the variable and the other for the lock. Conversdly, to destroy a
variable, the lock and variable tuples must be removed. Of course, variables should not

!In this chapter, we abbreviate an AGS with atrue guard:

—~

true = body)

o)

body)
or the sake of brevity and clarity.

-~

65

procedur e init_transaction_facility()
Initialize the transaction |IDs
(out (T'Smain, “tids",1))

Create the nmonitor processes
for i:=1 to num_hosts() do

Ipid := new Ipid()

fid = new_failure_id()

create(monitor _transactions, i, lpid, f_id)
end for

end init_transaction_facility

procedure create_var(var_t wvar_id, val _t init_val)

(

out (7T'Smain, “var”,var_id,init_val)
out (7'Smain, “lock” var_id)

)

end create_var

procedure destroyvar(var_t wvar_id)

Block until any pending transaction using wvar_id conpl etes
(in(TSmain, “lock” varid) =

i n(7'Smain, “var”,var_id,?val t)
)

end destroy_var

Figure 4.6: Transaction Facility Initialization and Finalization Procedures

be destroyed if they may still bein use.

Figure 4.7 gives the code to start a transaction. First, the scratch TSs for the original
and current values of the variables are created. Their TS handles are then stored in
T Smain for later retrieval by interna routines get_orig() and get_cur(), respectively.
After this, mutual exclusionisacquired on al variablesinvolved with the transaction; this
is performed in a linear order to ensure that deadlock cannot occur. To acquire mutual
exclusion on avariable, itslock tuple is withdrawn. Additionally, to facilitate recovery
from faillures as well asthe ability to either commit or abort the transaction later, the lock
and variabletuplesare moved to their placeholder formin7'Smain, acopy of thevariable
tupleis placed into both scratch TSs, and a copy of the lock tupleis placed into orig_ts.
Finally, start_transaction returns the TID for this transaction; the user must pass this to
modify_var(), commit(), and abort().

Figure4.8 givesthe codeto modify avariable. It updatesthe value of the variable' stu-
pleinthetransaction’sscratch tuple space that storesthe current values of thetransaction’s

66

procedure start_transaction(var t wvar_idlist[], int num_vars) returns tid.-t

Allocate the next transaction ID for this transaction
(in(TSmain, “tid", 7tid) =

out (T'Smain, “tid", PLUS(tid, 1))
)

Create scratch TSs for original and current val ues of
vars involved in this transaction

cur_ts :=ts_create(vol atil e, private, my.lpid)

orig_ts :=ts_create(vol atil e, private, my.lpid)

Deposit handles into TS for retrieval by get _cur() and get_orig()
(

out (7'Smain, “ts_cur” tid, cur 1s)

out (T'Smain, “ts_orig”,tid, orig_ts)

)

Acquire locks for vars in this transaction, in a |linear order
In doing so, nmove its lock tuple to a | ock. nuse tuple,

do simlarly for the var tuple, and add a copy of the var to curts
sort(var_id list]])

for i:=1 to num_vars do
(in(TSmain, “lock” var_idlist[i]) =
out (T'Smain, “lock_inuse”, my_hist,tid, var_id_list[i])
out (origts, “lock” var_idlist[i])
i N(T'Smain, “var”, var_id_list[i], Tval)
out (7'Smain, “var_inuse”, my_hist, tid, var_id_list[i], val)
out (origts, “wvar”,var_idlist[i],val)
out (curds, “wvar”, var_idlist[i],val)

)

end for
return tid

end start_transaction

Figure 4.7: Transaction Initialization

67

procedure modify var(tidt tid, var_t war_id, val t new_val)

curts := get_cur(tid)

(

i n(curts, “var”,var_id, ?val _t)
out (cur_ts, “var”, var_id, new wval)

)

end modify_var

Figure4.8: Modifying a Transaction Variable

variables.

Figure 4.9 givesthe code to abort and commit atransaction. To abort atransaction, the
lock and variable tuples must be restored in 7'Smain and their placeholders discarded.
Also, the tuples storing the TS handles for the transaction’s scratch TSs are withdrawn.
The code to commit atransaction isidentical to the code to abort, except that the variable
tuples are moved from the scratch TS holding the current values of the variables, rather
than the one holding their original values.

The code to print out an atomic snapshot of all variablesis givenin Figure 4.10. An
AGS copies al variablesinto a scratch TS, either in their normal or placeholder form.
From there, they can be withdrawn one atime and their values printed out.

Finally, Figure 4.11 gives the monitor process for the transaction facility. Recall
that, because it has no system processes to recover; it only has to abort any transactions
that were being executed by a client on the failed host. Thus, the monitor process only
regenerates variable and lock tuplesfor any variables that were acquired by atransaction
onthefailed host. Thesetuplesarerecovered fromtheir placeholdersalready in7'.Smain.

The transaction facility given above requires a modest number of AGS requests. To
implement atransaction the main cost is onereplicated AGS, an AGSinvolving replicated
TSs, per variable in the transaction; this happens when the transaction is started. After
this, it only costs onelocal AGS, an AGS involving only local (scratch) TSs, to modify a
variable, and then one replicated AGS to either commit or abort the transaction. Also, it
only takes onereplicated AGS and then onescratch AGS per variableto print out an atomic
snapshot of al variables. Finally, note that only one process may participate in a given
transaction in the above implementation. However, it would be very smpleto extend this
example to allow multiple processes to cooperate in realizing a single transaction. The
only change would be to create the transaction’'s TSs (“ts_cur” and “ts_orig”) as stable
and shared rather than as volatile and private. Of course, thiswould make thistransaction
facility more expensive. In particular, modify_var() would be much more expensive; it
would require areplicated AGS rather than a (much cheaper) local one.

The complete source code for this exampleisin Appendix D.

68

procedure abort(tidt tid)

curts := get_cur(tid)
orig_ts 1= get_orig(tid)

Put the lock and (old) var tuples involved with this transaction
back into 7Smain, discard the scratch TS tupl es,
and discard the | ock and variabl e i nuse pl acehol ders
(
nmove(orig_ts, T'Smain, “lock”, ?var _t)
nove(orig_ts, T'Smain, “var”, ?var _t, ?val _t)
i n(7'Smain, “ts_cur”,tid, 7ts_handle_t)
i n(T'Smain, “ts_orig”, tid, 7ts_handle_t)
nmove(I'Smain, cur_ts, “lock_inuse”, my_host, tid, var t)
nmove(1'Smain, cur_ts, “var_inuse”, my_host, tid, ?var t, ?val t)

)

ts_destroy(cur_ts)
ts_destroy(orig_ts)

end abort

procedure commit(tid_t tid)

curts := get_cur(tid)
orig_ts 1= get_orig(tid)
Put the lock and (new) var tuples involved with this transaction
back into 7Smain, discard the scratch TS tupl es,
and discard the [ock and variabl e i nuse pl acehol ders
(

nmove(orig_ts, T'Smain, “lock”, ?var _t)

nmove(cur_ts, T'Smain, “var”, ?var_t, ?val _t)

i n(7'Smain, “ts_cur”,tid, 7ts_handle_t)

i n(T'Smain, “ts_orig”, tid, 7ts_handle_t)

nmove(I'Smain, cur_ts, “lock_inuse”, my_host, tid, var _t)

nmove(1'Smain, cur_ts, “var_inuse”, my_host, tid, ?var t, ?val _t)

)

ts_destroy(cur_ts)
ts_destroy(orig_ts)

end commit

Figure 4.9: Transaction Abort and Commit

69

procedur e print_variables(String message)

Copy an atom c snapshot of all variables, whether inuse or not
serateh_ts := ts_create(vol atil e, private, my.pid)

< copy(7'Smain, scratchts, “var”, ?var_t, ?val _t)

copy(1'Smain, seratch_ts, “var_inuse”, ?int, ?tidt, ?var_t, ?val _t)
)
print('‘Variables at’’, message)

while ({ inp(scratchts, “var” Tvar,7val) = skip)) do

print(‘* var’’, var, ‘‘value’’, val)
end while
while ((inp(scratchts, “var_inuse”, Thost, Ttid, Tvar,7val) = skip)) do
print(‘* var’’, wvar, ‘‘value’’, wal, ‘‘inuse with tid ', tid,
“‘on host’’, host)
end while

ts_destroy(scratch_ts)

end print_variables

Figure4.10: Printing an Atomic Snapshot of all Variables

procedur e monitor_transactions(failure_id)

| oop
(i n(TSmonitor, “failure”, failure_id,?host) = skip) # Wait for a failure
Regenerate all | ock and variable tuples we find in-progress

for any transactions on the failed host.

while ((inp(TSmain, “lock_inuse”, failed_host, ?tidt, 7Tvar) =
out (T'Smain, “lock”, wvar)
i n(T'Smain, “var_inuse”, failed_host, ?tidt, wvar Tval)

“ ”

out (T'Smain, “var”, wvar,val)

)
) do

noop
end while
end | oop

end monitor_transactions

Figure 4.11: Transaction Monitor Process

70

| oop forever
i n(“subtask”, Tsubtas_argsk)

i f(small_enough(subtask_args))

out (“result”, result(subtask_args))
el se

out (“subtask”, partl(subtask_args))
out (“subtask”, part2(subtask_args))

end if

end | oop

Figure4.12: Linda Divide and Conquer Worker

4.2 Parallel Applications

FT-Linda is applicable to a wide variety of parallel applications. We have already seen
one user-level FT-Linda application in the bag-of-tasks example given in Chapter 3. This
section presents two more. The first, the divide-and-conquer worker, is a generalization
of the bag-of-tasks worker. The second one is implementation of barriers with FT-
Linda; these barriers and related algorithms are applicable to alarge number of scientific
problems.

4.2.1 Fault-Tolerant Divideand Conquer

The basic structure of divide and conquer is similar to the bag-of-tasks, where subtask
tuples representing work to be performed are retrieved by worker processes [Lei89].
The difference comes in the actions of the worker. Here, upon withdrawing a subtask
tuple, the worker first determines if the subtask is “small enough,” a notion that is, of
course, application dependent. If so, the task is performed and the result tuple deposited.
However, if the subtask is too large, the worker divides it into two new subtasks and
deposits representative subtask tuplesinto TS. Such aworker isdepicted in Figure 4.12.
An FT-Linda solution that provides tolerance to processor crashes is given in Fig-
ure 4.13. Here, the worker leaves an in_progress tuple when withdrawing a subtask, as
donewith the bag-of-tasks. It then decidesif thetask issmall enough. If itis, it calculates
the answer and atomically withdraws the in_progress tuple while depositing the answer
tuple. If not, it divides the task into two subtasks and atomically deposits these new
subtask tuples while withdrawing the in_progress tuple. A monitor process similar to the
one discussed in Section 3.2.1 would be used to recover lost subtask tuples upon failure.
Analternative strategy involving ascratch TSsimilar to that used in Section 3.2.2 could
also be employed. The subtask tuples arefirst deposited into the scratch TS, whichisthen
merged atomically with the shared TS upon withdrawal of the in_progress tuple. This

71

| oop forever
(in(“subtask”, ?subtask_args) = out (“in_progress”, subtask_args, my_hostid))
i f(small_enough(subtask_args))
result_args := result(subtask_args)
(in(“in_progress”, subtask_args, my_hostid) = out (“result”, result_args))
el se

subtaskl_args = partl(subtask)
subtask2_args = part2(subtask)

(

i n(“in_progress”, subtask_args, my_hostid) =
out (“subtask”, subtaskl_args)
out (“subtask”, subtask2_args)

end if

end | oop

Figure 4.13: FT-Linda Divide and Conquer Worker

strategy would be especially appropriate if a variable number of subtasks are generated
depending on the specific characteristics of the subtask being divided.
The complete source code for this exampleisin Appendix F..

422 Barriers

Many scientific problems can be solved with iterative algorithms that compute a better
approximation to the solution with each iteration, stopping when the solution has con-
verged. Examplesof such problemsinclude partial differential equations, regionlabelling,
parallel prefix computation, linked list operations, and grid computations [And91]. Such
algorithms typically involve an array, with the same computation being performed on
each iteration. Since the computations for a given portion of the array and for a given
iteration are independent of the other computations for that iteration, such algorithms
are ideal candidates for paralelization. However, the computation for a given iteration
depends on the result from the previous iteration. Thus, al processes must synchronize
after each iteration to ensure that they all are using the correct iteration’s values. This
synchronization point is caled a barrier, because all processes must arrive at this point
before any may proceed past it.

While barriers are convenient for paralel programming, they would be even more
convenient if an application using barriers could tolerate the failure of some of the pro-
cessors involved with the computation. This would mean making the worker processes
resilient, so that if onefailed, areincarnation would be created to resume execution where

72

the failed worker stopped.

In this subsection, we develop afault-tolerant barrier with FT-Linda. First, we briefly
discuss multiprocessor implementation of barriers, outlining three different implementa-
tion techniques. shared counters, coordinator processes, and tree-structured barriers. This
servesto survey the problem more concretely. We then discuss asimpler way toimplement
barrierswith Linda, taking advantage of its associative matching and blocking primitives.
A fault-tolerant FT-Linda version of this solution is then given. Thisis followed by an
explanation of how the techniques used in making this fault-tolerant barrier can be used
to make the other kinds of barriers fault-tolerant, as well as classes of algorithms similar
to those involving barrier synchronization.

Multiprocessor Implementationsof Barriers

We now describe three techniques for implementing a barrier on a multiprocessor; this
material is summarized from [And91], where two other schemes are also given. Thefirst
technique is to maintain a shared counter that records the number of processes that have
reached the barrier. Thus, when it arrives at the barrier, a worker process increments its
value and then busy waits (spins) until the counter’s value equals the number of workers.
Whilethistechniqueissimpleto implement, it suffersfrom severe memory contention; on
each iteration, each worker writes to the counter and then continually reads it. This does
not scale well, even with the assistance of multiprocessor cache coherence and atomic
machine instructions such as fetch and add.

The second technique is to use a coordinator process. With this scheme, when a
worker arrives at abarrier, it informs a distinguished coordinator process, and then waits
for permission from the coordinator to proceed. For each iteration, then, the coordinator
simply waits until al workers have arrived at the barrier, then gives them all permission
to proceed.

Using acoordinator process solvesmost of thememory contention problemsassociated
with the shared counter technique. However, it introduces two new problemsthat limit its
scalability. Firgt, it usesan additional process. Sincethesize of many problemsisapower
of two, and the number of processorsin many multiprocessorsiseven (or even a power of
two), this means that the coordinator will often have to share a processor with a worker.
This will dow down all workers, because none may proceed until al have completed
a given iteration. Second, the number of computations the coordinator must perform
increases linearly with the number of workers. This also affects scalability, because most
or all workersaregenerally not doing productivework whilethe coordinator is performing
these computations, i.e. actively receiving replies and disseminating permission to pass.

A third techniqueisto use atree-structured barrier. Recall that both the shared counter
and the coordinator process implementation had scalability and other problems. We can
overcome these problems by eliminating the coordinator process and disseminating its
logic among the worker processes. A tree-structured barrier organizes the workers in

73

Worker
Worker Worker

Worker Worker Worker Worker
Figure4.14: Tree-structured barrier

a tree in the manner shown in Figure 4.14.2 In this scheme, the workers signal their
completion up the tree. They then wait for permission to continue; thiswill be broadcast
by the root with some multiprocessor architectures and signalled back down the treein
others. Notethat with this barrier there are three different kinds of synchronization logic:
in the leaf nodes, which only pass up asigna; in the interior nodes, which both wait for
and then pass up signals, and in the root node, which only waits for asignal. Similarly,
these different nodes also have different roles regarding broadcasting or passing down
the permission to complete. This approach leads to logarithmic execution time and also
scales well, because workers are signalling and broadcasting up the treein paralel.

A final implementation note is that on a multiprocessor, two versions of the array are
typically maintained: one with the current values of the array and the other in which the
workersstore the next iteration’sresults. At the barrier, therole of each array is switched.
Also, we note that different parallel iterative algorithms vary in the way in which they
read the last iteration’s global data during a given iteration: some barriers have to use
all elements of the array on every iteration, while others require access to only a small
portion. Thus, to avoid confusion, in the Linda examples in this subsection we add a
comment indicating where the data is initialized and where it is read in each iteration.
Finally, some barriers also have areduction step after the barrier and then a second barrier
after this. (The reduction step is used, for example, to detect termination.) In some cases
this reduction step can aso be combined with the synchronization step in the first barrier
(and sometimes even al so with the reading of the data). We also omit thisreduction phase
for brevity and clarity. However, it is fairly straightforward to implement these in both
Lindaand FT-Linda.

2Thisfigureistaken from [And91].

74

procedur e init_barrier()
out (“barrier_count”, ()
...initialize both copies of the global array ...

Create worker(id:1..N) with local Linda' s
process creation mechanism (onitted)

end indt_barrier

Figure 4.15: Linda Shared Counter Barrier Initialization

LindaBarriers

A Linda barrier could reasonably be implemented with a shared counter, a coordinator
process, or atree. For example, because of Linda's associativity and blocking operations
there would not be memory contention on a shared counter; al workers would ssmply
block until they were allowed to proceed. To demonstrate this, a Linda barrier using a
shared counter is given in Figures 4.15 and 4.16; it uses a single counter tuple to record
the number of workers that have reached the barrier. A Linda implementation with a
coordinator process is similarly easy to envision, athough it would still suffer from the
same problems as the multiprocessor version, namely the existence and computationa
delay imposed by the extra process. Finally, aLindabarrier with atreeislikewise ssimple
toredize.

While the shared counter and coordinator process techniques can thus be implemented
with Linda, we can take advantage of Linda's associativity and blocking operations to
devise a solution with similar performance but one that serves as a cleaner basis for a
fault-tolerant barrier. I1n this scheme, each worker produces a tuple on each iteration that
indicates it is ready to proceed to the next iteration; a worker waits for tuples from all
workers. The pseudocode for this solution is given in Figure 4.17. The initiaization
consists of depositing theinitial valuesfor thearray in TS, as well as creating the worker
Processes.

Fault-Tolerant Barriers

The solutionin Figure 4.17 is ssimple to use as abase for afault-tolerant version. Indeed,
looking at Figure 4.17, it may not be apparent that the failure of a worker would require
any recovery at al. It certainly has nothing like the windows of vulnerability associated
with a distributed variable or a bag-of-tasks subtask. However, in this barrier example,
the failure of aworker does indeed require recovery because it must be resilient.

To elaborate, recall that with the bag-of-tasks paradigm, a given worker process did
not have to be resilient; if it failed, any subtask that was in its placeholder form simply
had to be recovered and later re-executed by another worker. The failed worker process

75

process worker(i d)

Initialize iter, current, next

iter .= 1

current = tter

next .= 1 — current

...read in some or all of global array for iteration current ...

Conpute next iteration, unless answer has converged
whi | e not converged(a, iter, epsilon) do

...update my portion of global array for next iteration from my.array ...

compute(my_array, id)
Wait at the barrier: get count and see if |I'm| ast
i n(“barrier_count”, Tecount)
if (count < (N —1)) then
Not all workers at barrier yet

out (“barrier_count”, count +1) # Update count
i n(“barrier_proceed”, iter +1) # Wait until |ast done

el se

#1'mthe last to arrive at the barrier
out (“barrier_count”,0) # Reset count for next tine
for i:=1to (N—1) do
out (“barrier_proceed”, iter +1) # Let ot her workers proceed
end for

end if

Update iter, current and next

iter = ater + 1

current = next

next = 1 — current

...read in some or all of global array for iteration current ...

end while

end worker

Figure 4.16: Linda Shared Counter Barrier Worker

76

procedur e init_barrier()
...initialize the global array ...

Create worker(id:1..N) with local Linda' s
process creation mechanism (onitted)

end indt_barrier

process worker(id)
ter =1
...read in some or all of global array for next iteration ...
Compute next iteration, unless answer has converged
whi | e not converged(a, iter, epsilon) do

...update my portion of global array for next iteration from my.array ...

compute(my_array, id)
out (“ready”, iter+1,id)
Wait at the barrier

for ;=1 to N do
rd(“ready”,iter 4+ 1,1, ?a[7])

end for
Garbage coll ection; nobody could need it past the barrier
i f(iter > 1)
i n(“ready”,iter —1,id, Trowt)
end if

tter = ater + 1
...read in sonme or all of global array for next iteration ...
end while

end worker

Figure4.17: Linda Barrier

77

procedur e init_barrier()
iter:=1 # First iteration for workers
...initialize the global array ...

Create the nonitor processes
for host:=1 to num_hosts() do
Ipid := new Ipid()
f-id .= new_failure_id()
create(monitor, host, lpid, f_id)
end for
Create worker(id:1..N) and its registry tuple
for id:=1to N do
Ipid := new Ipid()
host := id%num_hosts()
out (T'Smain, “registry”, host, id, iter)
create(worker, host, Ipid, id)
end for

end indt_barrier

Figure4.18: FT-Linda Barrier Initialization

did not have to be reincarnated as long as its subtask was recovered, because it was not
performing a computation that was assigned specifically to it. Thisis not the case with
the worker in Figure 4.17, however. Here, for each iteration a given worker must update
its portion of the global array for the next iteration and produce a “ready” tuple. Thus,
if aworker fails, it must be reincarnated, i.e. it must continue executing exactly where it
failed.

To accomplish this, we maintain a registry tuple similar to the registry tuple in the
recoverable server of Section 4.1.2. Thisisused to record on which host agiven worker is
executing. Thisway, if the host fails, it can be ascertained which workers have failed and
thus need to be reincarnated. However, in the case of the barrier example, this registry
tuple aso needs to record on which iteration the worker is currently working, so that if it
fails, its reincarnation can do the correct computation and then proceed.

The FT-Linda solution outlined above is given in Figures 4.18, 4.19, and 4.20.
Figure 4.18 gives the pseudocode to initialize a barrier. It creates the initial global data,
the monitor processes, the registry tuples, and the workers. Figure 4.19 gives the worker.
The main difference from the worker in Figure 4.17 is that when it deposits the “ready”
tupleit also atomically incrementsthe value of its current iteration in theregistry tuple. In
the event of aworker failure, thisaction ensuresthat agiven iteration’s”ready” tuplewill
be deposited by aworker exactly once. Also, when it begins, the worker does not assume
it should start with iteration 1. Rather, it readsin its current iteration — the one it should
start with — from its registry tuple. Finally, Figure 4.20 gives the monitor process. It is

78

process worker(id)

Initialize iter
rd(7'Smain, “registry”,Thost_t id, 7iter) # if reincarnation iter may be > 1

...read in some or all of global array ...

Compute next iteration, unless answer has converged

whi l e not converged(a, iter, epsilon) do
conput e(my_array, id)
...update my portion of global array for next iteration from my.array ...
Atom cally deposit ready tuple for next iteration & update ny registry

(

out (7T'Smain, “ready”, PLUS(iter,1),id)

i n(T'Smain, “registry”, Thost, id, iter)

out (T'Smain, “registry”, host,id, PLUS(iter, 1))
)

Barrier: wait until all workers are done with iteration iter
for 1:=1to N do

{ rd(TSmain,“ready”, PLUS(iter,1),%,7al:]) = skip)
end for

if (dier>1) then

Garbage collection on previous iteration
(in(TSmain,"ready”, M NUS(iter,1), id))

end if

tter = ater + 1

...read in sonme or all of global array for next iteration ...
end while

end worker

Figure 4.19: FT-LindaBarrier Worker

79

process monitor(f_id)
| oop
(in(TSmain, “failure”, fid,? failed_host) = skip)
Try to reincarnate all failed workers found on this host
while ((inp(TSmain, “registry” | failed_host,?id, Titer) =
out (T'Smain, “registry”, my_host, id, iter)
)) do
Create a new worker on this host
Ipid = new Ipid()
create(worker, my_host, lpid, id)
nap(some) # crude | oad bal anci ng
end while
end | oop

end monitor

Figure 4.20: FT-Linda Barrier Monitor

very similar to the monitor process for the recoverable server given in Figure 4.4, except
that it must also include the current iteration in the registry tuple. Unlike the recoverable
server example, however, this monitor process assigns a new LPID to areincarnation of
afailed worker. It does not need to use the same LPID, while the recoverable server’s
reincarnation had to be created with the same LPID to be able to access its state stored in
aprivate (and stable) TS.

The same general techniques can a so be used with the other kinds of barriersdescribed
above. In all cases, when aworker or coordinator process fails, it must be reincarnated
so that it starts at the proper location. This is accomplished with the use of a registry
tuple. A process must also use a placeholder tuple if it needs to perform a more general
atomic action than asingle AGS allows. For example, a coordinator process would leave
a placeholder tuple for each synchronization tuple it received from a worker, while a
process in the tree barrier solution would |eave a placeholder when it withdraws the first
signa tuple from a child. These placeholder tuples would then be moved or withdrawn
from T'Smain a the final AGS for a given iteration, which would also increment the
registry tuple.

The complete source code for this exampleisin Appendix G..

Using Fault-Tolerant Barriersfor Systolic-Like Algorithms

Barriers are typically implemented on multiprocessors using physically shared arrays,
although above we have shown how they can beimplemented using Linda's TS, a shared
memory that has been implemented on a wide range of architectures. Other kinds of

80

paralle iterative agorithms are similar to barriers in that al workers work on the next
iteration using the current values, thenwait for al to completetheiteration before proceed-
ing. However, paralld iterative algorithms such as systolic-like algorithms® use message
passing, not shared memory, to synchronize. Problems that can be solved with such
algorithms include matrix multiplication, network topology, parallel sorting, and region
labelling [And91]. Fortunately, the FT-Linda barrier solution given above already uses
Linda’sblocking operationsto synchronize, soitsbasicideasapply directly to systolic-like
and other data flow algorithmsthat use message passing.

Consider a systolic-like algorithm to multiply Arrays A and B to obtain the product
array ', a (non-fault-tolerant) Linda example given in [Bj092]. In this scheme, each
worker isresponsible for computing a given part of the result matrix C. Portionsof A and
B are streamed through the various workers so that, at a given step, each worker has the
portionsof A and B that are to be multiplied with each other. The worker accumulatesits
portion of ', and when done, deposits a tuple with thisresult. Thus, a worker iteration
consists of the following steps:

1. Withdraw the next submatrices of A and B from the appropriate workers upstream.
2. Multiply them, accumulating the result inits portion of C' (keptin TS).

3. Deposit the submatrices of A and B for consumption by the appropriate workers
downstream.

Note that thisis very similar to a barrier worker’s iteration in Figure 4.19. The worker
here uses two inputsrather than one, but thisdifferenceisobviously cosmetic. Indeed, the
only significant difference is that the systolic-like worker actually consumes the tuples.
Thus, the only structural change to use Figure 4.19 with systolic-like multiplication is
to generate an in_progress tuple when withdrawing the submatrices, then atomically do
Steps 2 and 3 in one AGS while also updating the registry tuple and withdrawing the
in_progress tuples.

Finaly, consider an optimization to this scheme. The key observation is that, in this
systolic-like scheme that uses a message-passing paradigm, each worker produces tuples
that are sent to aspecific worker. The scheme above distinguishesasubmatrix intended for
aparticular worker by placingitsidentifier in thetuple. However, asshownin Section 5.2,
thiscanlead to severe contention. The problemisthat the submatrix tuplesbeing sent toall
workers are on the same hash chain, even though a given worker can possibly match only
asmall fraction of them when withdrawing tuples intended for it. Unfortunately, the TS
operations must still check all tuples on those hash chains. This contention can be greatly
reduced by creating a stable and shared TS for each worker, where al submatrix tuples
intended for that worker will be deposited. This way, the submatrix tuples are spread out

3We use the term ‘systolic-like' rather than ‘systolic’ here because the workers in systolic algorithms
runin strict lock step, generaly enforced by hardware, while the workers here can get up to one iteration
out of phase with each other.

81

among many TSs, and only submatrix tuplesto be withdrawn by agiven worker will beon
the hash chain in that worker’s TS. This eliminates the contention described above. Since
TSsrequire on the order of a hundred bytes of memory, also as shown in Section 5.2, this
scheme scales to alarge number of workers.

4.3 Handling Main ProcessFailures

We have only been concerned so far in this dissertation with handling the failure of worker
and monitor processes. We now consider how to handle the failure of a main process, the
initial processin a Linda program that is created when the program is started. While the
details are very application-dependent, the same general techniques used in handling the
failure of aworker process can be applied to handle failures of amain process.

Main processes generally go through three phases: initidization, synthess, and fi-
nalization. The initialization phase is relatively short, and includes creating monitor and
worker processes, creating and seeding tuple spaces, etc. We assume that the entity
that started the program will monitor its progress until the initialization phase is over
and restart the program if the main process fails before initialization is complete. The
synthesis phase involves any necessary reductions on the workers outputs. No synthesis
may be necessary; for example, workers performing matrix multiplication deposit their
resultsdirectly into TS. If synthesisisnecessary, then aset of identical synthesis processes
(and their monitor processes) can be created to performit, so the failure of some of these
processes can be tolerated. Of course, these processes must not have any windows of
vulnerability, just like worker processes must not. An example of synthesizing results
in fault tolerant manner is given below. Finaly, in the finalization phase, an application
generally reports the results of any synthesis to the entity that executed the program. If
this can be done through TS, then this reporting step is not needed; it is often done in the
synthesis phase. Sometimes, however, thisis not sufficient, so the results of the synthesis
have to be reported in some other fashion, e.g. writing to adisk or to aconsole. In either
case, as assume that the entity that started the program will periodically ensure that the
finalization process has not failed and restart it if it has.

The manner in which a synthesizing process is made fault-tolerant is very similar to
that for aworker process. The main concern is not to leave any windows of vulnerability
where data that may be needed later isrepresented only in volatile memory. Sometimesa
synthesis operation can be donein asingle AGS. In other cases, however, multiple AGSs
and a placeholder tuple are required. As an example, consider the problem of finding
the minimum cost (or distance) from among a number of searches (or matches). Here,
the (bag-of -tasks) workers remove data tuples, calcul ate the cost associated with the data
in the tuple, and deposit a cost tuple. The synthesis consists of finding the minimum
cost from among the cost tuples. This can be accomplished in the manner shown in the
example in Figure 4.21. There is no reason to leave a placeholder tuple here, because
there is no window of vulnerability: this synthesis can be accomplished in asingle AGS
by using the MIN opcode. And, because there are no placeholder tuples, thereis no need

82

Record the | owest cost found anong the cost result tuples.
Initialization phase deposited tuple (“min_cost”, | NFI NI TY).

whi | e not done() do

(in(TSmain, “cost” Tcost) =
i n(7'Smain, “min_cost”, Tmin_cost)
out (7'Smain, “min_cost”, M N(cost, min_cost))

)
end while

Figure 4.21: Simple Result Synthesis

for monitor processes to recover from the failure of a synthesis process executing this
code. Finally, note that the in in the body can never fail, because AGSs are executed
atomically and the “min _cost” tupleisaways present in TS outside any AGS.

For some synthesizing processes, however, the simple, single-AGS scheme in Fig-
ure4.21 will not be sufficient, because they cannot perform the synthesisinasingle AGS.
For example, if the synthesis above had to not only record the cost, but also the identity
of the data that resulted in that cost, then a single AGS is not powerful enough. In the
example in Figure 4.21, the MIN opcode was sufficient to allow the recording of the
lowest cost. Thereisno way, however, to record a corresponding identifier along with its
cost inasingle AGS. The way to do thisisto use multiple AGSsand in_progress tuples,
as shown in Figure 4.22. Here, the “cost” tuple to be synthesized is withdrawn, as well
asthe“min_cost” tupletowhich it is compared; in both cases in_progress tuplesare left
as a placeholder. The “mun_cost” tuple is then replaced atomically with removing the
in_progress tuples. Of course, a set of monitor processes would be required to recover
the“cost” and “min_cost” tuples from their placeholdersin the event of afailure.

Note that, in practice, a synthesizer process would likely be more optimized than the
onein Figure4.22. For example, it would typically record thelowest cost it had processed
sofarinalocal variable. If the cost discoveredinthefirst AGS wasnot lessthan this, then
most of therest of the code in Figure 4.22 would not be executed; the “cost in_progress”
tuple would then simply been removed.

44 Summary

This chapter illustrates the flexibility and versatility of FT-Linda in two maor domains,
highly dependable computing and parallel applications. All examples demonstrate the
usefulness of the AGS, in combination with monitor processes, to recover from afailure.

The replicated server example shows how FT-Linda can be used to construct aservice
with no fail-over time. It aso demonstrates how distributed variables (the sequence tuple)
can be used to order eventsin aLinda system. It further illustratesthe usefulness of AGS

83

Record the | owest cost found anmong the cost result tuples,
and the I D associated with that cost.
Initialization phase deposited tuple (“min_cost”, I NFIN TY, NULL_ID).

whi | e not done() do

(in(TSmain,"cost”, Tcost, 7id) =
out (T'Smain,"cost _in_progress”, host, cost, id)
)

(in(TSmain,"min_cost”, Tmin_cost, Tmin_id) =
out (T'Smain," min_cost_in_progress”, host, min_cost, min_id)

i f(cost < min_cost) then
Update the min tuple with cost and id

(
i n(T'Smain,"cost_in_progress”, host, cost, id)
i n(T'Smain, “min_cost_in_progress”, host, min_cost, min_id)
out (T'Smain, “min_cost”, cost, id)
)
el se

Restore the min tuple to its previous form

i n(T'Smain,"cost_in_progress”, host, cost, id)
i n(T'Smain, “min_cost_in_progress”, host, min_cost, min_id)
out (T'Smain, “min_cost”, mn_cost, m n.d)

)

end if
end while

Figure 4.22: Complex Result Synthesis

digunction. Thisreplicated server isan example of the state machine approach.

The recoverable server example explains how to implement a service with FT-Linda
featuring no redundant server computations. It shows the usefulness of a private and
stable TS to store key state for later recovery. Also, it displays how FT-Linda's oldest
matching semantics can be used to avoid aclient’s starvation. This recoverable server is
an example of the primary/backup technique.

The transaction facility demonstrates how multiple AGSs can be combined to provide
ahigher level of atomicity than what asingle AGS givesthe programmer. It requiresonly
one AGSto either commit or abort atransaction, and thus demonstrates the usefulness of
the tuple transfer primitives. This transaction facility is an example of the object/action
paradigm.

The divide-and-conguer example shows how FT-Linda can be used inamoredynamic
environment, where the size of subtasks can vary. It also demonstrates the utility of the

84

tuple transfer primitives.

The barrier exampleillustrateshow Linda s TS can be used to avoid problemsendemic
inmulti processor implementationsof barriers. It then showshow FT-Lindacan implement
fault-tolerant barriers in a ssimple and efficient manner. This technique also extends to
systolic and other similar parallel iterative agorithms.

Finally, the recovery from main process failures is discussed. The techniques for
achieving this are much like those used for worker processes.

CHAPTERS
IMPLEMENTATION AND PERFORMANCE

A prototype implementation of FT-Linda has been built. All components have been
separately tested, and are awaiting the completion of a newer version of the Consul
communication substrate. The precompiler consists of approximately 15,000 lines of C
code, of which approximately 3,000 was added to an existing Linda compiler to handlethe
extra constructs for FT-Linda. The FT-Linda runtime system consists of approximately
10,000 lines of C, not including the Consul communication substrate.

This section is organized as follows. It first gives an overview of the implementation.
Next, it discusses the mgjor data structures. After that, it describes FT-LCC, the FT-Linda
C compiler, and the processing of atomic guarded statement (AGS) request messages
by the TS managers. This section then discusses restrictions on the AGS, followed by
initial performanceresults and optimizations. Finally, it describesfuture extensionsto the
implementation.

51 Overview

The implementation of FT-Linda consists of four major components. ThefirstisFT-LCC,
aprecompiler that trandatesa C program with FT-Lindaconstructsinto C generated code.
The second is the FT-Linda library, which is linked with the object file comprising the
user code. This library manages the flow of control associated with processing FT-Linda
requests and containsa TS manager for TSsthat arelocal to that process. The thirdisthe
TSstate machine, whichisan x-kernel protocol that sits beneath the user processes on each
machine. Thisprotocol containsthereplicated TS managers, which areimplemented using
the state machine approach. Finally, the fourth part is Consul, which acts as the interface
between user processes and the TS state machines, and the network. This collection of
x-kernel protocolsimplementsthe basic functionality of atomic multicast, consistent total
ordering, and membership. It also notifies the FT-Linda runtime of processor failures so
that failure tuples can be deposited into the TS specified by the user application. While
the implementation has been designed with Consul in mind, we note that any system that
provides similar functionality (e.g., I1Ss[BSS91]) could be used instead.

The runtime structure of a system consisting of N host processors is shown in Fig-
ure 5.1. At the top are the user processes, which consist of the generated code together
withtheFT-Lindalibrary. Then comesthe TS state machine, Consul, and the interconnect
structure. The prototype is based on workstations connected by a local-area network, al-
though the overall design extendswithout changeto many other parallel architectures. The

85

86

FT-Linda
Library

FT-Linda
Library

FT-Linda
Library

FT-Linda
Library

H RN
TS State TS State
Machine Machine
| Consul | | Consul |

..

Figure 5.1: Runtime Structure

edges between components represent the path taken by messages to and from the network.
Providing this message-passing functionality and the rest of the protocol infrastructureis
the role of the x-kernel.

As noted, the implementation is currently nearing completion. All four parts have
been implemented and tested, with final integration waiting the completion of a port of
Consul to version 3.2 of the x-kernel. The final version will run on DEC 240, HP Snake,
and other workstations under Mach, Unix, and stand-alone with the x-kernel.

5.2 Major Data Structures

There are two major categories of data structures in FT-Linda. The first is the single
(complicated) data structure used by the user process to communicate a request tothe TS
managers. The second is the collection of data structures required to implement a TS.
These two categories are discussed in turn.

The request data structure contains the information required to process requests such
as TS operations in the user’s address space, and to execute a state machine command
a the appropriate TS managers. The most complex version is, of course, the request
data structure associated with an AGS. In addition to general status information, this data
structure contains an array of branch data structures for the branches of the AGS. This
branch data structure contains an op data structure for the guard and an array of such data
structuresfor the body. An op data structure contains copies of the TS handle(s) involved
with the operation, spacefor aglobal timestamp, the operator (e.g., in), anditstupleindex.
It also contains the length of the operation’s data and information for each parameter. The
information for each parameter includes its polarity (i.e., actual or formal), the offset in

87

ts.tupleftuple_index]

_.— ("fOO",lO) (N
A
o ("bar",20,50) | o] "

®®e6 oL v B O

Figure5.2: Tuple Hash Table

the data area of its actual or formal value (if any), and opcode arguments.

The request data structure also contains space for the value of any formal and actual
parameters. Fieldr _f or mal [] isassigned valuesby a TS manager whenever anin, inp,
rd, or rdp operation with aformal variableis executed; the formal values are later copied
fromr f ormal [] into the user’s variables by the GC. Field r _act ual [] storesthe
value of actuals, and is assigned its values by the GC.

Once the invocation from the generated code to the FT-Linda library has been made,
the control logic in the library routes the request appropriately. For example, if itinvolves
only alocal TS, it isdealt with by the TS management code within thelibrary itself, while
ifitinvolvesareplicated TS, it ismulticast to the TS state machine protocol susing Consul.
Inthelatter case, thisisthe hand-off point between the user process and the control thread
that carries the message through the x-kernel protocol graph to the network. As such,
the user process is blocked until the request has been completed. When the request is
completed, the request data structure is returned to the user process, where the generated
code copies the values for any formalsto the corresponding variables in the user address
space.

Tuple spaces are implemented in two places, the FT-Linda library for local TSs and
the TS state machine for replicated TSs. The algorithms and data structures used in both
placesare essentially identical. Ineach, atable of TS datastructuresis maintained. When
arequest to create a new TS is processed, a new table entry is allocated; the index of
this entry is known as the TSindex. The TS handle returned as the functional value of
ts_create contains thisindex, as well as the attributes of the tuple space. A subsequent
request to destroy a TS frees the appropriate table entry and increments an associated
version number. This number is used to detect future TS operations on the destroyed TS.

A TS itself is represented as a hash table of tuples, as shown in Figure 5.2. The
entriesin the hash table are op data structures. This op data structureis thus used for both
a TS operation in the AGS request data structure and for a tuple in TS. The difference
between the two usages is that, for efficiency’s sake, the values of al actualsin an AGS
arestored inonefield, r _act ual [] . However, the TS manager matching atuplein TS
cannot access this field, because the AGS request will have been recycled.! Thus, when

1t is highly desirable to recycle the AGS data structure once it has finished execution, not leave it

88

ts.blocked[tuple index]

o[#]

1| @ ={branch: 0| o[@

2

5[@ |-={orencn 1 ¢

ol

® ; <in("A", 10) =>
g
in ("B", 4, %) =>
i

Figure 5.3: Blocked Hash Table

an op data structure is allocated for a tuple, extra room at the end is allocated for field
o_actual [] . The value of the actuals are then copied fromr _act ual [] inthe AGS
intoo_act ual [] inthetuple.

The index into the hash table for a given tuple is smply the tuple index assigned by
the precompiler modulo the hash table size. Lindaimplementations (including FT-Linda)
generdly try to ensure the table size is larger than the number of unique signatures (and
hence different values of tupleindices), so aparticular hash chain will contain only tuples
from one signature. This reduces unnecessary contention, and is easy to accomplish
in virtually all cases, because few Linda programs use more than a small number of
signatures.

Also associated with each TSisanother hash table used to store blocked A GSrequests.
That is, at any given time, this table contains requests with guards of in or rd for which
no matching tuple exists. An example of such atableis shown in Figure 5.3. Here, the
blocked AGS request has two in guards. one waiting for a tuple named A with a tuple
index of 1 and the other waiting for atuple named B with atupleindex of 3. Note that the
request itself is stored indirectly in the table because, in the general case, such an AGS
may have multiple guards and thus may be waiting for tuples with different signatures.

The C definitions of magjor FT-Lindadatastructuresaregiveninin AppendixH. ATS
datastructure should have ahash chain for both tuplesand blocked AGSsfor each possible
tuple signature. (Thisisrequired for efficiency, not correctness.) However, because most
programsonly use afew different TS signatures, and a hash chain takeslittle space, a TS
takes on the order of a hundred bytes of space.

53 FT-LCC

The phasesinvolved in building an FT-Linda program are as follows:

1. Run the C preprocessor (cpp) on the C FT-Linda code.

allocated until the last tuplethat has datainr _act ual [] has been removed from TS.

89

token stream —

(I;Tale_inda Original type information Additional Sﬁﬁ?{‘ﬁ%
Lce signature of TS op COd? for
tuple index FT-Linda

Figure 5.4: FT-LCC Structure

2. Run FT-LCC on thisto generate C generated code (GC).
3. Compilethe GC with a C preprocessor and compiler.

4. Link the object modules with the FT-Linda library to produce the executable pro-
gram.

Thefirst step isnecessary because FT-L CC must process the code with the macro substitu-
tion and fileinclusion completed. Next, FT-LCC generates the GC, which is subsequently
compiled and linked with the FT-Linda library to produce the executable program. Note
that the GC must be preprocessed in step 3, not just compiled, because it uses macros
(especidly constants) defined in auxiliary FT-Linda include files that the GC specifies.

The remainder of this section on FT-LCC is organized as follows. First, the internd
structure of FT-LCC is described. A discussion of why FT-LCC is more complex than
LCC isgiven, followed by adescription of the different kinds of parameters FT-LCC must
parse. This section concludes with an example of GC for asimple AGS.

FT-LCC Internal Structure

The FT-Linda precompiler, FT-LCC, is a derivative of the LCC precompiler [Lei89,
LRWO91]. Theinternal structureof FT-LCCisshowninFigure5.4. Theorigina LCC code
handles everything not involving an FT-Linda construct, with the bulk of the additional
code being dedicated to handling the AGS. This code receives from LCC atoken stream
and type information for those tokens, as shown in Figure 5.4. This stream is generally
output unchanged until the opening '<’ of an AGS is detected. At this time, the AGS-
handling code parses the AGS and generates the code to implement the AGS. This GC
marshallstherequest datastructure, passesit to the FT-Lindalibrary, and then unmarshalls
the AGS after its execution is finished. This unmarshalling consists mainly of assigning
valuesto formal variables.

For each TS operation such as in that is included in the AGS, FT-LCC passes the
signature of the op — its ordered list of types — to the LCC code, which returns the
unique tuple index for that signature. Thisindex is used in the GC to calculate the hash
table entry for the index by taking its residue modul o the hash table size. This hash index
isthen stored in the AGS request structure and subsequently used by the TS managers for
matching purposes.

90

FT-LCC ComparedtoLCC

FT-LCC ismore complex than LCC mainly because of the requirement that operationsin
an AGS be executed atomically. The datain an AGS request structure is produced and
consumed in the following phases (which are elaborated further below):

1. When the AGS is executed by the user code, the GC marshalls the request data
structure with the information described above. The information placed into the
request is the structure of the given AGS (number of branches, information about
each op, etc.) and the values of actuals that are known. These include constants,
which are known at compile time, and variables that are not formals also found
earlier in the same branch. These values are placed into fieldr _act ual [] of the
request data structure. We call this phase marshall time.

2. Thelocal and replicated TS Managers process the request. We call this phase TS
manager time. Herethe valuesof actualsinr _act ual [] areused, and the values
of formal variablesareplacedintor _f or mal [] fromamatchingtuple. If aformal
variable appears later in the branch as an actua variable, then itsvaueisread from
r formal [].

3. After the processing of the AGS request by the TS managers is finished, the FT-
Linda library returns control to the GC. The GC then assigns the formal variables
set by the AGS with the values from r f ormal []. We call this phase formal
assignment time or unmarshalling time.

As an example to help motivate why FT-LCC is more complicated than LCC, consider
the following Linda sequence for adistributed variable:

i n(“count”, Tcount)
out (“count”, count + 1)

In a Linda program, the in and out operations are separate invocations to the Linda
runtime system. Thus, even in adistributed implementation of Linda, thevaue count + 1
would be known at marshall time and thus disseminated appropriately along with the
other information needed to implement the out operation in TS. However, consider the
FT-Linda equivaent to the above fragment:

(in(TSmain, “count”, Tcount) =
out (7'Smain,"count”, PLUS(count, 1))

)

Here, count is an actual variable in the out. However, its value is not known until TS
manager time, when thein inthe AGSis processed at the TS State Machines and itsvalue

91

| Case | Tokens | par amt value | Polarity |
1 typename P_TYPENANME 1
2 ? typename P_TYPENANME 0
3 ? varname P_FORMAL VAR 0
4 varname P_VAL 1
5 || varname P_FORNVAL VAL 1
6 value P_VAL 1
7 OPCODE; (args) | P_VAL 1
8 OPCODE; (args) | P-OPCODE; 1

Table 5.1: FT-Linda Parameter Parsing

isplacedintor _f or mal [] . FT-LCC thus must note whether an actua’s valueis known
by marshall time or whether its value is not known until TS manager time, because the
GC and TS managers must process these cases differently.

FT-LCC Parsing Cases

FT-LCC can ascertain whether or not the value of an actual will be known at marshall
time by the actual’s syntax and by recording which variables have been used as formal
variables in the current branch. Recall that FT-Linda does not allow function calls or
expressions as such arguments; only constants, variables, and opcodes may appear. The
specific cases encountered when parsing an FT-Linda operation are given in Table 5.1.
FT-LCC has to track whether a variable has been used in a given branch in a number of
these cases, as described below. For each parameter, then, it tracks the kind of parameter
it is with values of type par amt , as well as the polarity, which indicates whether the
parameter isaformal (polarity O0) or an actual (polarity 1).
The specific casesin Table 5.1 are as follows:

1. A typename used as an actual.
2. A typename used as aformal.

3. A formal variable. Thiswill be noted so that further usage of this variable in the
branch can be diagnosed properly; specifically, to distinguish between Cases 4 and 5
and between Cases 7 and 8. When amatching tupleis found for this operation, the
valuefromthecorresponding field inthematching tupleisplacedintor f or mal []
ifitisanin, rd, inp, or rdp (i.e., not for out, move, or copy). Thisvalueis used
by the GC at formal assignment time to set the formal variable's value. Also, this
valueinr f ormal isused if the variable is used later in the branch as an actual
variable (i.e.,, Case 5).

4. A variable used as an actual that was not a formal previoudy in the branch. The
value of thisactual isstored intor _act ual [] by the GC at marshall time.

92

. A variable used as an actual that was aformal previoudy in the branch. The value

for thisactual isnot known until TS manager time, when the TS operation in which
thevariablewasaformal isperformed. Itsvalueisfetched fromr _f ormal [] and
used for the operation.

. Anactua whose valueisspecified by aliteral value. Thisvaueisknown at compile

timeandisstored intor _act ual [] by the GC when marshalling the request.

. Anopcode(e.g., PLUS(count,1)) whose parameters valuesareall either Cases4 or 6,

i.e. not Case 5. This means that the values of these parameters are all known at
marshall time. At this time, then, the GC will evaluate the opcode and place its
result intor_actual, and indeed it will betreated just like an actual from Cases4 or 6.

Each opcode has its own value of type paramt. Current opcode values are
P_OP_M N, P_.OP_MAX, P_.OP_M NUS, and P_OP_PLUS, corresponding to opcodes
MIN, MAX, MINUS, and PLUS, respectively.

. An opcode with at least one parameter of Case 5. The values of the parameters are

thus not all known when the GC is marshalling the AGS request. Thus, the opcode
will have to be evaluated by the TS manager that executes this operation.

Cases 4-8 may optionally be preceded with a C type cast, i.e., a type surrounded by
parentheses. Also, as denoted by the polarity column in Table 5.1, Cases 2 and 3 are
formal parameters while the other are actual parameters.

As an example, the essential portion of the GC produced for the following distributed

variable update:

(in(TSmain, “count”, Tcount) =
out (7'Smain,"count”, PLUS(count, 1))

)

isgiveninFigures5.5 and 5.6. Figure 5.5 givesthe skeleton for the GC. It contains four
main phases:

1. Initialize fields that only have to be initialized once (this will be explained further

below in the section on optimizations). The innermost part of this section has been
elited from Figure 5.5, and is given in Figure 5.6.

2. Initidize fields that have to be initialized each time the AGS is executed. In this

case, only the address of count need beinitialized here.

3. Pass the request data structure to the FT-Linda library, which will passit to the TS

managers.

93

{ / start of AGS 1 statement starting at count.c:28 +
#defineAGSNUM 1

register int gc_i; staticint gc_init_done = 0;
/x other variables defined local to this AGS scope omitted for brevity +

if ('gc_init.done) { /x Initializethe one-time fields #

register op_t xgc_op; /« current op within br 4
gc.init. done=1,

strncpy(gc_reg—r_filename, " count . ¢", MAX_FILENAME);
gc_regq—r_filenamegMAX_FILENAME] ="\ 0" ;
gc_req—r_starting_line = 28;
gc_req—r_kind = REQ_AGS,
/x branch #0 pre-processing A
/... SeeFigure5.6 4
/+ end of branch 0+
/x request post-processing
gc_regq—r_num_branches = 1,
gc_req—r_next_offset = 8; /x r_next_offset aligned 4 ==> 84
rts_request_init(gc_req);
} /A Igc_init_done— stuff initialized once

/x These haveto befilled in with each AGS call, not just once.
gc_formal _ptr—f_addr[0][0] = (void) & (count);

/x Pass the request to the FT-Lindalibrary, which will pass it to the TS managers. #
ftlindalibrary((void x) gc_req, &gc_reply, AGS_NUM);

/+ Codetofill informal variables from
« gc_formal_ptr->f_addr[branch][formalnum] omitted. ¥

#undef AGS NUM /A« 14
} /4 end of AGS 1 statement starting at count.c:28 4

Figure5.5: Outer AGS GC Fragment for count Update

94

/x branch #0 pre-processing +
gc_br = &(gc_reg—r_branch[0]);

/« guard for branch O preprocessing +
gc_op = &(gc_br—b_guard);
gc_br—b_guard_present = TRUE;
gc_op—o_optype = OP_IN;

memcpy(& (gc-op—0-ts[0]),& (T Smain),sizeof (ts_handle_t)); / copy TS handle/
/% Parameter 0, case 1 +
gc_op—o_param[0] = P_-TY PENAME;
/x Parameter 1, case 3 +
gc_op—o_param[1] = P.FORMAL _VAR,;
gc_op—o.idx[1] = O; /A count isformal O for this branch (#0)
gc_br—b_formal _offset[0] = 0; 4 formal #0 (count) isat r_-formal[0..3] #

/x guard post-processing 4
gc_op—o_polarity = Oxfffffffd; gc_op—o_arity = 2;
gc_op—o_type=0; gc.op—0_-hash=0; /A (0& (MAX_HASH-1)) 4

/«x body[0] preprocessing A
gc_op = &(gc_br—b_body[0Q]);
gc_op—0_optype = OP_OUT,

/x read in the 1 TS handle for out 4
memcpy(& (gc-op—0_ts[0]),& (T Smain),sizeof (ts_handl e_t));
/x Parameter 0, case 1 +
gc_op—o_param[0] = P_-TY PENAME;
/x Parameter 1, case 8 +
gc_op—o_param[1] = P.OP_PLUS;
/x Some complicated code to describe PLUS(count,1) is omitted
* for clarity. It has to note that opcode parameter count is Case 5
* and thus not known until TS manager time,
* while opcode parameter "1’ is known at marshall time. ¥
/«x body[0] post-processing 4
gc_op—o_polarity = Oxffffffff; gc_op—o_arity = 2;
gc_op—o_type=0; gc.op—0_-hash=0; /A (0& (MAX_HASH-1)) 4

/x branch #0 post-processing #
gc_br—b_body size=1;
/+ end of branch 0 +

Figure 5.6: Inner AGS GC Fragment for count Update

95

| TS State . : § S| TS state
Machine 5 Machine
6 6
| Consul | | Consul |
Lecececccccccccccnccccccccccccccncncncnckhae 4.. Lecececccncccccncncccncns .5

Figure5.7: AGS Request Message Flow

4. Fill in the formal variables in the code (in this example, only count) from field
r formal [] intherequest datastructure.

Finally, Figure 5.6 contains the code to marshall the op data structures involved with this
AGS.

54 AGSRequest Processing

The processing of an AGS request is the most fundamental and important function the
runtime system performs. Wewill discussitin agenera fashion first, then look at specific
examples of processing particular AGSs.

54.1 General Case

Atomic guarded statements are clearly the most complicated of the extensions that make
up FT-Linda. They include provisionsfor synchronization, guarantee atomicity, and allow
TS operations in which multiple TSs are accessed. To demonstrate how these provisions
impact the implementation, here we discuss the way in which requests generated by such
statementsare handled within theimplementation. Thisdiscussion aso servesto highlight
how the components of the system interact at runtime.

The stepsinvolved in processing ageneric AG statement areillustrated in Figure 5.7.
These can be described as follows.

1. The generated code fillsin the fields of the request data structure that describes the
AGS, and then invokesthe FT-Lindalibrary.

96

10.

The code for managing local TS within the library executes as many of the TS ops
inthe AGS as possible. If such an operation withdraws or reads atuple, the values
for any formalsin the operation are placed in the request datastructure; this ensures
that later operations that access these formals have their values. Processing of this
AGS stops if alocal TS operation is encountered that depends on data or tuples
from areplicated TS operation earlier in the statement; more on this below.

The AGS request is submitted to Consul’s ordered atomic multicast service.

Consul immediately multicasts the message. Lost messages are handled transpar-
ently to FT-Linda by the multicast service within Consul.

The message arrives at all other hosts.

Some time later Consul passes the message up to the TS state machine. The order
in which messages are passed up is guaranteed to be identical on all hosts.

Each TS state machine executes all TS operationsin the AGS involving replicated
TSs. Asinstep 2, if such an operation withdraws or reads a tuple, the values for
any formalsin the operation are placed into the request data structure. 1f the request
has blocking guards with no matching tuples, then it is stored in the blocked hash
table until a matching tuple becomes available.

The TS state machine on the host that originated the AGS returns its request data
structure to the FT-Linda library code. Note that this step and the remaining ones
are only executed on the processor from which the AGS originated, because the
replicated TSs are now up to date.

The library code managing local TSs executes any remaining TS operations in the
AGS request. The origina invocation from the generated code to the FT-Linda
library then returns with the request data structure as the resullt.

The generated code copies values for formals in the AGS into the corresponding
variablesin the user process. The process can now execute the next statement after
the AGS.

Thus, the processing of an AGS can be viewed as three distinct phases. processing of
local TS operations, then dissemination and processing of replicated TS operations, and
finally, any additional processing of local TS operations. This paradigm is responsible
for the restrictions on the way in which TS operations are used in the body of an AGS
that were mentioned in Section 3.2.1. For example, it would be possible to construct
an example in which the data flow between TS operations would dictate going between
local TSsand replicated TSs multipletimes. Our experienceisthat such situations do not
occur in practice, and so such uses have been prohibited. These and other restrictions are
discussed further in Section 5.5.

97

Finally, we note that all the steps above may not be needed for certain AGS requests.
For example, if the AGS statement does not involve replicated TSs, then the request will
not be multicast to the TS state machines, and therefore steps 3 — 9 above will not be
executed. As another example, if the request consists solely of out operations, the user
process will not wait for areply.

54.2 Examples

To make the processing of AGS requests more concrete, this section examines some
specific examplesin detail. Inthefollowing, let seratch_tsidx betheindex of alocal TS
T Sscratch, main_tsidz betheindex of thereplicated TST' Smain, and tidx bethetuple
index of the tuple or template of the operation in question. The tasks performed by the
generated code in each case are identical to the above, and so are omitted.

Local Case

First consider an example that involvesonly alocal TS:

(true =
out (7T'Sscratch, “foo”, 1)
out (T'Sscratch, *foo", 7)
i n(T Sscratch, “foo”, k)
)

The generated code passes the request to the FT-Lindalibrary where local TSsareimple-
mented. To perform the out operations, this code creates a tuple using the values from
the operations. It then attaches the tuple to the appropriate hash chain in the tuple hash
table, i.e., T'S[scratch_tsidx].tuple[tidx]. Thein isthen executed. In doing so, the oldest
matching tuple in TS will be withdrawn; in this case, it would be the tuple deposited by
the first out in the AGS, assuming no matching tuples existed prior to execution of this
statement. After all operationsin the body have been executed, the request data structure
isreturned to the generated code, wherethe valuefor % is copied into £’s memory location
in the user process's address space.

Single Replicated Operation

Consider now alone TS operation on areplicated TS:

(in(TSmain, “foo", i, ?j) = skip)

After the request data structure is passed to the FT-Linda library code, it is immediately
multicast to all TS state machines. Upon receiving the message, each state machine first

98

checks for a matching tuple in the tuple hash table entry 7'S[main tsidz].tuple[tidz]. If
this entry is not empty, the first matching one on this list—that is, the oldest match—is
dequeued. If no such matching tuple is found, then the request is stored on the blocked
queue for the guard, 7'S[main_tsidz].blocked[tidx]. In either case, once a matching
tuple arrives, the in is executed, and the matching tuple used to fill in the request data
structure with the value of ;. The state machine on the originating host then returns the
data structure back to the user process.

Both Local and Replicated Tuple Spaces
Now consider a case involving both local and replicated TSs:

(true =
i n(TSscratch, “foo”, 7i, 100)
i n(TSmain, “bar”, 1, 7j)
rd(7Sscratch, “foo”, j, 7?K)

)

The request data structure is first passed to the code implementing local TSs in the FT-
Lindalibrary. As many operationsas possible arethen executed, whichinthiscaseisonly
the first in; the subsequent local rd cannot be executed because it depends on the value
for j, which will not be present in the request data structure until later. In processing this
local in, the new value for : retrieved from the matching tuple is copied into the request
data structure. Of course, neither thisin nor any other operation in the body may block.

Next, the request is passed to Consul, which transmitsit by multicast to all machines
hosting copies of the TS. Sometime later each TS state machine gets the request message.
At this point, each state machine removes the oldest tuple that matches the second in and
updates the value for 5 in the request. Note that, to find this match, the value used for ¢
is taken from the request data structure because its value was assigned earlier within the
AGS.

Following execution of replicated TS operations, the remaining local TS operationis
performed on the host on which the AGS originated. To do this, the request data structure
is first passed back to the user process. The rd operation is then executed; again, the
value of ; used for matching is taken from the request data structure. The value of the
matching tupleisused tofill in thevaluefor £ beforethe request data structureisreturned
to the generated code. Therethe new valuesof ¢, j, and & are copied from the request data
structure into their respective variablesin the user process's address space.

Move Operations

The move operation is treated as a series of in and out operations, as illustrated by the
following example:

99

(true =
nmove(7' Sscratch, TSmain)
i n(TSmain, “foo”, 7i)

)

In this example, the generated code invokes the entry point in the FT-Lindalibrary, which
in turn invokes the local TS code. There, dl tuplesin T Sscratch are removed, and the
move replaced in the request data structure by an out(7'Smazwn, t) for each such tuple ¢
inT'Sscratch. When the TS state machines receive this request, they execute these out
operations and then the final in.

If the move had been a copy instead, the only difference would be that the tuples are
copied from T'S scratch rather than removed. Templatesin such tuple transfer operations
are handled using the same matching mechanism as for normal TS operations.

AGSDigunction

Consider an AGS involving digunction, as in the following:

{

i n(7TSmain, “ping”, 1) =
or

i n(7TSmain, “ping”, n) =

)

Theactionstaken here are ssmilar to earlier examples until processing reachesthe TS state
machines. When the state machines receive this request, they find the oldest matching
tuple for each guard. If no such tuple exists, a stub for each branch is enqueued on
T Smain’s blocked hash table. If there are matching tuples, the oldest among them is
selected and the corresponding branch processed as described previoudly. Note that the
oldest matching semantics implemented by FT-Linda are important here becauseit isthis
property that guarantees all state machines choose the same branch.

Unblocking Requests

An out operation may generate a tuple that matches the guards for one or more blocked
requests. Consider the following.

100

(true = out(7Smain, “foo”, 100, 200))

First, the tuple generated by the out is placed at the end of the appropriate hash chainin
the TS data structure, i.e., the chain starting at 7'S[main tsidz].tuple[tidz]. Then, the
TS state machines determine if there are matching guards stored on the anal ogous hash
chainintheblocked hash table, i.e., T'S[main tsidx].blocked[tidz]. If 0, they take them
in chronological order and schedule any number of rd guards and up to onein guard to
be considered for execution, along with their bodies, after the current AGS is completed.

55 Rationalefor AGSRestrictions

Now that FT-Linda’s language features, usage, and implementation have been examined,
we can better motivate the design decisions leading to the AGS restrictions mentioned
above. Theserestrictionsinvolve dataflow, blocking in the body, expressionsand function
calls as parameters, and conditional execution in the body.

55.1 Dataflow Restrictions

As noted in Section 5.4.1, the three phase process (Steps 2, 7, and 9) of executing TS
operations in atomic guarded statements leads to restrictions based on data flow between
formals and actuals in the statement. Informally, any AGS that cannot be processed in
these three steps is not allowed. Note that these steps involve local, replicated, and local
TSs, respectively.

Following is an example of an AGS that does not meet these criteriaand therefore, is
disallowed:

(true =
i n(TSscratch, “foo”, 7i, 100)
i n(TSmain, “bar”, 1, 7j)
rd(7 Sscratch, “foo”, j, 7?K)
out (TSmain, “bar”, k,)

The data flow — local to replicated to local to replicated — violates the three phase
processing. If this were permitted, efficiency would suffer, and handling failures and
concurrency would bemorecomplicated. Efficiency would suffer becauseitisnot possible
to processthis AGSwith only one multicast message to the replicated TS managers. Also,
handling failures is more complicated. In this case, the host with 7'Sscratch could fail
between the in and rd involving T'Sseratch. Since T S seratch would thus no longer be
available, the replicated TS managers would have to be able to undo the effects of in on
T Smain to cancel the AGS. Further, to implement this more general AGS would add

101

complexity to the replicated TS managers. They would have to take additional measures
too ensure that this AGS appears to be atomic to other processes, i.e. so no other AGS
could access T'Smarn between the in and the out operations.

The exact nature of the dataflow restrictions depend on the particular operation, but
are based on whether the compiler and runtime system can somehow implement the AGS
in the three phases. For example, the following code from Figure 3.4 is permissible:

(in(TSmain, “in_progress”, my_hostid, subtask_args) =
move (7T Sscratch, TSmain)

)

In this case, the move is converted in step 2 into a series of in operations that read from
T S seratch and corresponding out operationsthat deposit into 7' Smain. Matching tuples
will therefore be removed from 7T'Sscratch in step 2 and then added to 7' Smain in step 7
after the guard is executed.

5.5.2 Blocking Operationsin the AGS Body

No operation in the body of an AGS is permitted to block, as discussed in Section 3.2.1.
With thisrestriction it is much smpler to implement the AGS's atomicity in the presence
of both failures and concurrency. Once a guard has a matching tuple in TS, then both the
guard and the body can be executed without the need to process any other AGS. Thisisa
simple and efficient way to provide atomicity with respect to concurrency.

Allowing the body to block causes many of the same sorts of difficulties described
above with regard to the three-phase rule. Indeed, the code fragment given above that
violated thisrule did block between the second in and therd, as far asthe replicated TS
managers are concerned. That is, they had to stop processing after the second in until the
rd had been performed in 7'Sscratch. The difficultiesthis caused are very similar to the
difficulties causes by allowing blocking in the body. In both cases, more messages are
required, and the TS managers have to do more work to be able to handle failures and
concurrency in the middle of an AGS.

5.5.3 Function Calls, Expressions, and Conditional Execution

FT-Linda does not allow a function call or an expression to be a parameter to a TS
operation, as mentioned in Chapter 3 and described further in Section 5.3. 1t also does not
allow any sort of conditional execution within an AGS, apart from which guard is chosen
in an AGS. The reasons for these restrictions will now be described in turn. A common
denominator in these restrictions is that their absence would make FT-Linda harder to
understand, program, and implement.

A parameter to an FT-Lindaoperation may not contain afunction call or an expression,
as shown in Table 5.1 in Section 5.3; the only form of computation allowed in an AGS

102

is the opcode. Allowing a function call in an AGS would be allowing an arbitrary
computation inside a critical section. Thiswould degrade performance, because each TS
manager could not process other AGSs while this computation was taking place. Also,
any such functions would have to have restrictions on them; for example, they would
have to be free of side-effects, and they could not reference pointers. This is required
to maintain reasonable semantics, because the functions would be executed on all the
machines hosting the TS replicas, rather than just on the user’s host. Similarly, any
expressions would have to have restrictions on them, because some expressions would
have to be evaluated in a distributed fashion with values obtained from the replicated TS
managers. While there may be a way to define a reasonable usage of expressions and
functionsin FT-Linda parameters, wefeel it would be difficult to explain cleanly. 1t would
also be difficult to rationalize why a dightly more general form should not be permitted.

Similarly, one could imagine permitting some form of loops or conditional statement
in an AGS. To be useful, however, many ways one could envision using these would
require some form of variable assignment. For example, variable assignment would be
used to store a return value from inp, if it were allowed in the body, something that
makes sense if oneisto allow varaible assignment. It thus would become quite difficult
to add such conditional statements in ways that could be cleanly described, efficiently
implemented, and yet did not beg for more functionality.

5.5.4 Redrictionsin Similar Languages

Other researchers have found it necessary or at least desireable to impose restrictions
similar to those discussed above. As mentioned in Section 3.4, one optimization in the
Lindaimplementation describedin [Bjo92] collapsesanin and an out into one operation at
the TS manager. However, in order for the compiler to be able to apply this optimization,
the in and out have to use only simple calculations very similar to FT-Linda’'s opcodes.
Of course, thisis applicable to many common Linda usages, most notably a distributed
variable.

A second example is Orca, a language that is useful for many of the same kinds of
applications [BKT92, Bal90, TKB92, KMBT92]. The language is based on the shared-
object model and has been implemented on both multiprocessors and distributed systems.
An Orcaobject consists of private dataand external operationsthat it exports. Operations
consist of a guard (a boolean expression) and a series of statements that may modify the
object’s private data. An operation isboth atomic and seridizable, asis FT-Lindas AGS.

To achive these semantics, Orca's designers have placed some restrictions similar to
thost described above for FT-Linda. For example, only the guard may block. Also, the
guard must be free of side effects. Theserestrictionsare crucial in allowing the reasonable
implementation of the atomicity properties of Orca's operations.

103

555 Summary

The above restrictions allow the AGS to be implemented with reasonable semantics and
performance in the presence of failures and concurrency. And, as we have demonstrated
in the examples in Chapters 3 and 4, these restrictions do not appear to adversely affect
FT-Linda's usage; they still alow FT-Linda to be useful for a variety of applications.
Finaly, other researchers have also found it necessary to impose similar restrictions to
achieve smilar goals.

5.6 Initial Performance Results

Some initia performance studies have been done on the FT-Linda implementation. As
noted, the runtime system has not yet been merged with Consul, so the measurements
capture only the cost of marshalling, the AGS, performing its TS operations at the TSs
involved, and then unmarshalling the AGS. In thetested version, the control flow from the
library to the state machine was implemented by procedure call rather than the x-kernel.
As such, only onereplicaof the TS state machine was used.

Table 5.2 gives timings figures for a number of different machines. The first result
column is for an empty AGS, while the next give the cost of incrementing a distributed
variable. Subsequent columns gives the marginal cost of including different types of in
or out operations in the body. We note that the i386 figures are comparable to results
reported elsewhere[Bj092]. Thisisencouragingfor tworeasons. First, FT-Lindaislargely
unoptimized, while the work in [Bjo92] is based on a highly optimized implementation.
Second, we have augmented the functionality of Linda, not just reimplemented existing
functionality.

These figures can be used to derive at least a rough estimate of the total latency of an
AGS by adding the time required by Consul to disseminate and totally order the multicast
message before passing it up to the TS state machine. For three replicas executing on
Sun-3 workstations connected by a 10 Mb Ethernet, this dissemination and ordering time
has been measured as approximately 4.0 msec [MPS93a)]. We expect this number to
improve once the port of Consul to afaster processor iscompleted.

We note that even these relatively low latency numbers overstate the cost involved
in some ways. A key property of our design is that TS operations from an AGS in one
user process on a given processor can be executed by the TS state machine while those
from other processes on the same processor are being disseminated by Consul. This
concurrent processing means that, although the latency reflects the cost to an individual
process, the overall computational throughput of the system is higher because other
processes can continue to make progress. 1n other words, the latency does not necessarily
represent wasted time, because the processor can be performing user-level computationsor
disseminating other AGSsduring thisperiod. To our knowledge, thisability to process TS
operations concurrently within a distributed Lindaimplementation isunique to FT-Linda

The above performance figures support the contention that the state machine approach

104

empty cost per body op
Machine AGS | in-out, || outy [outy [out; | ing | ing | iny | ing
SparcStation 10 4 31| 25| 28| 28 8 9| 20| 19
HP Snake 4 33 23 26 26 10| 11| 23| 23
SparcStation IPC 14 123 77 88 | 22| 25| 61| 64
1386 (Sequent) 30 300 || 147 | 176 | 184 || 91 | 120 | 270 | 264

empty AGS = (true=- skip)

in-out, = (in(T'Smain,*TEST”,) = out(T Smain,"TEST”, PLUS(:,1));)
outg = out(T'Smain,“TEST™)

out, = out(T'Smain,“TEST",1,2,3,4,5,6,7,8)

out, =out(T'Sman,"TEST” a,b,c,d, e, f,qg,h)

ing =in(TSmain,*TEST")

in = in(TSmain,*TEST”, TZint, Tint, Tint, Tant, Tint, Tint, Tint, Tint)

in, =in(TSmain,*TEST",1,2,3,4,5,6,7,8)

ins =out(T’'Smamn " TEST”,?a,?7b,7¢,7d,7e,7f,7qg,7h)

Table 5.2: FT-Linda Operations on Various Architectures (;:Sec)

isareasonableway toimplement fault tolerancein Linda. Althoughamorethorough anal-
ysisis permature at this point, our speculation isthat this approach will prove competitive
with transactions, acommon way to achieve fault tolerance with dependable systems, and
checkpoints, the technique most widely used to achieve fault tolerance in scientific pro-
grams. None of these three fault-tol erance paradigms have been devel oped and deployed
fully enough with Lindato make quantitative comparisons about their strengths and weak-
nesses. Fortunately, active research is being performed in al three areas, so hopefully
in the near future we will be able understand better the performance and tradeoffs of the
different approaches.

5.7 Optimizations

Asalready noted, the TS managers and GC have been only dightly optimized. However,
one optimization has provided great benefits, and two other planned optimizations would
also be beneficial.

The key observation for the first optimization is that most of the information in an
AGS request data structure does not change between different executions of the AGS.
Examples of items that do not change include the number of branches and the signature of
each operation. Infact, only two items can vary between different executions of the same
AGS by the same process. The first is the address of a stack variable used as a formal
parameter (addresses of formal variables are used in the GC at formal assignment time).

105

This corresponds to Case 3 in Table 5.1, if the variable in question is a stack variable
(an “automatic” variable in C and some other languages). The second is the value of a
variable used as an actual or as an opcode parameter, and then only if thisvariable was not
aformal earlierinthe branch. ThisisCase4 inin Table 5.2. Thus, with thisoptimization,
the AGS request data structure is allocated and fully initialized in the generated code the
first timeit is executed for a given process. When the same AGS is then executed later
only the values and addresses of the af orementioned variables are copied.

This optimization dramatically reduces the execution |oads associated with the AGS
command. For example, the times in Table 5.2 for the Sparcstation |PC were 1200 —
1500 s:seconds higher—more than an order of magnitude—without this optimization.
And it is useful not only for timing tests but aso for real-world applications, because
many AGS statements are in loops.

The second optimization is the network analogy of the first one. Since most of the
information in an AGS request data structure does not change between invocations, the
information that does not change only needs to be sent to its TS manager(s) once, and
stored for future use. This greatly reduces the size of the AGS request that has to be sent
over the network each time, and thus reduces the latency. It also eliminates the CPU time
to copy the unchanging information. As noted previoudy, this optimization has not yet
been implemented.

The third and final optimization isto make AGSs with all outs, moves, and copys —
awrite-only AGS — not to delay the user any more than necessary. Currently, the user
is blocked until the AGS has been executed by all pertinent TS managers. However, the
AGS need only block the user until the GC has marshalled the its request data structure
and submitted it to the FT-Linda library, because the user code receives no information
from the AGS's execution. Thus, it need not wait for this execution to occur.

5.8 Future Extensions

We hope to extend FT-Linda's implementation to provide greater functionality and per-
formance in a number of ways. These are discussed in the following sections. Firgt, the
reintegration of failed TS managersis discussed. Next, the replicating of TS managersto
asubset of the hosts in an FT-Linda system is described. We conclude with a discussion
of how network partitions can be handled.

5.8.1 Reintegration of Failed Hosts

The major problem in reintegrating a failed processor upon recovery is restoring the
states of replicated TSs that were on that machine. Although there are several possible
strategies, a common one used in such situations is to obtain the data from another
functioning machine. To do this, however, requires not only copying the actual data, but
also ensuring that it isinstalled at exactly the correct time relative to the stream of tuple
operationscoming over thenetwork. That is, if the state of the TSsgiven to therecovering

106

Tuple Server Compute Server

(Replicated Request Handler
: 4

TS State
Machine

Figure 5.8: Non-Full Replication

processor P; isasnapshot taken after AGS S| has been executed but before the next AGS,
Ss, then P, must know to ignore S but execute S; when they arrive.

Fortunately, Consul’s membership service provides exactly the functionality required
[MPS934]. When a processor P; recovers, a restart message is multicast to the other
processors, which then execute aprotocol to add F; back into the group. The key property
enforced by the protocol is that all processors—including ,—add P; to the group at
exactly the same point in the total order of multicast messages. This point could easily
be passed up to the TS state machine and used as the point to take a snapshot of all
replicated TSsto passto ;. Note that, to reintegrate a TS state machine, the hash tables
for both tuples and blocked requests would need to be transferred. This general scheme
for reintegrating failed hosts could also be used to incorporate new tuple serversinto the
system during execution.

5.8.2 Non-Full Replication

TheFT-Lindaimplementation currently keepscopiesof all replicated TSson all processors
involved in the computation. Using all processors is, however, unnecessary. We can
designate a small number to be tuple servers, and use only these processors to manage
replicated TSs. Each tuple server would maintain copies of al replicated TSs and would
either be well-known or ascertainable from a name server. [CP89] User processes would
execute on separate compute servers.

An organization along these lines would necessitate some changes in the way user
processes interact with the rest of the FT-Linda runtime system. For example, Figure 5.8
demonstrates the differences in the processing of an AGS. Rather than requests being
submitted to Consul directly from the FT-Linda library, a remote procedure call (RPC)
[Nel81, BN84] would be used to forward the request to a request handler process on a
tuple server. This handler immediately submitsit to Consul’s multicast service as before.
Later, after the AGS has been processed by the TS state machines, the request handler
on the tuple server that originally received the request sends the request back to the user

107

process.

Failure of a compute server causes no additional problems beyond those present in
complete replication, but the same is not true for tuple servers. In particular, if such
a fallure occurs, then any user process awaiting for a reply from that processor could
potentially block forever. To solve this problem, the user process would time out on
its reply port and resubmit the request to another tuple server. To prevent the request
from being inadvertently processed multipletimes, the user processwould attach aunique
identifier to the request, and the local TS logic and the TS state machines only process
one request with agiven identifier.

Note that tuple servers in this scenario are very much analogous to the file servers
found in a typical workstation environment. Indeed, the way in which they would be
used would likely be similar as well, with afew tuple servers and many compute servers.
Of course, the tuple servers could have faster CPUs and more memory than the compute
servers, asfile serverstypically do when compared to the client machines they serve.

This relatively small degree of replication for stable TSs that non-full replication
allows should be sufficient for many fault-tolerant applications. It should also scale much
better than full replication.

5.8.3 Network Partitions

A network partition occurs when hosts on a network that can normally communicate with
each other cannot do so, typically due to the failure of a communication link or of a
network gateway. The typical way to handle such asituation is to alow only those hosts
that are in a mgjority partition to continue [ASC85]. This ensures that there will not be
multiple, divergent versions of the data, because at most one partition contains amajority
of the hosts. Hosts that are in the minority must wait until they are in the majority, update
their copy of the replicated data, and then proceed.

The current implementation of Consul does not handle network partitions. However,
it would be very easy to extend Consul to do so, as described in [MPS93g]. This change
would be completely transparent to the FT-Lindaimplementation, assuming the schemefor
rei ntegrating hostsdiscussed above had beenimplemented. Consul’smembership protocol
on a given host already keeps track of which hosts it can currently communicate with.
Thus, it knows the size and membership of its partition. Additionally, this information
is kept consistent with all other membersin its partition. It is thus ssimple to extend this
membership protocol to check whether or not its host is in the mgjority partition. If it is,
it proceeds as normal. If not, it smulates a crash and then reintegrates upon rejoining the
majority partition.

5.9 Summary

This chapter describes the details of the implementation of FT-Linda. An overview is
given of the major components, followed by a description of the major data structures

108

were then given; The FT-LCC precompiler is presented, followed by the details regarding
the processing of an atomic guarded statement. The restrictionson the AGS are described
next. Initial performanceresultsand optimizationsarethen given, followed by adiscussion
of future planned extensions to the implementation.

The two maor categories of data structures in FT-Linda's implementation are for
request messages sent to the tuple space managers and for tuple spaces. The request
messages specify operations that the tuple space managers perform, including creating
and destroying tuple spaces and also the atomic guarded statement. These messages aso
include space for the values of actuals and formalsto be recorded. A tuple space issimply
two hash tables, one for tuples and the other for blocked atomic guarded statements.

The FT-LCC precompiler generates C code that includes generated code (GC) to
marshall an AGS request data structure and pass this request to the FT-Linda library. It
is more complex than its LCC (Linda) predecessor because it must deal with the atomic
guarded statement’s atomic properties, and some of the values involved in an atomic
guarded statement are not known until the request is processed at the replicated tuple
space managers.

The processing of an AGS takes place at a number of stages. It is marshalled by the
GC, then operated on by the local TS manager. After this, it is multicast to al replicated
TS managers, where it is executed at the same logical time. The AGS is then processed
further at the local TS manager, and then the AGS returns control to the next statement
in the program. The actual logic to process an atomic guarded statement at a given tuple
space manager isvirtually identical for local and replicated tuple spaces.

The atomic guarded statement has restrictions involving dataflow, blocking in the
body, function calls, expressions; it aso allows no conditional execution inside the body.
The dataflow restrictions are necessary to allow efficient processing and multicasting of
the atomic guarded statement. An operation inthe body of an atomic guarded statement is
not allowed to block for ssimilar reasons. Function calls and expressions are not permitted
in an atomic guarded statement because they would allow an arbitrary computation inside
an atomic guarded statement. Also, the functions and expressions would have to have
limitations on them that would be hard to explain cleanly and to justify why more general
formsare not permitted. Finally, we notethat another Lindaimplementationand asimilar
language, Orca, place restrictions similar to many of those that FT-Linda mandates.

Initial performance results are given in this chapter. The costs in processing tuple
Space operations are comparable to another Linda implementation. Thisis encouraging,
because FT-Linda is largely unoptimized and it aso has augmented the functionality of
Linda.

The implementation has been optimized some, and future optimizations are possible.
The information in an atomic guarded statement that does not change is only marshalled
once, and aplanned optimization will also only transmit this unchanging information over
the network once. Also, write-only atomic guarded statements can be executed in the
background while the user’s code proceeds.

Therearethreewaysinwhichweplanto extend the FT-Lindaimplementation. Support

109

for reintegration of failed or new hosts can be provided directly by Consul’s membership
service. Non-full replication can be achieved by having tuple servers on a subset of
the machines. Finally, Consul can be extended in proven ways to allow replicated TS
managersthat can still communicate with the majority of their peersto continue operating
in the face of network partitions.

110

CHAPTERG6
CONCLUSIONS

6.1 Summary

In this dissertation we have addressed the problem of providing high-level language
support for fault-tolerant parallel programming. We have created a version of Linda,
which we call FT-Linda, to permit the construction of fault-tolerant parallel programs.
The distinguishing features of FT-Linda are its stable tuple spaces and atomic execution
of multiple tuple space operations.

We surveyed Lindain Chapter 2. Linda has semantic deficiencies even in the absence
of failures, including weak inp/rdp semantics and asynchronous outs. Linda applications
also have problemsin the presence of failures, most notably Linda’slack of tuple space sta-
bility and its single-operation atomicity. Common Linda paradigmssuch asthedistributed
variable and the bag-of-tasks paradigm also have problems in the presence of failures.
Finally, we concluded this chapter by outlining alternative ways for implementing tuple
gpace stability and multi-operation atomicity.

In Chapter 3 we presented FT-Linda. It provides mechanisms for creating multiple
tuple spaces with different attributes. These attributes are resilience, which specifies a
tuple space's failure behavior, and scope, which designates which processes may access
a tuple space. FT-Linda has two provisions for atomic execution. The first is the
atomic guarded statement (AGS), which allows asequence of tuple space operationsto be
executed in an all-or-nothing fashion despite failuresand concurrency. The AGS aso has
adigunctiveformthat allowsthe programmer to specify multiple sequences of tuple space
operations from which zero or one sequence is selected for atomic execution. The second
provision for atomic execution is FT-Linda's tuple transfer primitives, which allow tuples
to be moved or copied atomically between tuple spaces. FT-Linda features improved
semantics. strong inp/rdp semantics, oldest matching semantics, and the sequential
ordering property. Inthischapter weal so surveyed other effortsto allow Lindaprogramsto
toleratefailures. Finaly, in Chapter 3 we discussed possible extensionsto FT-Linda; these
include additional tuple space attributes, nested AGSs, notification of which sequence of
tuple space operations was executed (if adigunctional AGS s used), tuple space clocks,
tuple space partitions, guard expressions, and alowing the creation and destruction of
tuple spaces to beincluded in AGSs.

In Chapter 4 we demonstrated FT-Linda's usefulness in constructing highly depend-
able systems and parallel applications. We gave three examples of dependable systems
constructed with FT-Linda: a replicated server, a recoverable server, and a transaction
facility. The replicated server features a server with no fail-over time — there is no

111

112

recover phaseto delay aclient of afailed server — that uses adistributed variable tupleto
maintainreplicaconsistency. Therecoverable server performsno redundant computations
in the absence of failures, and saves its private state in a stable tuple space for recovery
purposes. The transaction facility isalibrary of user-level proceduresimplemented with
FT-Linda. This shows how AGSs can be used to construct a higher level abstraction. In
particular, it demonstrates the power of FT-Linda's tuple transfer primitives.

Chapter 4 also presented two examples of using FT-Linda to construct fault-tolerant
parallel applications. adivide-and conquer worker and afault-tolerant barrier. Thedivide-
and-conquer worker is ageneralization of the bag-of-tasks example from Chapter 3. The
fault-tolerant barrier solution also applies to another class of algorithms, systolic-like
algorithms. We concluded Chapter 4 with a discussion of how to tolerate the failure of a
main process.

We discussed the implementation and performance of FT-Linda in Chapter 5. The
major data structures are for the AGS and the tuple spaces. The FT-LCC precompiler
is a derivative of the Linda LCC precompiler; its main differences from LCC are due to
the atomic nature in which multiple tuple space operations are combined in the AGS. An
AGS is executed by marshalling the AGS data structure, sending it to the various tuple
space managersfor processing, and then unmarshalling the data structure (mainly copying
the values of formal variables into their respective variables). The AGS has restrictions
similar to those in similar paralel languages. The cost per processing an FT-Linda
operation by the tuple space managers is competitive with other Linda implementations.
Optimizations to FT-Linda’s implementation include marshalling and transmitting only
once the unchanging information in an atomic guarded statement. Future extensions to
FT-Linda include reintegration of failed hosts, non-full replication, and tolerating some
network partitions.

6.2 FutureWork

This work can be expanded in many different directions. These include completing
and extending FT-Linda's implementation, porting it to other environments, extending
the language, investigating FT-Linda’'s use as a back-end language, and considering a
real-time variant of FT-Linda

Onemagjor areafor futureisto complete and extend theimplementation. Thefirstitem
isto complete the integration with Consul. After that, a port of FT-Lindato Isiswould be
interesting. The extensionsto theimplementation discussed in Section 5.8 — reintegration
of failed hosts, allowing non-full replication, and tolerating network partitions— should
be completed. Finally, the implementation could be optimized further. One optimization
would be to transmit only unchanging information in an AGS request message, as was
discussed in Section 5.7. Another optimization to investigate is whether it is beneficial
to use a semantic dependent ordering in delivering the AGS requests to the replicated
TS managers than the more restrictive total ordering. For example, AGSs with all rds
are commutative with each other, and thus a collection of such read-only AGSs could

113

be executed in different orders at different replicas. Unfortunately, a semantic dependent
ordering can feature higher latency than a total ordering if only a few of the operations
are commutative. It isan open question as to whether enough Linda applications would
contai n asufficient number of read-only AGSs so asto warrant using asemantic dependent
ordering. However, note that this choice could be made by the user when starting the
FT-Linda program.

The FT-Linda language will continue to mature. One possibility in this area is to
accommodate many or all of the possible extensions listed in Section 3.5. Another isto
support more opcodes. A final possibility isto remove or lessen some of the restrictions,
most notably to allow expressionsin an AGS.

FT-Lindaalso seems agood candidate as a back-end language for indirect usage. One
example of this was given in the general transaction facility in Section 4.1.3. Another
possibility is to build on Linda tools or other additions to Linda. The Linda Program
Builder (LPB) isahigh-level Computer Aided Software Engineering (CASE) tool that is
used to makeprogramming inLindasimpler. For example, it presentsthe programmer with
menu choices for common Linda paradigms such as the bag-of-tasks and the distributed
variable paradigms. Indoing so, it ensuresthat the programmer suppliesinformation about
the actual usage of each tuple signature. This allows a higher level of optimization than
just static analysis of the code would permit. It would beinstructiveto explore FT-Linda's
usage as a back-end to the LPB; indeed, the programmer might not even need to know
about FT-Linda, only Linda. Another interesting Linda project is Piranha, which allows
idle workstations to be used transparently. FT-Linda's integration with Piranhawould be
of great interest to many, especialy if it were also integrated with a CASE tool such asthe
LPB, Another back-end usage of FT-Linda is with finite state automatas (FSAS), which
arevery useful for specifying featuresin telecommunications systems [Zav93]. FT-Linda
could be used to implement FSAs. For example, events and states could be represented
by tuples, and a state change — the consumption and production of event and state tuples
— could be represented by asingle AGS.

Finally, there is a great need for more high-level language support for fault-tolerant,
real-time programming. If Linda's simple tuple space model could be used for this it
would be both edifying and useful. Real time systems need predictability, which can be
met in part by ensuring that all timing constraints are met. There are anumber of possible
ways that FT-Linda could be extended to facilitate this, a thorough discussion of which
is beyond the scope of this dissertation. However, any such extensions would have to
answer at least the following questions:

e Will hard real time or soft real time or both be supported?
o Will the predictability be achieved by priorities or deadlines or both?

e Arethese priorities or deadlines to be associated with a TS, a TS operation, or an
entire AGS? Further, if they are associated witha TS or a TS operation, what isthe

114

meaning of the deadline/priority in the face of an AGS that has multiple priorities
represented in the TSsinvolved with it.

Further, it would be interesting if facilitiesto allow the programmer to deal with atiming
failurecould beprovided inasimilar fashionto how FT-Lindaprovidesfailurenotifications
upon the failure of a host. Additionally, the state machine approach used to implement
FT-Linda seems well-suited to provide real-time support, in addition to fault-tolerance.
Indeed, one such project is already underway to provide real-time communication support
for replicated state machine in the Corto project [AGMVR93], a real-time successor to
Isis. This could serve as an excellent basis for areal-time versions of FT-Linda

APPENDIX A
FT-LINDA IMPLEMENTATION NOTES

The C FT-Linda code in the appendices differsfrom the pseudocode given in previous
chaptersin a number of ways.

First, the code to parse array subscriptsin an AGS has not yet been implemented. This
isonly encountered in Appendix G. The workaround used in the following appendices
IS to use a non-subscripted variable in the AGS and copy to and from it. This variable
can be an array or structure or anything that is not subscripted and that the C si zeof ()
facility will give the true size of the datain question (i.e., not pointers, either directly or
in structures).

Second, inp and rdp have not yet been implemented in expressions. In this case,
these operations are boolean guards and the entire AGS is a boolean expression. The
workaround isto set a variable with a sentinel value that cannot occur in a tuple and then
use this variable as a formal in an AGS. The value of this variable can be compared to
theillegal value after the AGS to ascertain whether or not the AGS guard and body was
executed.

Third, the implementation provides a hook, ft| fail _host (), to smulate the
failure of a host.

Fourth, thelogical name of atupleisnot a character string like “name” but rather isa
void type, which is stylistically represented in uppercase (e.g., NAME). Thisvoid typeis
declared with the newt ype operator, which is the C-Linda analogy to the C t ypedef
operator. For further information, see [Lei89],

115

116

APPENDIX B
FT-LINDA REPLICATED SERVER

/ Replicated server example. There is no monitor process since the failure
+ Of a server does not need to be cleaned up after. +

#ttcontext replicated_server
#include <stdio.h>
#include"ftl i nda. h"

#define THIS.SERVICE 1
#defineNUM_CLIENTS 5

#define CMD1 1 /4 SQRA

#define CMD2 2 /x SUM A

#define CLIENT_LOOPS 2

#define SQR_ANS(X) ((x) * (X))

#define SUM_ANS(ab,c) ((a) + (b) + (c))

newtypevoid SERVER _TIME;

newtype void REQUEST;

newtypevoid REPLY;

newtypevoid SQR_.CMD; /A CMD1 +
newtypevoid SUM_CMD; /A CMD2 4

void server(void);
void client(int);

117

118

LindaMain (argc, argv)
int argc;
charx argv [];

{

int host, i, Ipid, num_hosts = ftl_num_hosts();

/ initialize the sequence tuple
< true=> out(TSmain, SERVER_TIME, THIS_SERVICE, (int) 0); >

/x Create one server replica on each host 4

for (host=0; host<num_hosts; host++) {

Ipid = new_Ipid();

ftl_create user_thread(server, " server ", host, Ipid, 0, 0, O, 0);

}

/x create some clients+

for (i=0; i<NUM_CLIENTS; i++) {

Ipid = new_Ipid();

host =i % num_hosts;

ftl_create user_thread(client, " cl i ent ", host, Ipid, i, 0, 0, 0);

}

/x The LindaMain thread goes away here, but the program won'’t be
* finished until all living clients are through +

}

119

/« The client invokes both services CLIENT_L OOPS times. It also
* teststhe answers it gets, something of course areal client
* generally would not (and often could not) do.
A

void

client (int client_id)

{

inttime, i, X, & b, ¢, answer;
printf(" C i ent % on host % her e\ n", client.id, ftl_my_host());
for (i=0; i<CLIENT_LOOPS; i++) {

/x invokethe first command
x=i+10;
< in(TSmain, SERVER _TIME, THIS_ SERVICE, 2time) =>
out(TSmain, SERVER_TIME, THIS_SERVICE, PLUS(time,1));
out(TSmain, REQUEST, THIS_SERVICE, time, SQR_.CMD, CMD1, x);
>

/x wait for thefirst reply to this command «
< in(TSmain, REPLY, THIS_SERVICE, time, 7answer) => skip >
if (answer = SQR_ANS(x))

ftl_exit(" d i ent got bad sqr answer. ", 1);

/x invoke the second command +
a=i+100; b=i%200; c=i*300;
< in(TSmain, SERVER TIME, THIS_ SERVICE, 2time) =>
out(TSmain, SERVER_TIME, THIS_SERVICE, PLUS(time,1));
out(TSmain, REQUEST, THIS SERVICE, time, SUM_CMD, CMD2, a, b, ¢);
>

/x wait for thefirst reply to this command «
< in(TSmain, REPLY, THIS_SERVICE, time, 7answer) => skip >
if (answer = SUM_ANS(a, b, c))

ftl_exit("d i ent got bad answer. ", 1);

}

printf(" C i ent % on host % done\ n", client.id, ftl_my_host());

120

/ The server implements two different commands, both of which return
* a simple answer.
A

void

server()

{

int time, X, & b, ¢, answer, cmd;

/+ loop forever over al times+
for (time=0; ; timet++) {

/+ read the next request tuple+
< rd(TSmain, REQUEST, THIS_SERVICE, time, SQR_CMD, 7cmd, ?X) => skip
or
rd(TSmain, REQUEST, THIS_SERVICE, time, SUM_CMD, ?cmd, ?a, ?b, 7c) => skip
>

/+ compute the answer for the request #
switch(cmd) {
case CMD1:
answer = SQR_ANS(x);
break;
case CMD2:
answer = SUM_ANS(ab,c);
break;
default:
ftl_exit(" Server error", 1),
/+«NOTREACHED4

}

/+ send thereply A
< true=> out(TSmain, REPLY, THIS_SERVICE, time, answer); >

J
/NOTREACHEDY

APPENDIX C

FT-LINDA RECOVERABLE SERVER EXAMPLE

/+ Recoverable server example. This shows how to implement two commands,
 Instead of the one shown earlier in the paper. +

#ttcontext recoverable_server
#include <stdio.h>
#include"ftl i nda. h"
#include" assert . h"

/ Anything that can be an actual in atuple had better be cast to a type
* SO the signatures are guaranteed to match +

#defineMY _SERVICE (int) 1

#defineNUM_CLIENTS (int) 5

#define CMD1 (in)1 /x SQRA

#define CMD2 (int)2 /x SUM +

#define CLIENT_LOOPS 2

#define SQR_ANS(x) () * ()

#define SUM_ANS(a,b,c) ((@ + (b) + (c)

#define INITIAL_SERVER_HOST (int) 1

#define ILLEGAL _HOST -1

#define ILLEGAL _SQR -1

#define INIT_SUM (int) O

#define INIT_SQR (int) O

newtype void REQUEST;

newtypevoid IN_PROGRESS;
newtypevoid REPLY;

newtypevoid SERVER_REGISTRY;
newtype void SERVER_STATE;
newtypevoid SERVER_ HANDLE;
newtypevoid SQR_.CMD; /A CMD1 +
newtypevoid SUM_CMD; /A CMD2 4
newtypevoid REINCARNATE;

void server(void);

void client(int);
void monitor(int);

121

122

LindaMain (argc, argv)
int argc;
charx argv [];

}

intf_id, host, i, server_lpid, Ipid, num_hosts = ftl_num_hosts();
ts_handle_t server_handle;

/« For now we use a { Stable,Shared} TS for the server, instead

+ of a{StablePrivate} one as one would normally do, since

* passing an L PID to the create primitiveisn’t implemented yet. 4
server_Ipid = new_Ipid();

create TS(Stable, Shared, & server_handle);

/x Initidizethe TS handle and registry for the server.
+ We will not initialize the state, sinceif server_handle were
* Private, as our solutionwould normally have, we could not do this.
i
< true=> out(TSmain, SERVER HANDLE, MY _SERVICE, server_handle);
out(TSmain, SERVER REGISTRY, MY _SERVICE, server_Ipid, INITIAL_SERVER_HOST);
>

/x create amonitor process on each host

for (host=0; host<num_hosts; host++) {

Ipid = new_Ipid();

f_id = new failure.id();

ftl_create_user_thread(monitor, " moni t or ", host, Ipid, f_id, 0, O, 0);

}

/x Create one server on host INITIAL_SERVER_HOST A

assert(ftl_num_hosts() > INITIAL_SERVER_HOST);

Ipid = new_Ipid();

ftl_create user_thread(server, " server ", INITIAL_SERVER_HOST, Ipid, O, O, 0, 0);

/x create some clients+

for (i=0; i<NUM_CLIENTS; i++) {

Ipid = new_Ipid();

host =i % num_hosts;

ftl_create user_thread(client, " cl i ent ", host, Ipid, i, 0, 0, 0);

}

/x The LindaMain thread goes away here, but the program won'’t be
* finished until all living clients are through +

123

/ Theclient invokes both services CLIENT _L OOPS times. It also
* teststhe answers it gets, something of course areal client
* generally would not (and often could not) do.
A
void
client (int client_id)
{
inti,x, a b, c, answer, my_lpid = ftl_my_Ipid();

printf(" C i ent % on host % her e\ n", client.id, ftl_my_host());
for (i=1; i<CLIENT_LOOPS; i++) {

/x invokethe first command +
x=i+10;
< true=> out(TSmain, REQUEST, MY _SERVICE, my _Ipid, SQR_CMD, CMD1, x); >

/x wait for thefirst reply to this command «
< in(TSmain, REPLY, MY _SERVICE, my _lpid, ?answer) => skip >
if (answer = SQR_ANS(x))

ftl_exit(" d i ent got bad sqr answer. ", 1);

/x invoke the second command +

a=i*x100; b=i+200; c=i+300;

< true=> out(TSmain, REQUEST, MY _SERVICE, my_Ipid, SUM_CMD, CMD2, a, b, ¢); >
/x wait for thefirst reply to this command «

< in(TSmain, REPLY, MY _SERVICE, my _lpid, ?answer) => skip >

if (answer = SUM_ANS(a, b, c))
ftl exit("d i ent got bad answer. ", 1);

}

printf(" C i ent % on host % done\ n", client.id, ftl_my_host());

124

/ The server implements two different commands, both of which return
* a simple answer.
A
void
server()
{
int x, a b, ¢, answer, cmd, best_sqr, best_sum, client_Ipid;
ts handlet my ts;

printf(" Ser ver her e on host %\ n", ftl_my_host());

/% read in server’s TS handle «
< rd(TSmain, SERVER_.HANDLE, MY _SERVICE, ?2my_ts) => skip >

/x read in server’s state. Note that we would normally initialize
* it likethis:
* if (< not rap(my-ts, SERVER_STATE, ...) =>
* out(my_ts, SERVER_STATE, ... initial values...); >
* However, we cannot do this since the AGS has not yet been implemented
* as part of an expression. Thus, we will simulatethis.
A/
best_sgr = ILLEGAL _SQR;
< rdp(my_ts, SERVER_STATE, MY _SERVICE, ?best_sqr, ?best_sum) => skip >

if (best_sgr == ILLEGAL _SQR) {

/x The rdp did not find a state tuple, so we will create one.
*
* Note that having these two AGSs would not work in generd,
* [.e it won’'t have the same semantics viz. failures and concurrency
* asthe AGS expression we would normally implement it with.
* We know here that it works, however, since there can be only this
* server executing MY _SERVICE at once.
A/

best_sgr = INIT_SOR;

best_sum = INIT_SUM;
< true=> out(my_ts, SERVER_STATE, MY _SERVICE, best_sqr, best_sum); >

}

125

/x loop forever A

for (;;) {

/+ read the next request tuple ¥

< in(TSmain, REQUEST, MY _SERVICE, “client_Ipid, SQR_CMD, 7cmd, ?X) =>
out(TSmain, IN_.PROGRESS, MY _SERVICE, client_Ipid, SQR_.CMD, cmd, X);

or
in(TSmain, REQUEST, MY _SERVICE, “client_Ipid, SUM_CMD, 7cmd, ?a, ?b, 7¢) =>
out(TSmain, IN_PROGRESS, MY _SERVICE, client_Ipid, SUM_CMD, cmd, a, b, c);

>

/+ compute the answer for the request 4
switch(cmd) {
case CMD1:
answer = SQR_ANS(x);
best_sgr = (answer > best_sqr ? answer : best_sqr);
break;
case CMD2:
answer = SUM_ANS(ab,c);
best_sum = (answer > best_sum ? answer : best_sum);
break;
default:
ftl_exit(" Server error", 1),
}

/+ send the reply and update state A
switch(cmd) {
case CMD1:
< in(TSmain, IN_.PROGRESS, MY _SERVICE, 7int, SQR_.CMD, cmd, ?nt) =>
out(TSmain, REPLY, MY _SERVICE, client_Ipid, answer);
in(my_ts, SERVER_STATE, MY _SERVICE, 7int, ?nt);
out(my_ts, SERVER_STATE, MY _SERVICE, best_sgr, best_sum);
>
break;
case CMD2:
< in(TSmain, IN_.PROGRESS, MY _SERVICE, ?int, SUM_CMD, cmd, 7int, Ant, 2int) =>
out(TSmain, REPLY, MY _SERVICE, client_Ipid, answer);
in(my_ts, SERVER_STATE, MY _SERVICE, ?int, 2nt);
out(my_ts, SERVER_STATE, MY _SERVICE, best_sgr, best_sum);
>
break;
default:
ftl_exit(" Server error", 1),
}

J
/xNOTREACHEDY

}

126

void
monitor(int failure_id)

int failed_host, host, server_Ipid, client_Ipid, my_host = ftl_my_host(), reincarnate, x, a, b, ¢, cmd;
ts_handle_t scratch._ts;

create TS(Volatile, Private, & scratch_ts);

for (;;) {
< in(TSmain, FAILURE, failure.id, Xailed_host) => skip > /« Wait for afailure

/x Seeif server MY _SERVICE was executing on the failed host.
* Again, we simulate an AGS in an expression here.
host = ILLEGAL _HOST;
< rdp(TSmain, SERVER_REGISTRY, MY _SERVICE, ?server_lpid, 7host) => skip >
if (host == failed_host) {

/ Service MY _SERVICE, which we are monitoring, has failed.
* Regenerate any request tuples found for MY _SERVICE. Note
* that sincethereis only one server replicathere can be
* a most one IN_PROGRESS tuple. 4
< inp(TSmain, IN_.PROGRESS, MY _SERVICE, ?client Ipid, SQR_.CMD, 7cmd, 7X) =>
out(TSmain, REQUEST, MY _SERVICE, client_Ipid, SQR_.CMD, cmd, x);
or
inp(TSmain, IN_.PROGRESS, MY _SERVICE, lient_Ipid, SUM_CMD, ?cmd, ?a, ?b, 7¢) =>
out(TSmain, REQUEST, MY _SERVICE, client_Ipid, SUM_CMD, cmd, &, b, ¢);
>

/x Attempt to start a new incarnation of the failed server. Again,

* we simulate the effect of an AGS expression with the REINCARNATE tuple. 4
< inp(TSmain, SERVER_REGISTRY, MY _SERVICE, server_Ipid, failed_host) =>
out(TSmain, SERVER REGISTRY, MY _SERVICE, server_Ipid, my_host);
out(scratch_ts, REINCARNATE, (int) 1);
>

/ Seeif we did change the registry; in this case create a new x server on this host. 4
reincarnate = O;

< inp(scratch_ts, REINCARNATE, Zreincarnate) => skip >

if (reincarnate)

ftl_create user_thread(server, " ser ver ", my_host, server_lpid, O, 0, 0, 0);

—

APPENDIX D
FT-LINDA GENERAL TRANSACTION MANAGER EXAMPLE

D.1 Specification

/ FT-Linda specification for a general transaction manager. It does not
* generadly verify that variable IDs are correct or do other error checking. +

newtypeint val t; /«x valuesfor variables used in a transaction +
newtypeint var_t; /x variable handles+
newtypeint tid_t; /4 transaction IDs +

#defineILLEGAL VAR -1

/ init_transaction_mgr() must be called exactly once before any transaction
* routine below is used +
void init_transaction_mgr(void);

/x create_var creates avariablewith ID var and an initial value of val.
void create var(var_t var, val _t va);

/« destroy variable var 4
void destroy var(var_t var);

/ start_transaction begins a transaction involving the num_vars variables
« Invar_list. It returns the transaction ID for thistransaction. ¥
tid_t start_transaction(var_t var_list[], int num_vars);

/A modify_var modifies var to have the value new_val. Thisis assumed
* to be called after atransaction was started with this variable. +
void modify var(tid_t tid, var_t var, val _t new val);

/x abort aborts transaction tid «
void abort(tid);

A commit commits transaction tid #
void commit(tid);

/x print out the varaibles and their values, in one atomic snapshot ¥
void print_variables(char xmsg);

127

128

D.2 Manager
#include <malloc.h>

newtypevoid TIDS;
newtypevoid LOCK;
newtypevoid LOCK_INUSE;
newtypevoid VAR,
newtypevoid VAR INUSE;
newtypevoid TS CUR;
newtypevoid TS_ORIG;

/x For each transaction we keep two scratch TSs: cur_ts kegps
* the current values of the variables, and orig_ts keeps the

* original values of the variables plus VAR and L OCK tuples.
* get_cur and get_orig are utility routines that fetch the

+ handles for these two TSs for atransaction.

A

static void get_cur(tid_t, ts_handle_t *);

static void get_orig(tid_t, ts_handle_t x);

static void monitor_transactions(int failure_id);

/ init_transaction_mgr() must be called exactly once before any transaction
* routine below is used #
void init_transaction_mgr()
{
int Ipid, f_id;
/x create one monitor process on each host +
for (host=0; host<ftl_num_hosts(); host++) {
Ipid = new lpid();
f_id = new failure.id();
ftl_create_user_thread(monitor_transactions, " noni t or _transacti ons",
host, Ipid, f_id, 0, 0, 0);
}

< true=> out(TSmain, TIDS, (tid_t) 1); >
}

129

/x create_var creates avariable with ID var and an initial value of val.
* No validity check isdone on val.
A

void create var(var_t var, va _t val)

{

if (var == (var_t) ILLEGAL VAR)
ftl_exit("create_var hasaconflict withlLLEGAL VAR', 1);

< true=>

out(TSmain, VAR, var, va);
out(TSmain, LOCK, var);

>

}

/« destroy variable var
void destroy var(var_t var)

/% this blocks until any current transaction with var completes 4
< in(TSmain, LOCK, var) => in(TSmain, VAR, var, al _t); >
}

130

/x start_transaction begins a transaction involving the num_vars variables in var_list.
* It returns the transaction ID for thistransaction or ILLEGAL _TID if the transaction
* could not be started (either because there were too many outstanding transactions
* or because avariablein var_list[]). A

tid_t

start_transaction(var_t var list[], int num_vars)

{

tid_t tid; var_t xvars, var; va _t val;

inti, my_host = ftl_my_host();

static int var_compare(var_t i, var_t xj);
ts_handle t cur_ts, orig_ts;

char buf[100];

< in(TSmain, TIDS, 2tid) => out(TSmain, TIDS, PLUS(tid,1)); >

/x Create scratch TSsto keep a pristine copy of the variables involved
* in thistransaction as well as their current uncommittted values #
create TS(Volatile, Private, & cur_ts); create TS(Volatile, Private, &orig_ts);
< true=> out(TSmain, TS_CUR, tid, cur_ts); out(TSmain, TS ORIG, tid, orig.ts); >

/x Create a safe copy of var_list and then sort it 4
vars = (var_t) caloc(num_vars, sizeof(var_t));
assert(vars # (var_t) NULL);

for (i=0; i<num_vars; i++)

varg[i] = var_list[i];

gsort(vars, num_vars, sizeof(var_t), var_compare);

/ acquire al the locks for these variables in order 4
for (i=0; i < num_vars; i++) {
var = varg[i];
/x Move LOCK from TSmain to orig_tsand leave LOCK_INUSE in TSmain
* (it isused only for recovery). Similarly for VAR, aso add
* acopy of VAR to cur_ts. A
< in(TSmain, LOCK, var) =>
out(TSmain, LOCK _INUSE, my_host, tid, var);
out(orig_ts, LOCK, var);
in(TSmain, VAR, var, Zd);
out(TSmain, VAR_INUSE, my_host, tid, var, va);
out(orig ts, VAR, var, va);
out(cur_ts, VAR, var, va);

>

}
cfree(vars);
return tid;

131

/A modify_var modifies var to have the value new_val. Thisis assumed
* to be called after atransaction was started with this variable.
A
void modify var(tid_t tid, var_t var, val -t new_val)
{
ts_handle.t cur_ts;
char buf[100];

get_cur(tid, &cur_ts);
sprintf(buf," cur _ts for nmodi fy var Vo val % tid %", var, new_va, tid);

< in(cur_ts, VAR, var, va _t) => out(cur_ts, VAR, var, new_val); >

}

/x abort aborts transaction tid «

void

abort(tid_t tid)

{
ts_handle t cur_ts, orig_ts;
int my_host = ftl_my_host();
char buf[100];

/+ Regenerate LOCK and VAR from TSmain, discard their INUSE
* placeholders there, and remove the scratch TS handles from TS. A
< true=>

move(orig_ts, TSmain, LOCK, ar_t);

move(orig_ts, TSmain, VAR, var_t, al t);

in(TSmain, TS_CUR, tid, 2ts_handle.t);

in(TSmain, TS_ORIG, tid, ?ts_handle_t);

move(TSmain, cur_ts, VAR_INUSE, my _host, tid, ?var_t, val _t);
move(TSmain, orig_ts, LOCK _INUSE, my_host, tid, var_t);

>

destroy TS(cur_ts); destroy _TS(orig ts);

132

/x commit commits transaction tid «
void
commit(tid_t tid)
{
ts handle t cur_ts, orig_ts;
int host = ftl_my_host();
char buf[100];

get_cur(tid, &cur_ts);
get_orig(tid, &orig_ts);

/+ Restore the LOCK s from this transaction from orig_ts, and move the
* current values of al variables involved in this transaction from
* cur_tsto TSmain. Discard the VAR_INUSE and L OCK _INUSE placeholders,
* and remove the scratch TS handlesfrom TS.
i

< true=>

move(orig_ts, TSmain, LOCK, ar_t);

move(cur_ts, TSmain, VAR, wvar_t, val t);

in(TSmain, TS CUR, tid, s handle.t);

in(TSmain, TS ORIG, tid, ?s handle_t);

move(TSmain, cur_ts, VAR INUSE, host, tid, var_t, va _t);
move(TSmain, cur_ts, LOCK_INUSE, host, tid, var_t);

>

destroy _TS(cur_ts);
destroy _TS(orig.ts);

printf(" Abort ed transacti on % f or LPI D%\ n", tid, ftl_my_lpid());

133

static void
monitor_transactions(int failure_id)
{

int failed_host;

val _tval;

var_t var;

for (;;) {
/x wait for afailure +
< in(TSmain, FAILURE, failure.id, ”ailed_host) => skip >

/x regenerate all LOCK s and VARs we find for any transactions
* on failed_host.
A/
do {
var = ILLEGAL VAR,
< inp(TSmain, LOCK _INUSE, failed_host, 2tid_t, var) =>
out(TSmain, LOCK, var);
in(TSmain, VAR_INUSE, failed_host, tid_t, var, 2val)
out(TSmain, VAR, var, va);
>
} while (var # ILLEGAL _VAR);

134

/ print_variables will store the values into a buffer and then print, since
* it could be scheduled out at each AGS. That would almost certainly make
* the output interlaced with other output, which is not very useful. 4
void
print_variables(char +msg)
{
ts_handle_t scratch._ts;
val_t val; tid_t tid; var_t var; int host;
char buf[1000], buf2[100]; / Bigenough ... 4

create TS(Volatile, Private, & scratch_ts);

/x Grab an atomic snapshot of all variables, whether in use or not.
< true=>

copy(TSmain, scratch_ts, VAR, var_t, va t);

copy(TSmain, scratch_ts, VAR INUSE, ?int, Zid._t, var_t, va t);

>

sprintf(buf, " Var i abl es at %\ n", msg);
/ Format out that snapshot, again simulating an AGS expression. 4
do {

var = ILLEGAL VAR,

< inp(scratch_ts, VAR, var, va) => skip >

sprintf(buf2, "\ t V%@=0x%x\ n", var, va);

strcat(buf, buf2);

} while (var # ILLEGAL _VAR);

do {

var = ILLEGAL VAR,

< inp(scratch_ts, VAR_INUSE, ?host, 2tid, 2var, val) => skip >
sprintf(buf2," \ t V%al=0x%\t (I NUSEwi thtid % on host %)\ n"

var, val, tid, host);
strcat(buf, buf2);
} while (var # ILLEGAL _VAR);

destroy_TS(scratch_ts);
printf(buf);

135

static int
var_compare(var_t xi, var_t xj)

{
¥

return(xi — *j);

static void
get_cur(tid_t tid, ts_handle_t xhandle)

{

ts_handle t temp;
unsigned int old = rts_debug value();

< true => rd(TSmain, TS_CUR, tid, 2emp); >
xhandle = temp;

}

static void
get_orig(tid_t tid, ts_handle_t xhandle)

{
ts_handle t temp;

< true=> rd(TSmain, TS_ORIG, tid, 2temp); >

xhandle = temp;

}

136

D.3 Sample User

/x transaction_user.c is a torture test for the transaction manager.
* srandom() initializesthings for random() outside of thisfile.
A

#ttcontext transaction_user

#include <stdio.h>

#include"ftl i nda. h"

#include" assert . h"
#include"transacti on_ngr. h"
#include"transacti on_ngr. c"

/« We define symbols to use as handles for the variables, as well
* astheir initia values+
#define A_VAR
#define B_VAR
#define C_VAR
#define D_-VAR
#define E_ZVAR
#define F_.VAR
#define G_ZVAR
#define H_-VAR

O~NDDAPNWN R

#define A_LINIT 0x100
#define BLINIT 0x200
#define C_INIT 0x300
#define D_INIT 0x400
#define ELINIT 0x500
#define FLINIT 0x600
#define GLINIT 0x700
#defineH_INIT 0x800

#define CLIENT_LOOPS 10
#define ABORT_ROLL (random() % 6)
#define FAIL_ROLL (random() % 30)

static void client1(), client2(), client3(), client4(), client5();
static void shuffle(var_t[]int);
static void maybe fail (void);

137

LindaMain (argc, argv)
int argc;
charx argv [];

{

int Ipid, num_hosts = ftl_num_hosts();
printf(" Li ndaMai n her e\ n");
init_transaction_mgr();

/x Create the variables «
create var(A_VAR, A_INIT);
create var(B_VAR, B_INIT);
create var(C_VAR, C_INIT);
create var(D_VAR, D_INIT);
create var(E_VAR, E_INIT);
create var(F_ VAR, F_INIT);
create var(G_VAR, G_INIT);
create var(H_VAR, H_INIT);

/x Create the clients «

Ipid = new lpid();

ftl_create user_thread(client1," cl i ent 1", 1 % num_hosts, Ipid, O, O, 0, 0);
Ipid = new lpid();

ftl_create user_thread(client1," cl i ent 2", 2 % num_hosts, Ipid, O, 0, 0, 0);
Ipid = new lpid();

ftl_create user_thread(client1," cl i ent 3", 3 % num_hosts, Ipid, O, 0, 0, 0);
Ipid = new lpid();

ftl_create user_thread(client1," cl i ent 4", 4 % num_hosts, Ipid, O, O, 0, 0);
Ipid = new lpid();

ftl_create user_thread(client1," cl i ent 5", 5% num_hosts, Ipid, O, 0, 0, 0);

138

/x The clients test the transaction manager 4

/x clientl A

#define CLIENT 1

#define CLIENT_NAME clientl

#defineVARS.USED {A_VAR, C_.VAR, G.\VAR}
#include"transaction_client.c" /x defines clientl +
#undef CLIENT

#undef CLIENT_NAME

#undef VARS_USED

/x client2 A

#define CLIENT 2

#define CLIENT_NAME client2

#defineVARS.USED {B_VAR, D_VAR, F_.VAR, G_VAR}
#include"transaction_client.c" /x defines client2 A
#undef CLIENT

#undef CLIENT_NAME

#undef VARS_USED

/x client3 4

#define CLIENT 3

#define CLIENT_NAME client3

#defineVARS.USED {A_VAR}
#include"transaction_client.c" /x defines client3 +
#undef CLIENT

#undef CLIENT_NAME

#undef VARS_USED

/x clientd A

#define CLIENT 4

#define CLIENT_NAME client4

#defineVARS.USED {C_VAR, G_.VAR}
#include"transaction_client.c" /x defines clientd A
#undef CLIENT

#undef CLIENT_NAME

#undef CLIENT_NAME

#undef VARS_USED

/x client5 4

#define CLIENT 5

#define CLIENT_NAME client5

#defineVARS.USED {A_VAR, B_.VAR, C_VAR, D_VAR, E.VAR, F.VAR, G_.VAR}
#include"transaction_client.c" /x defines client5 +

#undef CLIENT

#undef CLIENT_NAME

#undef VARS_USED

/« Shuffle the variable array +
static void
shuffle(var_t varg[], int num_vars)
{

inti,slot;

var_t item;

for (i=num_vars—1;i > 0;i——) {
/x swap varg[i] with vars[slot] for someslot in [0,i) 4
slot = random() % i;
item = varg[i];
vargi] = varg[dot];
vargslot] = item;
}
}

static void

maybe_fail()

{
int host = ftl_my_host();
/+ seeagain if we should fail our host
if ((host# 0) && (FAIL_.ROLL ==0)) {
printf(" Fai | i ng host %\ n", host);
ftl fail _host(host);
}

139

140

D.4 User Template (transaction_client.c)

/ Thisfile holds the template for each client; they are all
* Instantiated with different macros for the function name,
+ variables used, etc.
A
void
CLIENT_NAME ()
{
static var t vars used[] = VARS_USED;
#define NUM _VARS_USED (sizeof (vars_used) / sizeof (var_t))
inti,j, my_host = ftl_my_host(), abort_it;
tid_t tid;
char buf[200], buf2[50];
char name[20];

sprintf(name, " cl i ent %d" , CLIENT);
sprintf(buf,” % her e on host %d wi t h %d vari abl es: ",
name, ftl_my_host(), NUM_VARS_USED);

for (i=0; i<NUM_VARS_USED; i++) {
sprintf(buf2, " V% " , vars_used[i]);
strcat(buf, buf2);

}
printf(" %8\ n", buf);

for (i=1;i < CLIENT_LOOPS; i++) {
val_t vals_thistimefNUM_VARS_USED];

/x Shuffle the order of the variables used +
shuffle(vars_used, NUM _VARS _USED);

tid = start_transaction(vars_used, NUM_VARS_USED);
maybe fail();

/x Generate some random values for these variables A
for (j=0; j<NUM_VARS_USED; j++) {
vals this_ timefj] = (int) (random() % 0x10000);
modify _var(tid, vars_used[j], vas_this timelj]);

}

141

maybe fail();
/+ Seeif we should abort +
abort_it = (ABORT_ROLL ==0);
if (abort_it)
abort(tid);
else
commit(tid);

sprintf(buf," af t er % % changes: ",
name, (abort_it ?" aborted" :"committed"));

for (j=0; j<NUM_VARS_USED; j++) {
sprintf(buf2, " Voa=0x %" , vars_used[j], vals_this time[j]);
strcat(buf, buf2);

}

print_variables(buf);

}

printf(" %6 on % al | done\ n", name, my_host);

#undef NUM_VARS_USED

}

142

APPENDIX E

FT-LINDA BAG-OF-TASKSEXAMPLE

/x Bag of Tasks example program. A
#ttcontext bag_of tasks

#include <stdio.h>

#include"ftli nda. h"

newtypevoid SUBTASK;
newtype void RESULT;
newtype void INPROGRESS;

#define ILLEGAL VAL —1 / illegal value for subtask +
#define NUM_WORKERS 10
#define NUM_SUBTASKS 20

char xprogname;
static void worker(int);
static void calc(int, int x);

static void get_input(int , int x);
static void monitor();

143

144

LindaMain (argc, argv)
int argc;
charx argv [];

inti,val,f_id, Ipid, host, num_hosts = ftl_num_hosts();
prognhame = argv[Q];

printf(" %6 herew th % hostsin[O0..%l)\n", progname, num_hosts,
num_hosts);

/x Create amonitor thread on each host +

for (host=0; host < num_hosts; host++) {

Ipid = new_Ipid();

f_id = new failure.id();

ftl_create_user_thread(monitor, " moni t or ", host, Ipid, f_id, 0, O, 0);

}

/x Create some workers +

for (i=0; i<NUM_WORKERS; i++) {

Ipid = new_Ipid();

ftl_create user_thread(worker, " wor ker " , i % num_hosts, Ipid, i, 0, O, 0);

}

/x Create some subtasks +

for (i=0; i<NUM_SUBTASKS; i++) {

< true=> out(TSmain, SUBTASK, i, i); >

}

/+ Wait for those subtasksto be completed. +
for (i=0; i<NUM_SUBTASKS; i++) {

< in(TSmain, RESULT, i, va) => skip >
}

printf(" % done\ n", progname);

ftl_exit(NULL, 0); / exit normally +

145

static void
monitor(failure_id)
int failure.id;

{

int num, val, failed_host, id;
while(1) {
falled_host=—1; /x sanity check 4

/x wait for afailurelike avulture+
< in(TSmain, FAILURE, failure.id, ”ailed_host) => skip >

/x try to regenerate any INPROGRESS tuplefor afailed worker
« on the host that failed 4
do {
val = ILLEGAL VAL; /x illegal subtask value+
< inp(TSmain, INPROGRESS, failed_host, 7d, 7num, val) =>
out(TSmain, SUBTASK, num, va); >

}
while (val # ILLEGAL VAL);
}

146

static void
worker(id)
intid;

{

int num, val, result, host=ftl_my_host();
ts_handle_t TSscratch;
create TS(Volatile, Private, & T Sscratch);
printf(" wor ker (%d) her e on host %\ n", id, host);
while (1) {
/x theworker 1D in the INPROGRESS tupleis not needed, but is
« useful for debugging
< in(TSmain, SUBTASK, ?num, val) =>

out(TSmain, INPROGRESS, host, id, num, val); >
calc(val, &result);
< true=> out(TSscratch, RESULT, num, result); >

< in(TSmain, INPROGRESS, hosgt, id, num, va) =>
move(T Sscratch, TSmain); >

static void
calc(val, result_ptr)
intval;

int xresult_ptr;

{
¥

«result_ptr = 2«val; / really simple... {

APPENDIX F
FT-LINDA DIVIDE AND CONQUER EXAMPLE

/« Fault-tolerant divide and conquer worker. Here we sum up
* the elements of a vector to demonstrate the technique. ¥

Httcontext divide
#include <stdio.h>
#include"ftl i nda. h"

#define MAX_SIZE 256 /x biggest vector size+

#define MAX_ELEM 50 /x biggest lement +

#define MIN_ELEM 10 /« smallest element «

#define SIZE_CUTOFF 16

#define SMALL _ENOUGH(task) (task.size < SIZE_.CUTOFF ?1: 0)
#defineILLEGAL_SIZE -1

#define WORKERS_PER_.HOST 4 /& number of workers to create on each host +

/x typesH
typedef struct {

int size;

int lem[MAX _SIZE];
} vec;
newtype void SUBTASK;
newtype void RESULT;
newtype void INPROGRESS;
newtypeint SUM_T;
newtypeint SIZET;

/x function declarations
void worker();

void monitor();

void init(vec *);

void part1l(veck, veck);
void part2(veck, veck);
SUM_T sumvec(vec);
void switch_some();

147

148

LindaMain (argc, argv)
int argc;
charx argv [];
{
int w, host, Ipid, f_id;
SUM_T sum, total _sum, correct_sum;
SIZE_T size, tota _size;
Vec task;

/x create one monitor process on each host +
for (host=0; host<ftl_num_hosts(); host++) {
Ipid = new lpid();
f_id = new failure.id();
ftl_create_user_thread(monitor, " moni t or ", host, Ipid, f_id, 0, 0, 0);

}

/x create WORK ERS_PER_HOST workers on each host +
for (host=0; host<ftl_num_hosts(); host++) {
for (w=0; w < WORKERS_PER_HOST; w++) {
Ipid = new _Ipid();
ftl_create_user_thread(worker, " wor ker ", host, Ipid, 0, 0, O, 0);
}
}

/x initalize the vector 4
init(&task);
correct_sum = sumvec(task); /x check answer later with this +

/+ deposit thetask into TS+
< true=> out(TSmain, SUBTASK, task); >

/x wait until the sums have come in from all subtasks+
do {

< in(TSmain, RESULT, ?sum, ?size) => skip >
total_sum += sum;
total_size +=size;

} while(total_size < MAX_SIZE);

printf(" The sumof t he %l el enent s i s %\ n", MAX_SIZE, total_sum);
if (total_sum # correct_sum)

ftl_exit("i ncorrect sunt', 1);
else

ftl_exit(NULL, Q); /4 halt the worker threads A

149

void
worker()
{
int r, host = ftl_my_host(), Ipid = ftl_my Ipid();
vec task, taskl, task2;
SUM_T sum;
SIZE_T size;

/+ here we will put an extra LPID field in the INPROGRESS
* tupleto ensure we withdraw our INPROGRESS tuple, not
« another worker’s from this host.

A/

for (;;) {

< in(TSmain, SUBTASK, ?task) =>
out(TSmain, INPROGRESS, task, Ipid, host); >

if (SMALL_ENOUGH(task)) {

sum = sumvec(task);
size = task.size;

< in(TSmain, INPROGRESS, vec, Ipid, host) =>
out(TSmain, RESULT, sum, size); >
}

ese{
partl(&task,&taskl);
part2(&task,& task?2);

< in(TSmain, INPROGRESS, vec, Ipid, host) =>
out(TSmain, SUBTASK, taskl);
out(TSmain, SUBTASK, task2);

>

150

void

monitor(int failure_id)

{
int [pid=ftl_my _Ipid(), failed_host, my_host=ftl_my_host();
Vec task;
SUM_T sum;

for (;;) {

M wait for afailure «
< in(TSmain, FAILURE, failure.id, Xailed_host) => skip >

/ Regenerate all subtasksthat were inprogress on the failed
* host. Notethat sincethe AGSis not yet implemented in
* expressions we have to test to see if the formal in the
* [npwas set. To do this, we set task.sizeto an illegal
* value; if it is still this after the inp then we know it failed.
A

do {
task.size= ILLEGAL _SIZE;

< inp(TSmain, INPROGRESS, ?task, 2pid, failed_host) =>
out(TSmain, SUBTASK, task); >

} while (task.size # ILLEGAL _SIZE);

¥
¥

/x Initialize the vector randomly #
void

init(vec xtask)

{

inti, count=0;

task—size= MAX_SIZE;
/x seed with lementsin [MIN_ELEM,MAX_ELEM) A
for (i=0; i<MAX _SIZE; i++)
task—elem[i] = MIN_ELEM + (random() % (MAX_ELEM—MIN_ELEM));

/x Fill thefirst half of tintotl +
void
partl(vec xt, vec xt1)

{

inti, mid=t—sze/2;
tl—size=mid;

for (i=0; i<mid; i++)
tl—elem[i] = t—eem(i];
}

/ Fill the second half of t into t2 +
void
part2(vec xt, vec xt2)

{

inti, mid=t—sze/2;
t2—size=t—size — mid;

for (i=mid; i<t—size; i++)
t2—eem[i—mid] = t—elem[i];
}

/x Sum up the elements in task +
SUM_T
sumvec(vec task)

{
SUM_T sum=0; int i;

for (i=0; i <task.size; i++)
sum += task.elem[i];

return sum;

}

151

152

APPENDIX G

FT-LINDA BARRIER EXAMPLE

/ Fault-tolerant barrier. A

Httcontext barrier
#include <stdio.h>
#include"ftl i nda. h"

#define NUM_COLS 64
#define NUM_ROWS 8
#define FAIL_ROLL (random() % 8)

/x typesH

newtypeint ROW_T[NUM_COLS];
newtype ROW_T ARRAY _T[NUM_ROWS];
newtypevoid ARRAY;

newtypevoid REGISTRY;

newtype void WORKER _DONE;

/x function declarations 4
void worker();

void monitor();

void init(ARRAY _T);

int converged(ARRAY _T, int);
int compute(ARRAY _T, int);
static void maybe fail (int);

/ Note: since array subscripts have not yet been implememted
* [n the AGS parsing code, we have to maintain an extra variable
* to usein TS operations and then copy to and from outsidethe AGS.
A

153

154

LindaMain (argc, argv)
int argc;
charx argv [];

{

inti,w, hogt, Ipid, f_id, iter=1;
ARRAY T a;
ROW_Tr;

/x initalizethe array and place it in TS+

init(a);

for (i=0; i<NUM_ROWS; i++) {

(void) memcpy(r, a[i], sizeof(r)); / copy gi] for usein AGS 4
< true=> out(TSmain, ARRAY, iter, i, r); >

}

/x create one monitor on each host +
for (host=0; host<ftl_num_hosts(); host++) {
Ipid = new lpid();
f_id = new failure.id();
ftl_create_user_thread(monitor, " moni t or ", host, Ipid, f_id, 0, 0, 0);

}

/x create NUM_ROWS workers and their registry tuples+#
for (w=0; w<NUM_ROWS, w++) {
host = w % ftl_num_hosts();

/ must create registry tuple before worker! #
< true=> out(TSmain, REGISTRY, host, w, iter); >

Ipid = new _Ipid();
ftl_create_user_thread(worker, " wor ker ", host, Ipid, w, 0, 0, 0);

}

/x wait until all workers are done+
for (w=0; w<NUM_ROWS, w++) {

< in(TSmain, WORKER_DONE, Aw) => skip >
}

printf(" Program%s i s al | done\ n", argv[0]);

/x worker(id) updates glid]) #
void
worker(int id)

{

ARRAY _T a;
ROW_Tr;
inti, iter, host=ftl_my_host();

/x initializeiter and a «
< rd(TSmain, REGISTRY, host, id, 7iter) => skip >

for (i=0; i<NUM_ROWS; i++) {

< rd(TSmain, ARRAY, iter, i,) => skip > /A read g[i] from TSintor 4

memcpy(a[i], r, sizeof(r)); /A copy into &di] in memory A

while (!converged(a, iter)) {
maybe fail(id);

compute(a, id); / update gfid] in local memory +
memcpy(r, di], sizeof(r));

/x atomically deposit my row for next iteration & update my registry +
< true=>

out(TSmain, ARRAY, PLUS(iter,1), id, r);

in(TSmain, REGISTRY, 7host, id, iter);

out(TSmain, REGISTRY, host, id, PLUS(iter,1));
>

/x Barrier: wait until all workers are done with iteration iter #
for (i=0; i<NUM_ROWS; i++) {
< rd(TSmain, ARRAY, PLUS(iter,1), i, 2r) => skip >
memcpy(a[i], r, sizeof(r));

/+ Garbage collection on last iteration 4
if (iter > 1) {
< true=> in(TSmain, ARRAY, MINUS(iter,1), id, ?ROW_T); >
}
iter++;

}

< true=> out(TSmain, WORKER _DONE, id); >

155

156

void
monitor(int failure_id)

{

#define ILLEGAL _WORKER -1
int failed_host, Ipid, w, iter, my_host=ftl_ my_host();

for (;;) {

M wait for afailure «
< in(TSmain, FAILURE, failure.id, Xailed_host) => skip >

/x try to recreate al failed workers found on this host
do {

w = ILLEGAL WORKER,;

< inp(TSmain, REGISTRY, failed_host, 2w, ?iter) =>
out(TSmain, REGISTRY, my_host, w, iter);
>

if (w# ILLEGAL_ WORKER) {

Ipid = new lpid();

ftl_create_user_thread(worker, " wor ker ", my_host, Ipid, w,
0,0,0),

}

} while (W # ILLEGAL WORKERY;

¥
#undef ILLEGAL_ WORKER

}

157

/x Initialize the array somehow +
void

init(ARRAY _T a)

{

inti,;

for (i=0; i<NUM_ROWS; i++)
for (j=0; j<NUM_COLS; j++)
ai][j] = 0x1000xi + j;

/x compute the next iteration of gfid]. Just atoy example computation ... ¥
int
compute(ARRAY T g, intid)
{
intj;
int above, below;

for (j=0; j<NUM_COLS; j++) {

above = (id == 0?70 gid—1][j]);
below = (id == (NUM_ROWS—1) 20 : a[id+1][j]);

did][j] += (above + below);

}

/ Since this uses a toy example with no real meaning, we will simply
* converge after afew iterations+
int
converged(ARRAY _T g, int iterations)
{
return (iterations < 370: 1);

}

static void
maybe fail(int id)

int host = ftl_my_host();
/+ seeagain if we should fail our host 4
if ((host# 0) && (FAIL_.ROLL ==0)) {
ftl_fail _host(host);
}
}

158

APPENDIX H
MAJOR DATA STRUCTURES

A Mgjor data structuresin the FT-Linda TS managers. Some of the minor data
* structures and unimportant fields in the following data structures have been
* ommitted for brevity and clarity. They have also been reordered for clarity.
A

/x request_kind_t tracks the kind of request request_t deals with. 4

typedef enum {
REQ_AGS, fxanormal < ... => ... > command A
REQ_NEW_LPID, /«x arequest for alogical PID 4
REQ_TS_CREATE, /« create areplicated TS A
REQ_TS_.DESTROY, /x destroy areplicated TS+
REQ_FAIL NOTIFY, /A notify TSreplicas of ahost failure 4
REQ_NEW FAILURE.ID /4 allocateanew failure ID +

} request_kind.t;

159

160

/x request_t iswhat is passed from the FT-Linda application to the FT-Linda RTS. +
typedef struct request_t {

request kind_t r_kind; /x what kind of request A

guard kind_t r_guards kind; /x absent, blocking, boolean +

resiliencet r_guardsresilience; /« resilience of guards +

scope.t r_guards_scope; /x scope of guards 4

char rfilenamegfMAX_FILENAME+1]; / filename of requesty
int r starting line; /x line<...> started on 4

int r_num_branches; /x number of branches A
branch_t r_branchl MAX_BRANCHES]; /& each guard => body +
int r_branch_chosen; /A which branch did we do?+

TS_HANDLE_T r_ts_handle; /x which TSto destroy +
UCHAR r.guard_return.va; / returnval for => 4
/x r_id is used by non-AGS requests depending on what itsr_kind is:

*

REQ_TS.ID: TSidalocated

REQ_LPID: LPID alocated

REQ_CREATE: TSindex of created TS
REQ_DESTROY: TS index of destroyed TS
REQ_FAIL_NOTIFY: host that failed
REQ_NEW_FAILURE_ID: failurelD allocated

K X K K K ¥

A/
int rid;
int r_Ipid; / LPID of request originator #
int r_rep_seqn; /x sequence number for id A
int r_next_offset; /+ next offset into r_actual[]4
/x unresolved opcode args, i.e. one where at least one argument is
* P.FORMAL_VAL so the GC couldn’t evaluate. #
opcode argst r_opcode args[MAX_OPCODES|[MAX_OPCODE_ARGS];

int r_cookie; /x magic cookieto try to detect

* corruption of request

* structure.
int r_times_called; /x times the AGS has been

* executed A

int r_host; /x host the request sent from
double r_padl; /x ensure following alignedy
UCHAR r_formal[FORMALSIZE]; /A areato storeadll the

* formals for the
* chosen branch. «
double r_pad2; /x ensure following alignedy
UCHAR r_actuad[MAX_ACTUALS SIZE];
} request_t;

161

fx
« abranch is one guard => body
A
typedef struct branch_t {
UCHAR Db_guard_present; /x isthere aguard? A
UCHAR b_guard_negated; /x is guard negated with “not” 72/
op_t b_guard; /+ guard of the branch +
op_t b_body[MAX_BODY]; /«x body of the branch +
int b_body _size; /x no of opsin body A

int b_body _next_idx[MAX_BODY];/4 ordering of body ops; O, then
* next_idx[0], ... Need causea
* move must generate outs before
* next op

int b_formal _offsetft MAX_FORMALS]; / offset for each formal

« into r_formal[]. 4
stubt «b_stubptr; /x RTS ptr to branch stub +
} branch_t;

/ param_t tracks what type of parameters each TS op have. The values of some parameters
* (P.FORMAL _VAL below) will not have their values known until the request has been received
* at each replica, since they are a reference to the value of a variable that was a formal
« In an earlier op inthe same <...>. These can occur either as
* parameters or as arguments to an opcode parameter. For example, in
*

* < Iin(FOO, ?) => out(FEE, x, MAX(X,1)) >

*

* X ISP.FORMAL inthein(FOOQ...) but in out(FEE... is P.FORMAL VAL

* both as aparameter by itsself and as an argument to opcode MAX.

* The order of the literals used here is important. Opcodes must come last,

* and the first opcode must be P.OP_MIN. Thisisso the RTS can quickly test
« Whether or not aparam is an opcode.

typedef enum {
P_TYPENAME, /« Lindatype, actual or formal +
P_.FORMAL_VAR, fx ar A
P_VAL, /x constant (later expr?) «
P_.FORMAL_VAL, / val of var that was aformal

* earlier in the same branch +
P_OP_MIN, P.OP_MAX, P.OP_MINUS, P.OP_PLUS, /4 P_.OP_xxx is opcode xxx A
P_.OP_LOOKUPL, P.OP.LOOKUP2, P_-OP.LOOKUP3
} param_t;

162

/x optype_t denotes Linda primitives, op_t stores needed info for them.
typedef enum { OP_IN, OP_INP, OP_RD, OP_RDP, OP_.MOVE, OP_COPY, OP_OUT } optype.t;

/ guard_kind_t tells what kind the guards are (they all must be the same) +
typedef enum {g_absent, g_blocking, g_boolean} guard_kind.t;

/ we track the arguments for opcode calls. If none of the agruments
*x are P.FORMAL VAL then they are all known while the request is being
* filled in by the GC. In this case the opcode will be evaluated
* and the param listed as P_VAL. Thus, P.OP.. params only occur
* when arg(s) are P.FORMAL _VAL. (MAY CHANGE FOR SIMJPLICITY) A
typedef struct {
int oa_formal _index; /A index into request.bindingsif param is FORMAL VAL
« or -1if arg va isin op_arg_value+
int oaop.arg.value, /& LIMITATION: only intsfor opcode args
« for now. Could later make thisaunion.
} opcode_args.t;

/& A stub_t variable represents one branch of arequest inthe RTS. Itis
* enqueued on a queue based on the hash value of the branch’s guard. +
typedef struct stub_t {
struct request_t «st_request; /A request for the given stub +
int st_branch_index; / branch # of corresponding branch for this stub #
BOOL is.blocked; /x isthis blocked? else on candidateQy
} stub_t;

/x ts_tisatuple space. {

typedef struct ts {
Q-t tsblocked MAX_HASH]; /A stubsfor blocked guards +
Q_t tstuplesfMAX_HASH]; /A tuplesinthe TS+

}tst;

163

/x op_t isthe data structure for both opsin an AGSand also tuplesin TS. If theopis
* [nan AGS then the actuals’ data will be stored in the request’s r_actual[] area, otherwise
* the tuple’s actualswill be stored in op.o_actual[]. When the TS managers create atuple from
* an out op they allocate an op with enough room at the end for o_acutal[] to fit all the actual data.
A/
typedef struct op_t {
Q.t o.inks; A RTSlinks + key; MUST BE FIRST A
TIME_T o.time /x RTStime stamp; MUST FOLLOW LINKS+
TS HANDLE_T o0.t52]; /x TSor TSsinvolvedinthisop 4
optype_t o_optype; /x operator 4
param_t o_param[NARITY]; / kind of parameter. 7?4
/ o_idx[i] is used in different ways, as an index into another array.
* Theway isit used is afunction of o_param|i] :
x case P.FORMAL_VAR:
case P.FORMAL _VAL:
Here o_idx[i] tellswhich formal # that parameter i is
for the branch. This can be used as followsto find
where to store the formal (P.FORMAL _VAR) or where to
retrieveits value from (P.FORMAL _VAL):
formal _idx = tuple.o_idx[i]
offset = b_formal _offset[formal _idx]
formal_address = & (r_formal[offset])
case P_OP_xxx:
Here o_idx[i] tells which unresolved opcode # that parameter
i isfor thisrequest. (Unresolved opcodes are where at
least one of the argumentsis P.FORMAL VAL and thusthe
GC can’t evaluate it and convert it to P.VAL.) Theinfo
for this opcode is stored in r_opcode args/o_idx[i]].

KK K KK K K K K K X X KK

A/

UCHAR o0.dx[NARITYT];

/x Let start = 0_data start[i] and stop = o_data stop[i]. Then parameter i’sdataisin
* locations [start..stop) of either tuple.o_actual[] or request.r_actual[], depending

« on which case the parameter is. +

UWORD o_data start{NARITY];

UWORD o0_data stop[NARITY];

UWORD o_arity; / number of params MAY GO AWAY +

long o_polarity; /x actual/formal; assumes NARITY < 324

int o_linenum; /x starting line of op 4

int o_type / tupletype, akathe tuple’sindex. 4

int 0_hash; / hash valuef(type paranl) 4

double o_padl,; /x ensure o_actual[] aligned #

UCHAR o_actual1]; / areafor actual (P-VAL) dataif thisopisatuple.

}opt;

164

[ACGS6]

[AD76]

[AGO1d]

[AGI1Db]

[AGMVR93]

[AkIS9]

[Ando1]

[AO93]

[AS91]

[ASCSS]

165

REFERENCES

Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Lindaand friends.
|EEE Computer, 19(8):26—34, August 1986.

P.A.Alsbergand J. D. Day. A principlefor resilient sharing of distributed
resources. In Proceedings of the Second International Conference on
Software Engineering, pages 627-644, October 1976.

Shakil Ahmed and David Gelernter. A higher-level environment for par-
allel programming. Technical Report YALEDU/DCS/RR-877, Yale Uni-
versity Department of Computer Science, November 1991.

Shakil Ahmed and David Gelernter. Program builders as aternatives
to high-level languages. Technical Report YALEDU/DCS/RR-887, Yae
University Department of Computer Science, November 1991.

Carlos Almedia, Brad Glade, Keith Marzullo, and Robbert van Renesse.
High availability in areal-time system. ACM Operating Systems Review,
27(2):82-87, April 1993.

Seim G. Akl. TheDesign and Analysis of Parallel Algorithms. Prentice
Hall, 19809.

Gregory R. Andrews. Concurrent Programming: Principlesand Practice.
Benjamin/Cummings, Redwood City, California, 1991.

Gregory R. Andrews and Ronald A. Olsson. The SR Programming Lan-
guage: Concurrency in Practice. Benjamin/Cummings, Redwood City,
California, 1993.

Brian G. Anderson and Dennis Shasha. Persistent Linda: Linda + trans-
actions + query processing. In JP. Banétre and D. Le Métayer, editors,
Research Directionsin High-Level Parallel Programming Languages, num-
ber 574 in LNCS, pages 93-109. Springer, 1991.

Amr El Abbadi, Dale Skeen, and Flaviu Crigtian. An efficient, fault-
tolerant protocol for replicated data management. In Proceedings of the
4th ACM SIGACT/S GMOD Conferenceon Principlesof Database Systems,
1985.

166

[Bal90]

[BHJLS6]

[BJ37]

[Bj092]

[BKT92]

[BLLO4]

[BMST92]

[BN84]

[BS91]

[BS94]

[BSSO1]

Henri E. Ba. Programming Distributed Systems. Silicon Press, Summit,
New Jersey, 1990.

Andrew P. Black, Norman Hutchinson, Eric Jul, and Henry M. Levy. Ob-
ject structure in the emerald system. In Proceedings of the First ACM
Conference on Object-Oriented Programming Systems, Languagesand Ap-
plications, pages 78-86, Portland, Oregon, September 1986.

Kenneth P. Birman and ThomasA. Joseph. Reliablecommunicationinthe
presence of failures. ACM Transactions on Computer Systems, 5(1):47—
76, February 1987.

Robert D. Bjornson. Linda on Distributed Memory Multiprocessors.
PhD thesis, Department of Computer Science, Yae University, Novem-
ber 1992.

Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca A
languagefor parallel programming of distributed systems. |1EEE Transac-
tions on Software Engineering, 18(3):190-205, March 1992.

Ralph M. Butler, Alan L. Leveton, and Ewing L. Lusk. p4-linda: A
portable implementation of linda. In Proceedings of the Second Inter-
national Symposium on High Performance Distributed Computing, pages
50-58, Spokane, Washington, July 1994.

Navin Budhirgja, Keith Marzullo, Fred B. Schneider, and Sam Toueg.
Primary-backup protocols: Lower bounds and optimal implementations.
In Proceedings of the Third I FI P Wbrking Conference on Dependable Com-
puting for Critical Applications, pages 187-198, Mondello, Italy, 1992.

Andrew D. Birrell and Bruce Jay Nelson. I|mplementing remote procedure
cals. ACM Transactions on Computer Systems, 2(1):39-59, February
1984.

David E. Bakken and Richard D. Schlichting. Tolerating failures in the
bag-of -tasks programming paradigm. In Proceedings of the Twenty-First
International Symposium on Fault-Tolerant Computing, pages 248-255,
June 1991.

David E. Bakken and Richard D. Schlichting. Supporting fault-tolerant
parallel programmingin Linda. |EEE Transactions on Parallel and Dis-
tributed Systems, 1994. To appear.

Kenneth Birman, André Schiper, and Pat Stepheson. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systens,
9(3):272-314, August 1991.

[CASDSS]

[CBZ91]

[CD94]

[CG86]

[CG88]

[CG89]

[CGO0]

[CG93]

[CGKWO3]

[CGM2]

[Ciag3]

[CKMO2]

167

Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic
broadcast: From simple message diffusion to Byzantine agreement. In
Proceedings of the Fifteenth International Symposium on Fault-Tolerant
Computing, pages 200—206. | EEE Computer Society Press, June 1985.

John B. Carter, John K. Bennett, and Willy Zwaenepodl. Implementa-
tion and performance of Munin. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, 1991.

Scott R. Cannon and David Dunn. Adding fault-tolerant transaction pro-
cessing to Linda. Software—Practice and Experience, 24(5):449-466,
May 1994.

Nicholas Carriero and David Gelernter. The S/Net’sLindakernel. ACM
Transactions on Computer Systems, 4(2):110-129, May 1986.

Nicholas Carriero and David Gelernter. Applications experience with
Lindaa ACM SGPLAN Notices (Proc. ACM SIGPLAN PPEALS),
23(9):173-187, September 1988.

Nicholas Carriero and David Gelernter. Lindain context. Communica-
tions of the ACM, 32(4):444-458, April 1989.

Nicholas Carriero and David Gelernter. How to Write Parallel Programs:
AFirst Course. MIT Press, 1990.

P. Ciancarini and N. Guerrini. Linda meets Minix. ACM S GOPS Oper-
ating Systems Review, 27(4):76-92, October 1993.

Nicholas Carriero, David Gelernter, David Kaminsky, and Jeffery
Westbrook. Adaptive paradlelism with Piranha. Technical Report
YALE/DCS/RR-954, Yde University Department of Computer Science,
February 1993.

Nicholas Carriero, David Gelernter, and Timothy G. Mattson. Lindain
heterogenous computing environments. In Proceedings of the Workshop
on Heterogenous Processing. |EEE, March 1992.

Paolo Ciancarini. Distributed programming with logic tuple spaces.
Technical Report UBLCS-93-7, Laboratory for Computer Science, Uni-
versity of Bologna, April 1993.

Shigeru Chiba, Kazuhiko Kato, and Takishi Masuda. Exploiting a weak
consistency to implement distributed tuple space. In Proceedings of the
12th International Conference on Distributed Computing Systems, pages
416423, June 1992.

168

[Com88§]
[CP89]

[Criol]

[CS93]

[Dij75]

[DoD83]

[For934]

[For93b]

[GC92]

[Gel85]

[GK92]

[GMS91]

[Gra7g]

[Grag6]

Douglas Comer. Internetworking with TCP/IP. Prentice-Hall, 1988.

Douglas E. Comer and Larry L. Peterson. Understanding naming in dis-
tributed systems. Distributed Computing, 3(2):51-60, 1989.

Flaviu Crigtian. Understanding fault-tolerant distributed systems. Com-
muni cations of the ACM, 34(2):57—78, February 1991.

Leigh Cagan and Andrew H. Sherman. Linda unites network systems.
| EEE Spectrum, 30(12):31-35, December 1993.

Edsger W. Dijkstra. Guarded commands, nondeterminacy, and formal
derivation of programs. Communications of the ACM, 18(8):453-457,
August 1975.

U.S. Department of Defense. Reference Manual for the Ada Programming
Language. Washington D.C., 1983.

Message Passing Interface Forum. Document for a standard messge-
passing interface, October 1993. (available from netlib).

The MPI Forum. MPI: A message passing interface. In Proceedings of
Supercomputing ’ 93, pages 878-883, Los Alamitos, California, November
1993. IEEE Computer Society Press.

David Gelernter and Nicholas Carriero. Coordination languages and their
significance. Communications of the ACM, 35(2):97-107, February 1992.

David Gelernter. Generative communication in Linda. ACM Transac-
tionson Programming Languagesand Systems, 7(1):80-112, January 1985.

David Gelernter and David Kaminsky. Supercomputing out of recycled
garbage: Preliminary experiencewith Piranha. In Proceedings of the Sxth
ACM International Conference on Supercomputing, Washington, D.C., July
1992.

Hector GarciaaMolina and Annemarie Spauster. Ordered and reliable
multicast communication. ACM Transactions on Computer Systems,
9(3):242-271, August 1991.

Jm Gray. Notes on database operating systems. In Operating Systems:
An Advanced Course, Lecture Notesin Computer Science. Springer-Verlag,
Berlin, 1978.

James N. Gray. An approach to decentralized computer systems. |EEE
Transactions on Software Engineering, SE-12(6):684-692, June 1986.

[Haso2]

[Hoa78]

[HP9O]

[HP91]

[HW8T]

[Jac90]

[Jal 94]

[Je190]

[J594]

[Kamao]

[Kam91]

[Kam94]

[KMBT92]

169

Willi Hasselbring. A formal z specification of proset-Linda. Technical
Report 04-92, University of Essen Department of Computer Science, 1992.

C.A.R. Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666—677, August 1978.

John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann (Palo Alto, California), 1990.

Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An architec-
ture for implementing network protocols. |EEE Transactions on Software
Engineering, 17(1):64—76, January 1991.

Maurice P. Herlihy and Jeannette M. Wing. Avalon: Language support
for reliable distributed systems. In Digest of Papers, The Seventeenth
International Symposium on Fault-Tolerant Computing, pages 89-94. |IEEE
Computer Society, |EEE Computer Society Press, July 1987.

Jonathan Jacky. Insiderisks: Risksin medical electronics. Communica-
tions of the ACM, 33(12):138, December 1990.

Pankg] Jalote. Fault Tolerance in Distributed Systems. Prentice Hall,
1994.

Robert Jellinghaus. Eiffel Linda: An object-oriented Linda dialect.
ACM S GPLAN Notices, 25(12):70-84, December 1990.

Karpjoo Jeong and Dennis Shasha PLinda 2.0. A transac-
tional/checkpointing approach to fault tolerant Linda. In Proceedings
of the Thirteenth Symposium on Reliable Distributed Systems, Dana Point,
California, October 1994. To appear.

Srikanth Kambhatla. Recovery with limited replay: Fault-tolerant pro-
cessesinLinda. Technical Report CS/E 90-019, Department of Computer
Science, Oregon Graduate | nstitute, 1990.

Srikanth Kambhatla. Replication issues for adistributed and highly avail-
ableLindatuplespace. Master’'sthesis, Department of Computer Science,
Oregon Graduate Institute, 1991.

David Kaminsty. Adaptive Parallelism with Piranha. PhD thesis, De-
partment of Computer Science, Yale University, May 1994.

M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S.
Tannenbaum. Transparent fault-tolerance in parallel orca programs. In
Proceedings of the Third Symposium on Experiences with Distributed and

170

[KT87]

[Lam78]

[Lam81]

[Lap91]

[Leigg]

[LRWO1]

[LS83]

[LSP82]

[Mis92]

[MPS934]

[MPS93b]

Multiprocessor Systems, pages297—-311, Newport Beach, California, March
1992.

Richard Koo and Sam Toueg. Checkpointing and rollback-recovery
for distributed systems. |EEE Transactions on Software Engineering,
13(1):23-31, January 1987.

Ledie Lamport. Time, clocks, and the ordering of eventsin a distributed
system. Communications of the ACM, 21(7):558-565, July 1978.

Butler Lampson. Atomic transactions. In Distributed Systems—
Architecture and Implementation, pages 246—265. Springer-Verlag, Berlin,
1981.

Jean-Claude Laprie. Dependability: Basic Concepts and Terminol-
ogy, volume 4 of Dependable Computing and Fault-Tolerant Systems.
Springer-Verlag, 1991.

Jerrold Leichter. Shared Tuple Memories, Shared Memories, Buses and
LAN's—Linda Implementation Across the Spoectrum of Connectivity. PhD
thesis, Department of Computer Science, Yale University, July 1989.

LRW Systems. LRW'™ LINDA-C for VAX User’s Guide, 1991. Order
number VLN-UG-102.

Barbara Liskov and Robert Scheifler. Guardians and actions. Linguistic
support for robust, distributed programs. ACM Transactions on Program-
ming Languages and Systems, 5(3):381-404, July 1983.

Ledie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generas problem. ACM Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982.

Shivakant Mishra. Consul: A Communication Substrate for Fault-
Tolerant Distributed Programs. PhD thesis, Department of Computer
Science, The University of Arizona, February 1992.

Shivikant Mishra, Larry L. Peterson, and Richard D. Schlichting. Consul:
A communication substrate for fault-tolerant distributed programs. Dis
tributed Systems Engineering, 1:87-103, 1993.

Shivikant Mishra, Larry L. Peterson, and Richard D. Schlichting. Expe-
rience with modularity in Consul. Software — Practice and Experience,
23(10):1059-1075, October 1993.

[MS92]

[Nel81]

[Neu92]

[NLO1]

[PBSS9]

[Pow9l]

[PSB*88]

[PTHRO3]

[RSBOO]

[SBAO3]

[SBT94]

[SCO1]

171

Shivikant Mishraand Richard D. Schlichting. Abstractions for construct-
ing dependable distributed systems. Technical Report 92-19, Department
of Computer Science, The University of Arizona, August 1992.

BruceJ. Nelson. Remote Procedure Call. PhD thesis, Computer Science
Department, Carnegie-Mellon University, 1981.

Peter G. Neumann. Insiderisks. Avoiding weak links. Communications
of the ACM, 35(12):146, December 1992.

Bill Nitzberg and VirginiaLo. Distributed shared memory: A survey of
issues and algorithms. Computer, 24(8):52—60, August 1991.

Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserv-
ing and using context information in interprocess communication. ACM
Transactions on Computer Systems, 7(3):217—246, August 1989.

David Powell, editor. Delta-4: A Generic Architecture for Dependable
Distributed Computing. Springer-Verlag, 1991.

David Powell, Douglass Seaton, Gottfried Bonn, Paulo Verissmo, and
F. Waeselynk. The Delta-4 approach to dependability in open distributed
computing systems. In Proceedings of the Eighteenth Symposium on
Fault-Tolerant Computing, Tokyo, June 1988.

Lewis I. Patterson, Richard S. Turner, Robert M. Hyatt, and Kevin D.
Reilly. Construction of a fault-tolerant distributed tuple-space. In Pro-
ceedings of the 1993 Symposium on Applied Computing, pages 279-285.
ACM/SIGAPP, February 1993.

Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler. Fault-
tolerant clock synchronization in distributed systems. |EEE Computer,
23(10):33-42, October 1990.

Benjamin R. Seyfarth, Jerry L. Bickham, and Mangaiarkarasi Arumughum.
Glendainstallation and use. University of Southern Mississippi, Novem-
ber 1993.

Richard D. Schlichting, David E. Bakken, and Vicrg] T. Thomas. Lan-
guage support for fault-tolerant parallel and distributed programming. In
Foundations of Ultradependable Computing. Kluwer Academic Publishers,
1994. To appear.

Ellen H. Siegel and Eric C. Cooper. Implementing distributed Linda in
standard ML. Technica Report CMU-CS-91-151, School of Computer
Science, Carnegie Mellon University, 1991.

172

[Sch9O]

[Seg93]

[SS83]

[Sun90]

[TKB92]

[TM81]

[TS92]

[VMOQ]

[WL86]

[WL8S]

[XL89]

[Xuss]

Fred Schneider. Implementing fault-tolerant services using the state ma-
chine approach. ACM Computing Surveys, 22(4):299-319, December
1990.

Edward Segall. Tuple Space Operations. Multiple-Key Search, On-line
Matching, and Wait-free Synchronization. PhD thesis, Department of
Electrical Engineering, Rutgers University, 1993.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors. An
approach to designing fault-tolerant computing systems. ACM Transac-
tions on Computer Systems, 1(3):222-238, August 1983.

V. S. Sunderam. PVM: A framework for parallel distributed computing.
Concurrency: Practice and Experience, 2(4):315-339, December 1990.

Andrew S. Tannenbaum, M. Frans Kaashoek, and Henri E. Bal. Paradle
programming using shared objects and broadcasting. |EEE Computer,
25(8):10-19, August 1992.

Andrew S. Tannenbaum and Sape J. Mullender. An overview of the
Amoeba distributed operating system. ACM Operating Systems Review,
15(3):51-64, July 1981.

JohnTurek and DennisShasha. Themany facesof consensusindistributed
systems. Computer, 25(6):8-17, June 1992.

Paulo Verissmo and José Alves Marques. Reliable broadcast for fault-
tolerance on local computer networks. In Proceedings of the Ninth Sym-
posum on Reliable Distributed Systems, pages 5463, Huntsville, AL,
October 1990.

C. Thomas Wilkes and Richard J. LeBlanc. Rationale for the design of
Aodus. a systems programming language for the action/object system.
In Proceedings of the 1986 |EEE International Conference on Computer
Languages, pages 107-122, October 1986.

Robert Whiteside and Jerrold Leichter. Using Linda for supercomputing
on alocal areanetwork. In Proceedings of Supercomputing 88, 1988.

Andrew Xu and Barbara Liskov. A design for afault-tolerant, distributed
implementation of Linda. In Proceedings of the Nineteenth International
Symposium on Fault-Tolerant Computing, pages 199-206, June 1989.

Andrew Xu. A fault-tolerant network kernel for Linda. Master's thesis,
MIT Laboratory for Computer Science, August 1988.

[Zav93]

[Zen90]

173

PamelaZave. Featureinteractionand formal specificationsin telecommu-
nications. |1EEE Computer, 26(8):20-29, August 1993.

Steven Ericsson Zenith. Linda coordination language; subsystem ker-
nel architecture (ontransputers). Technical Report YALEU/DCS/RR-794,
Department of Computer Science, Yae University, May 1990.

