
fsc: A Sisal Compiler for Both

Distributed- and Shared-Memory Machines

Vincent W. Freeh
Gregory R. Andrews

TR 95-01

fsc: A Sisal Compiler for Both

Distributed- and Shared-Memory Machines

Vincent W. Freeh and Gregory R. Andrews

TR 95-01

Abstract

This paper describes a prototype Sisal compiler that supports distributed- as well as
shared-memory machines. The compiler, fsc, modi�es the code-generation phase of
the optimizing Sisal compiler, osc, to use the Filaments library as a run-time system.
Filaments e�ciently supports �ne-grain parallelism and a shared-memory programming
model. Using �ne-grain threads makes it possible to implement recursive as well as loop
parallelism; it also facilitates dynamic load balancing. Using a distributed implemen-
tation of shared memory (a DSM) simpli�es the compiler by obviating the need for
explicit message passing.

February 21, 1995

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1First published in the \High-Performance Functional Computing Conference", April 1995.
2This work was supported by NSF grants CCR-9108412 and CDA-8822652.

1 Introduction

It is di�cult to create a correct and e�cient parallel program; this di�culty is compounded because
each architecture may require a di�erent program. It would be easier if programmers could write
one straightforward program that is portable across the variety of sequential, vector, and parallel
processors. However, the end goal of parallel programming is performance, so the program also has
to execute e�ciently.

Functional languages have the potential to provide a simple, portable, and e�cient solution
to parallel programming. Using a functional language often reduces the programmer's e�ort by
making programs simpler (no explicit concurrency or memory management), easier to maintain
(smaller programs), easier to test (deterministic results), and easier to understand (equals means
equals). In addition, functional programs have an abundance of implicit concurrency, because loop
iterations and independent expressions can be evaluated in parallel. The main challenges are to
implement functional programs both e�ciently and portably on a variety of machines.

Sisal is a functional language [M+85] that has proven useful for programming numerically
intensive scienti�c applications, especially parallel applications [Can92a]. The optimizing Sisal

compiler, osc, creates code for many di�erent shared-memory and vector processors (e.g., SGI,
Sequent, Encore Multimax, Cray X-MP, and Cray 2) [Can92b]. It does not, however, create code
for distributed-memory machines.

This paper describes a prototype compiler, fsc, that supports distributed-memory multipro-
cessors as well as other machines. It does so by modifying the back end of osc to use the Filaments
package, a subroutine library that provides e�cient �ne-grain parallelism and a shared-memory
programming model using only standard hardware and software [EAL93, FLA94]. Additionally,
the prototype supports recursive parallelism, which is not supported by osc even though it is im-
plicitly available in Sisal itself. The prototype was produced in about three months of work by a
single programmer. Still, the code produced by fsc already achieves good speedup on both shared-
and distributed-memory machines for most of the applications tested.

The next section gives an overview of relevant aspects of the Filaments package. Section 3
discusses the Sisal programming language, the osc compiler, and the modi�cations made to osc

to create the prototype fsc compiler. Section 4 discusses the performance of three programs,
Section 5 mentions related work, and Section 6 gives concluding remarks.

2 Filaments Runtime System

The Filaments package is a library of C code that currently runs on clusters of workstations (Suns
running SunOS or Solaris, and DEC-5000s running Mach), shared-memory multiprocessors (Se-
quent Symmetry and SGI Iris), and a distributed-memory multi-computer (Intel Paragon). It has
been designed to support parallel scienti�c applications and is intended to be a target for a com-
piler. The package is relatively small (less than 7,000 lines of C code), simple (about 20 subroutine
calls), and e�cient [EAL93, FLA94].

Filaments has two key abstractions: �ne-grain threads and shared memory. The �ne-grain
execution model can be thought of as the least common denominator for concurrency, because it
supports coarse- and medium-grain tasks as well as �ne-grain ones. The shared-memory program-
ming model provides a simple and natural way to program.

A �lament is a very lightweight thread. Each �lament is an independent unit of work, and
there may be thousands in an application. There are two kinds of �laments: iterative, which are
used in loop-based applications such as matrix multiplication and Jacobi iteration, and fork/join,
which are used in recursive applications such as adaptive quadrature and quicksort. Once created,

1

�laments are executed concurrently by server threads.
Iterative �laments synchronize using barriers , and fork/join �laments use the join primitive.

The package also provides reduction operations, which are integrated with barrier synchronization.
A distributed shared memory (DSM) system provides a logically shared memory on distributed-
memory machines. Hence, �laments, whether executing on a shared-memory (SM) or distributed-
memory (DM) machine, can communicate by reading and writing shared variables. No explicit
message passing is required on DM machines.

The Filaments package employs a number of techniques to help make it e�cient. First, �laments
are stackless and independent. Second, the DSM is multi-threaded to overlap communication and
computation, thus eliminating communication latency in most applications. Third, the package
employs techniques such as inlining and pruning to reduce the overhead of executing �laments.
Finally, a reliable datagram protocol is used to reduce bu�ering and copying of message data
(DSM pages) and to provide scalability. These features are discussed below and discussed in detail
in [EAL93] and [FLA94].

A �lament does not have a private stack; it consists only of a code pointer and state (usually just
the arguments). Consequently, context-switching is inexpensive, �laments can be created quickly,
and very little space is used. On each processor a server thread executes �laments, one at a time.
A �lament executes in the server's stack, just as a procedure call does. An executing �lament is not
pre-empted: It can block only at a barrier or reduction (waiting for all other �laments to arrive) or
a join (waiting for its children to �nish). These two restrictions on �laments (independent and non
pre-emptable) allow for the e�cient creation and execution of thousands of �laments, yet provide
the
exibility to support parallel scienti�c programming.

On a DM machine, a remote page fault takes a long time, so the Filaments package overlaps
communication and computation. This is accomplished by using multiple server threads and asyn-
chronous communication. When a �lament accesses a remote page, a page fault occurs. A request is
made for the remote page, the executing server thread is suspended, and another server thread (ex-
ecuting another �lament) is started. When the requested page arrives, the suspended server|and
any others that are waiting for the same page|is moved to the ready list and eventually resumes
executing the �lament that faulted. A server thread is not pre-empted when a remote page is
received. It is momentarily suspended while the incoming message is read; then it is resumed.

Even though �laments can be executed quite e�ciently, there are many techniques employed
by Filaments to further reduce the overhead. The body of a �lament can be inlined to eliminate
procedure call overhead. Filaments are usually created in loops, in which case the arguments to
the �laments form a regular pattern. At runtime|immediately before execution|analysis can be
done on the argument list to determine if the arguments can be generated rather than read from
memory. When this optimization is possible, it not only reduces the number of instructions but
eliminates many loads|increasing the e�ectiveness of the cache. In fork/join applications there
are generally thousands of �laments created. Forking �laments is expensive, so once \enough"
�laments are forked, the package starts pruning . Instead of forking, a new �lament is executed
immediately as if it were a procedure call. There is signi�cantly less overhead in a procedure call
and return than in a fork and join, and the vast majority of fork/join �laments are pruned.

There are two choices for communication in Unix: TCP and UDP. TCP is costly and does
not scale; UDP is not reliable. We created a new protocol (built on top of UDP) that provides
reliable, scalable, low overhead datagram communication. This protocol uses scatter/gather to
avoid extra copying of page data, and it has semantics such that page data is never bu�ered. The
Filaments protocol eliminates at least three copies relative to TCP|two on sending and one on
receiving|because TCP bu�ers all messages.

2

Distributed
MemoryMemory

SharedSequentialVector

RTS RTS

Filaments GeneratorIf2gen

Optimizing
Phases

Sisal

osc fsc

osc fsc

Figure 1: Comparison of osc and fsc components

3 Details of the fsc Compiler

Sisal is a general purpose functional language [FCO90]. It is probably best described as a data
ow
language because the order of program execution is determined not by the static ordering of expres-
sions in the source code but rather by the availability of the data. Because an expression can be
evaluated as soon as all its operands have been determined, the compiler can schedule expression
evaluation in any order|including concurrently|that preserves the data dependencies.

Version 12 of the optimizing Sisal compiler (osc) creates e�cient code for execution on var-
ious sequential, vector, and shared-memory machines [Can92b]. (This compiler does not support
distributed memory, although the majority of the new supercomputers have distributed memory
architectures.) The osc compiler translates Sisal source into C or Fortran code, which is then
linked with the osc runtime system. Many optimizations are performed by osc including build-
in-place and update-in-place analysis of arrays to reduce copying. The compiler also partitions
the problem into subproblems that can be executed in parallel. The osc execution model consists
of one shared queue containing slices of work and a server thread executing these slices on each
processor. It creates at least p slices, where p is the number of processors. The load imbalance is
statically calculated by using a cost estimate of the work. Well-balanced programs use exactly p

slices; the greater the load imbalance, the greater the number of slices created.
We have created a prototype compiler from osc that uses the Filaments runtime system (RTS)

instead of the osc RTS. The components of the two compilers are shown in Figure 1. The prototype
Sisal-to-Filaments compiler (fsc) is di�erent from osc because it has a �ne-grain execution model,

3

supports recursive parallelism, and runs on distributed-memory machines. The prototype was
created directly from osc both to use all the features of osc and to minimize the amount of work
required. The majority of the optimizations provided by osc are part of fsc since the code generator
is the only component unique to fsc.

In creating fsc the following modi�cations were made to osc:

� changed from coarse-grain to �ne-grain execution,

� added distributed initialization, and

� added distributed management of shared memory.

The �rst modi�cation was to support the �ne-grain execution model of Filaments. The other two
are needed to support execution on distributed-memory machines.

To exploit the �ne-grain execution model, fsc creates as many �laments as possible, rather
than creating some number of slices based on a static evaluation of the workload. Therefore, the
number of �laments is based on the problem size, not on the underlying architecture. The code
generation of parallel for nodes was modi�ed to create �laments and then execute them. To do
this the body of the for node is made into a �lament. For example, in matrix multiplication fsc

creates n2 �laments in a two-dimensional loop and starts execution after all have been created.
Each �lament computes a dot product and writes an element into the result matrix.

There are multiple processes and address spaces on a distributed-memory machine. Therefore,
fsc creates an address space, an initialization thread, and one or more server threads on each
processor. Many of the osc initialization �les were modi�ed to perform distributed initialization,
which includes starting a process in all address spaces, establishing communication between these
processes, and creating separate initial work for each processor. In constrast on a shared memory
(SM) machine, both the osc RTS and Filaments RTS use a single address space containing an
initial thread and p server threads (one per processor).

The shared memory allocation and deallocation routines of osc had to be modi�ed to use the
Filaments DSM. In osc shared memory is dynamically allocated (and deallocated). In fsc the
shared memory is divided into p partitions, one for each processor, and each processor allocates
shared memory from its assigned partition. On deallocation, memory is returned to the same
partition from which it was allocated. To avoid excessive faulting, objects are placed on pages
owned by the processor on which they are created and new objects are placed on new pages. This
is accomplished with a \begin object" directive which causes the next memory allocation to begin
on an unused page. For an object that requires multiple allocations, subsequent allocations will
come from the same page or an unused page.

In osc objects are created lazily; fsc retains this though a multi-phase allocation scheme. For
a scalar object, �rst the shared memory is allocated, then the object is created and initialized, and
�nally the value of that object is disseminated to all other processors via a reduction.

For an aggregate object that is created by all processors, �rst each processor allocates, creates,
and initializes its portion of the object, and then a reduction joins the portions together. For
example, the following Sisal code creates an N � N matrix called A, whose elements are Ai;j =
f(i; j):

A := for i in 1, N cross j in 1, N

returns array of f(i,j)

end for

In a block partition, the �rst N=p rows of A are created on the �rst processor, the second N=p

rows on the second processor, and so on. Each processor creates a top-level array and an array

4

(a)

(b)

Figure 2: Allocation of 2D array in DSM, before reduction (a) and after reduction (b)

for each of the N=p rows (see Figure 2(a)). After all the rows have been created, a reduction is
performed on the top-level array|this reduction corresponds to the returns clause. This is shown
in Figure 2(b). Each processor has a copy of the top-level array|but the rows are shared.1

Cloning appears to be safe because of the single-assignment semantics of Sisal. But osc has
many memory optimizations that result in arrays being updated. In this case, further reductions
are needed to regain a consistent state of memory. Full implementation of updating as supported by
osc requires locks and reference counts. A distributed protocol to implement locking and reference
counting is non-trivial and beyond the scope of the work reported in this paper.

Using a �ne-grain execution model has several advantages. First, it more closely represents the
abstract model of the Sisal language itself. Second, the partitioning phase of osc, which represents
a signi�cant amount of the code, may not be needed in a compiler that uses a �ne-grain RTS. Static
partitioning is problematic in the presence of inde�nite loops and conditional statements and may
require tuning through compilation and runtime parameters. Lastly, having many small tasks also
makes it easier to perform load balancing and data partitioning, allowing dynamic and adaptive
systems to perform both (for example, see the Adapt system [LA94]).

Obviously, creating fsc from osc has some advantages but there is a downside, too. In partic-
ular, there is some cost in translating from the �ne-grain model of Sisal to the coarse-grain model

1Every processor reads the top-level array; the rows, however, are often read by only one processor. Cloning the

top-level array reduces page tra�c and only slightly increases the overall storage. If the rows were cloned, storage

usage would increase greatly and it would be much more di�cult to maintain consistent memory.

5

Machine/Compiler Processors

Shared Memory 1 2 4

osc 72.0 37.8 21.6

fsc 73.8 40.6 25.6

Distributed Memory 1 2 4

osc 85.5 | |

fsc 87.2 46.1 29.8

C & library 84.0 45.7 25.7

Figure 3: Matrix multiplication, Times in seconds

of osc then back to the �ne-model of fsc. Because of the structure of osc, we were unable to
reuse �laments in Jacobi iteration.2 Ideally, �laments are created once and executed many times:
The number of �laments and the task of each �lament do not change between iterations|only the
data in the array are changed. In a hand-coded Filaments program, �laments are reused in this
manner.

4 Performance

Three applications were tested. Each was compiled using both the osc and fsc compilers, and
each was run on a shared- and a distributed-memory machine. The shared-memory (SM) tests
were conducted on a Silicon Graphics Iris 4D/340 shared-memory multiprocessor, having four 33-
Mhz MIPS processors. The distributed-memory (DM) tests were conducted on a cluster of four Sun
Sparc-1 workstations connected with a 10Mbs Ethernet. The Sisal 1.2 compiler, osc v12.9.2,
was used to compile the Sisal programs; and it formed basis for the fsc compiler. We compare
DM fsc performance to hand-coded C programs that use the Filaments communication library,
because osc does not have a distributed implementation.

4.1 Matrix Multiplication

Our matrix multiplication program solves C = A�B, where A, B, and C are square matrices.
For each point in C, we compute the inner product

ci;j =
NX
k=1

ai;k � bk;j

The performance of the matrix multiplication programs is is shown in Figure 3. In order to have
the tests run in about the same overall time, the SM tests used a 512� 512 matrix and the DM
tests used a 360� 360 matrix.

Shared-Memory Tests

The fsc program is slightly slower (2.5%) on one machine than the osc program. This is due
to the cost of creating and executing �laments. Both compilers achieve good speedup on the SM

2The osc code-generation phase partitions a for node and creates the code for the body and the returns clause

in three distinct places. This division is quite di�erent from how the Filaments package is used. Therefore, we could

not create reusable �laments in fsc in the time we spent on this project.

6

Machine/Compiler Processors

Shared Memory 1 2 4

osc 120 68.8 50.6

fsc 127 75.4 62.4

Distributed Memory 1 2 4

osc 51.6 | |

fsc 69.6 51.4 45.1

C & library 38.6 21.5 15.5

Figure 4: Jacobi Iteration, Times in seconds

machine, although the speedup of osc is better than that of fsc. The performance of fsc relative
to osc decreases as the number of processors increases. Filaments are created sequentially by one
processor, so creation time is the same for all tests. Additionally, the �laments themselves are in
the cache for (at best) only one processor, resulting in many cache misses on the other processors
when they go to execute the �laments.

Distributed-Memory Tests

On a single processor, the C program was fastest, followed by the osc program. This is expected
because the C and osc programs are very similar, but the osc runtime has a little bit of overhead,
accounting for the 2% increase. The fsc program is about 2% slower than the osc program due
to the cost of creating and executing the nearly 130,000 �laments. Both the C and fsc programs
scale very well. Matrix multiplication is easy to parallelize, so this is not surprising.

4.2 Jacobi Iteration

In this section we discuss programs that solve Laplace's equation using Jacobi iteration. Laplace's
equation in two dimensions with constant, uniform boundaries is

@2u

@x2
+

@2u

@y2
= 0

Jacobi iteration uses the following approximation of the di�erence equation:

u
(k+1)

i;j =
1

4
(u(k)i�1;j + u

(k)

i+1;j + u
(k)

i;j�1+ u
(k)

i;j+1)

The equation above computes the (k+1)th approximation from the kth approximations. The algo-
rithm terminates when the maximum change in any point is less than some convergence tolerance.
The performance of the Jacobi iteration programs is shown in Figure 4. The tests use a 100� 100
matrix. Because the SM machine is faster, the SM tests use a smaller convergence tolerance than
the DM tests (10�5 versus 10�3).

Shared-Memory Tests

The performance of the fsc program on the SM machines is not as good as the osc program. This
is primarily because �laments are not reused. Instead of creating 10,000 �laments once, 10,000
are created on each of the 360 iterations. Additionally, when a set of �laments is created once
and repeatedly executed, the Filaments package can perform some additional optimizations that
greatly reduce the cost of executing �laments.

7

Machine/Compiler Processors

Shared Memory 1 2 4

osc 80.9 | |

fsc 82.7 46.1 22.9

Distributed Memory 1 2 4

osc 74.0 | |

fsc 84.6 37.5 29.3

Figure 5: Adaptive Quadrature, Times in seconds

Distributed-Memory Tests

On a single node the C program is signi�cantly faster than the other programs. This is mostly due
to memory allocation. The other two programs allocate a matrix in each of the 360 iterations|
because each row is allocated separately, there are at least 101 allocations and deallocations each
iteration. The fsc program is much slower (35%) than the osc program because �laments are not
being reused.

The C program gets very good speedup, whereas the fsc gets very little. The good speedup of
the C program is because it uses explicit asynchronous message passing to overlap communication
and computation.3 The poor speedup of fsc is due to the same lost optimizations incurred by
the SM program, plus an extra reduction and paging costs. The returns clause in Sisal roughly
corresponds to a reduction in fsc. Often a for loop will have more than one returns clause. This
results in multiple reductions in fsc. Since reductions are relatively expensive operations, it is
important to minimize them. The fsc Jacobi iteration program has two reductions per iteration,
whereas the hand-coded C program has only one. The cost of the extra barrier grows with the
number of processors: It is insigni�cant with one processor, but accounts for about 4 seconds of
the total time of the 4 processor test. The C program explicitly transmits one row (800 bytes) of
data to each neighbor using just one message per neighbor. The fsc program implicitly transmits
one page (4096 bytes) of data to each neighbor using two messages per neighbor. This is not an
inherent limitation of the approach, because a hand-coded Filaments program performs within 10%
of the C program [FLA94].

4.3 Adaptive Quadrature

Adaptive quadrature approximates the integral

Z b

a

f(x)dx

by dividing the interval into subintervals. The area of each subinterval is approximated (using
a method like the trapezoidal rule), then the approximations are added together to obtain the
approximation for the area of the entire interval. The subintervals are determined dynamically:
A recursive function estimates the area of an interval, and the areas of the right and left halves
of the interval. If the di�erence between the sum of the two smaller areas and larger area is
small enough, the approximation for the area is accepted and the function returns the area of the

3First, data is sent to neighboring processors. Then the interior points, which can be updated with local data, are

updated. Lastly, the boundary points are updated after receiving data from the neighbors. If the data arrive while

the interior points are being updated, full overlap of communication and computation is achieved.

8

interval. Otherwise the function will recursively (and in parallel) approximate the areas of the
left and right subintervals and return the sum. Adaptive quadrature was chosen because it is an
irregular problem: the amount of work is not known at compile time. The results of the adaptive
quadrature tests are shown in Figure 5.

Shared-Memory Tests

The osc compiler has not implemented recursive parallelism, so there is only one performance
number for osc. On the SM machine, the overhead of fsc is small (2%) and the speedup is good
(1.8 and 3.6 on two and four processors, respectively). Pruning and load-balancing provided by
Filaments package are the reasons for the good performance.

Distributed-Memory Tests

The single processor performance of fsc is worse than that of osc. On SM fsc is 2% slower than
osc, but on DM it is 14% slower. We cannot account for the large di�erence. The speedup of
the DM fsc program is good: 2.3 and 2.9 on 2 and 4 processors. We suspect the super-linear
speedup shown on the two-processor test is due to the slowness of the one-processor performance.
Compared to the osc time, the speedup is not super-linear.

5 Related Work

Two other systems have compiled Sisal for execution on distributed-memory machines. Distributed
Memory Sisal from Colorado State University [HB92] is closely related to fsc. It uses a DSM,
but employs coarse-grain execution. Additionally, their DSM does not achieve as much overlap of
communication and computation as fsc, because of the lack of many �ne-grain tasks and the use
of a stack to hold faulted threads.

The distributed-memory Sisal compiler from North Carolina State University uses a coarse-
grain, explicit message passing model [PAM94]. Data are transferred between processors using
explicit communication operations. Signi�cant analysis is required both to insert and minimize the
communication between processors.

Two systems for executing ALFL programs on shared- and distributed-memory machines are
described in [Gol88]. An ALFL program and its data are represented as a graph. In these systems a
graph reduction \engine" exhaustively applies \reductions" to the nodes in the graph. The shared-
memory system has nearly linear speedup; the distributed-memory system gets very poor speedup.
Because both systems use graph reduction, they have very large overhead and are not competitive
with imperative programs.

The paper [Nik89] shows how Id can be translated to data
ow graphs, then to P-RISC (Parallel-
RISC) code, and �nally to machine code. The target machine can be a shared- or a distributed-
memory machine. The main similarity of this to fsc is the architecture-independent intermedi-
ate form (P-RISC). Like fsc, the P-RISC model uses �ne-grain execution. However, it uses a
distributed-memory model and hence explicit communication; also, it has not been implemented.

There is a lot of work regarding �ne-grain parallelism and distributed shared memory systems
that is related to the Filaments package. See [EAL93, FLA94] for details.

9

6 Conclusions

The fsc prototype was created in a very short time (approximately three person-months). Un-
like osc, it executes on distributed-memory machines as well as shared-memory machines. The
Filaments package provides this architecture-independence. Additionally, fsc supports recursive
parallelism, allowing parallel execution of recursive programs, such as adaptive quadrature and
quicksort. The fsc compiler should also be easier to use than osc because the programmer does
not have to tune any compilation or runtime parameters.

Performance of many of the test programs is very good. However, fsc does not perform as well
as expected, particularly in the Jacobi iteration tests. Previously, we have demonstrated that a
hand-coded Filaments program can execute these applications e�ciently on a shared-memory mul-
tiprocessor [EAL93] and a cluster of workstations [FLA94]. Therefore, we believe poor performance
is not an inherent limitation of the approach.

Acknowledgements

Dave Lowenthal gave much advice and encouragement during the project. Then he spent many
hours reviewing the paper and provided many invaluable comments. The reviewers of the abstract
also provided many good comments that were used to improve the paper.

References

[Can92a] David Cann. Retire Fortran? A debate rekindled. CACM, 35(8):81{89, August 1992.

[Can92b] David C. Cann. The optimizing SISAL compiler. Report UCRL-MA-110080, Lawrence
Livermore National Laboratory, April 1992.

[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. Shared Filaments:
E�cient support for �ne-grain parallelism on shared-memory multiprocessors. TR 93-13,
Dept. of Computer Science, University of Arizona, April 1993.

[FCO90] John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the SISAL language
project. J. of Par. and Dist. Computing, 10(4):349{366, December 1990.

[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-
ments: E�cient �ne-grain parallelism on a cluster of workstations. In First Symposium

on Operating Systems Design and Implementation, pages 201{213, November 1994.

[Gol88] Benjamin Goldberg. Multiprocessor execution of functional programs. International J.
of Parallel Programming, 17(5):425{473, October 1988.

[HB92] Matthew Haines and Wim Bohm. Software multithreading in a conventional distributed
memory multiprocessor. Technical Report CS-92-126, Colorado State University, Septem-
ber 1992.

[LA94] David K. Lowenthal and Gregory R. Andrews. Adaptive data placement for distributed-
memory machines. TR 94-33, University of Arizona, December 1994.

[M+85] James R. McGraw et al. SISAL language reference manual version 1.2. Technical Report
M-146, Lawrence Livermore National Laboratory, March 1985.

10

[Nik89] Rishiyur S. Nikhil. The parallel programming language Id and its compilation for parallel
machines. In Proc. Workshop on Massive Parallelism: Hardware, Programming nad

Applications, October 1989.

[PAM94] Santosh S. Pande, Dharma P. Agrawal, and Jon Mauney. Compiling functional parallelism
on distrbuted-memory systems. IEEE Parallel and Distributed Technology, pages 64{76,
Spring 1994.

11

