
Very Fast YACC-Compatible Parsers

(For Very Little E�ort)

Achyutram Bhamidipaty Todd A. Proebsting

TR 95{09

Abstract

We have developed a yacc-compatible parser generator that creates parsers that are

2.5 to 6.5 times faster than those generated by yacc or bison. Our tool, mule, creates

directly-executable, hard-coded parsers in ANSI C; yacc produces interpreted, table-

driven parsers. Hard-coding LR parsers for speed is not a new idea. Two attributes

distinguish mule from other parser generators that create hard-coded LR parsers: mule

is compatible with yacc (including yacc's peculiar error recovery mechanisms), and mule

does absolutely none of the complex automata analysis of previous hard-coded-parser

generators. Mule creates simple, fast parsers after very little analysis.

September 22, 1995

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

1 Introduction

We have developed a yacc-compatible parser generator that creates parsers that are 2.5 to 6.5

times faster than those generated by yacc [Joh75] or the Free Software Foundation's yacc clone,

bison. Our tool, mule, creates directly-executable, hard-coded parsers in ANSI C; yacc produces

interpreted, table-driven parsers. (We will use yacc as the prototypical generator of table-driven

LALR(1) parsers, unless a distinction from others (e.g., bison) is relevant.) A counter-intuitive

advantage of mule is that it requires less analysis to generate parsers than yacc because mule does

not produce any tables and therefore does not require any table compression techniques. mule is

compatible with yacc, except for the obscure YYBACKUP macro.

Hard-coding LR parsers for speed is not a new idea. Two attributes distinguish mule from

other parser generators that create hard-coded LR parsers: mule is compatible with yacc (including

yacc's peculiar error recovery mechanisms), and mule does absolutely none of the complex automata

analysis of previous hard-coded-parser generators. Error recovery is notable because it is necessary

to be yacc-compatible, and because it was thought to be very complicated in hard-coded parsers

| the mechanism in mule is trivial to implement. The complete lack of optimizations is notable

because mule's parsers show impressive speedups.

One criticism of hard-coded LR parsers has been that they create parsers that are much bigger

than the compressed-table interpretive systems. No attempt was made to reduce the size of mule's

parsers and yet they are, on average, only about twice the size of table-based systems on a mod-

est grammar for a subset of C. mule increased the size of gcc's parser many-fold, but that only

represented an increase of less than 75KB.

The mule project began to determine how fast a very simple hard-coded parser would be, and

the answer was a resounding \very fast." Given the small increase in size, we believe that hard-

coding represents a much better method of encoding yacc-compatible parsers than the current

table-driven method.

2 Previous Work

We know of three previous LR-parser generators that create hard-code. mule di�ers from all the

others in its utter lack of sophisticated optimizations, while still producing impressively fast parsers.

Furthermore, mule di�ers from each system in at least one of the following ways:

� mule produces ANSI C, not assembler.

� mule accepts yacc/bison input.

� mule does yacc-style error recovery.

� mule manages a semantic stack for user-code access (e.g., $$, $1, $2, etc.).

2.1 Pennello

Pennello created a parser generator that produced hard-coded parsers in assembly language [Pen86].

His hard-coded parsers showed a 6 to 10-fold improvement in speed over his table-driven system.

His system was not yacc-compatible. Size increased by a factor of 2 to 4 | enabling error recovery

was responsible for the larger increases. Because the hard-coded parsers directly manipulated

jump addresses as data, they could not have been directly expressed in ANSI C. Furthermore, he

exploited the low-level assembler for purposes of register allocation and stack manipulations. His

1

parsers could directly use the run-time stack as the parser stack, defering stack management to

the operating system. The parser-generator was responsible for analyzing the transitions at any

given state to determine if they were best realized as a linear search, a binary search, or a jump

table. Jump tables were compressed in much the same way as ordinary state-transition tables in a

table-driven parser [FL88]. To eliminate unnecessary checks for stack over
ow, the parser generator

employs a heuristic to break cycles in the characteristic �nite state machine's strongly connected

components | the optimal solution is an NP-complete problem.

In contrast, mule generates ANSI C, always checks for stack over
ow, and always uses C's switch

statement to compute transitions (defering its translation to the compiler). After eliminating all

over
ow checks from mule's parsers, no test case's speed increased by more than 17%. Also,

Pennello's system does not accept yacc speci�cations, it does not maintain a semantic stack, and

its error-recovery di�ers from yacc's.

2.2 Horspool and Whitney

Horspool andWhitney developed many additional optimizations for hard-coded LR parsers [HW90].

Their system accepts yacc input, but does not support yacc's semantic stack or error recovery. The

parser generator is retargetable and can generate both C and assembler from a special intermediate

representation. The parsers show a 5 to 8-fold increase in speed over their table-driven counterparts.

The size increased by only 40%. They detail many optimizations relevant to hard-coded LR parsers.

Many of their optimizations can be characterized as global optimizations, which require an

analysis of the entire �nite state machine, rather than just individual states. Their minimal push

optimization seeks to avoid pushing states on the stack whenever possible. Unfortunately, this opti-

mization is complicated and not obviously compatible with a parser-controlled semantic stack (like

yacc's). Similarly, the right-recursive rule optimization requires nontrivial analysis and is incom-

patible with yacc's semantic stack. Unit-rule elimination is a valuable optimization in table-driven

parsers, but poses complications with respect to semantic actions. The direct goto determination

optimization eliminates many unnecessary nonterminal state-transition computations.

In addition to the global optimizations, Horspool and Whitney list low-level coding optimiza-

tions that increase speed and decrease size. Like Pennello, they attempt to optimize decision se-

quences via linear searches, binary searches, or jump tables. They also incorporate branch-chaining

into their system rather than relying on the peephole optimizer for this simple optimization. To

eliminate duplicate code, they attempt to do as much code-sharing as possible | including �nding

code sequences that almost match and carefully encoding the program so that the matching code

can be shared.

In contrast, mule supports a semantic stack, supports error recovery, defers all low-level coding

decisions to the C compiler, and avoids all complex global optimizations.

2.3 Pfahler

Pfahler created a parser-generator that accepts yacc speci�cations and creates a hard-coded parser

in ANSI C [Pfa90]. The generated parser cannot do error recovery. The hard-coded parsers are

5.3 to 6.6 times faster than yacc-generated parsers, and at least 50% bigger. Pfahler does not

concentrate on doing low-level optimizations, but does invent a new parser-design and some new

global optimizations.

His parser-generator creates hard-coded parsers that have a simpler structure than Pennello's

and Horpool's. The structure is both time and space e�cient, although it may require replicating

semantic action routines multiple times. One part of the structure is an inverted table which requires

2

a piece of code for each nonterminal for computing the state transition on that nonterminal and

the current state. The inverted table optimization decreased code size by 58% and increased speed

by a factor of 1.6-2.9.

Pfahler's global optimizations require nontrivial analysis of the �nite state machine. His chain-

rule elimination optimization is a special case of the well-known shift/reduce optimization employed

in table-driven parsers and gives about a 2-fold speedup, while requiring some growth in code size

due to code replication. Additionally, the parser-generator does some complex analysis for stack

access minimization. This optimization requires heuristics for attacking an NP-complete problem

and results in 0 to 20% speed improvements.

In contrast, mule supports error recovery, and avoids all complex optimizations. Chain-rule

elimination may require replicating semantic actions multiple times within the parser, which may

cause code explosion or, worse, incorrect code when labels are declared within the replicated code.

Therefore, mule does not attempt this powerful optimization. (This is unfortunate since this

optimization appears to be the simplest/best of the known global optimizations.) mule does,

however, adapt Pfahler's inverted tables into its new design because of their simplicity and reported

speed and size advantages. The adaptation avoids replicating semantic action routines. When

Pfahler's system uses inverted tables, but does none of the error-recovery bookkeeping required of

mule, its speedups are only 3-fold compared with table-driven techniques, whereas mule's are 2.5

to 6.5-fold with bookkeeping.

3 LR-Parsing Mechanics

We brie
y explain the fundamentals of shift-reduce parsing (which represents the LR(1) family)

without going into any more detail than necessary for subsequent exposition.

LALR(1) parsers like yacc simulate, either directly or indirectly, a very simple automaton with

a stack of automaton states [FL88]. (Parsers generated by yacc also maintain a semantic stack,

but since that stack grows in parallel with the state stack, we only describe the use of the state

stack here.)

Simulating the automaton requires two mechanisms: one for determining the action, which

is determined by the current input symbol and the state on the top of the stack, and one for

determining state transitions based on the current top of stack and a grammar symbol. At parser-

generation time LALR(1) grammar analysis builds these tables, called action and goto, respectively.

(The analysis is necessary regardless of whether a table-driven or hard-coded parser is desired.)

Functionally, these tables have the following signatures.

goto: state � symbol ! state

action: state � token ! fshift,reduceY ,accept,errorg

There are only four possible actions: reduce, shift, accept, and error. Reduce actions are

parameterized by the grammar production being reduced. Actions are described below | let TOS

be the state on the top of the stack, and let token be the current lookahead token.

shift A shift pushes goto[TOS,token] onto the stack, and updates token by advancing the lexical

analyzer.

reduceY A reduction processes production Y : X ! x1 : : : xn, which requires popping n states o�

the stack, followed by pushing goto[TOS, X]. (The semantic action of the parser relating to

this production would be executed prior to popping states o� the stack.)

3

accept An accept signals a successful parse.

error An error requires error reporting and/or recovery.

4 Simple Implementation

mule creates a single parsing routine, yyparse(), that simulates the LALR(1) parser directly in

ANSI C, without interpreting any tables. The routine has �ve simple parts: initialization, automata

states, reduction actions, nonterminal transitions, and error recovery. Although very similar to the

inverted table structure in [Pfa90], this structure avoids the duplication of semantic action routines.

Another di�erence is the yacc-compatible error recovery. The structure is simple, with all code

being generated from a tiny set of small, well-de�ned templates that directly mirror the grammar

or LALR(1) automaton.

Since both the state stack and the semantic stack grow in unison, we wrap the stack entries

into a single structure, StackType.

4.1 Initialization

The initalization phase simply sets up bookkeeping and data structures for subsequent automata

simulation. It is grammar-independent.

#define YYABORT return -1

#define YYACCEPT return 0

#define yyclearin token = yylex()

#define yyerrok yyerrorstatus = 3

#define YYERROR goto user error handler

#define YYRECOVERING() (yyerrorstatus <= 2)

typedef struct stackType f

int state; // State stack element.

YYSTYPE semantic; // Semantic stack element.

g StackType;

YYSTYPE yylval; // Semantic value computed by yylex().

int yyparse(void) f

int token = yylex(); // Get �rst token.

unsigned yyerrorstatus = 3; // Initialize error-recovery counter.

YYSTYPE yyredval; // Variable holds semantic value of $$.

StackType stack start[MAX STACK]; // Stack.

StackType *stack = stack start; // Stack pointer.

StackType *EOS = stack start + MAX STACK;// End of Stack.

goto state 0; // Start state.

4

4.2 Hard-coded States

For each automata state, mule creates code responsible for simulating the action of that state based

on the current input token. All transitions into a given state are labeled with the same grammar

symbol. States labeled with a token are called shift states and they require extra code to advance

the lexical analyzer. The template of this code for state N is

state N:

stack->state = N;

The subsequent 3 lines appear i� N is a shift state.

stack->semantic = yylval; // Put lexical semantic entry on stack.

token = yylex(); // Advance lexical analysis.

yyerrorstatus++; // Update error-recovery counter.

if (++stack == EOS) goto stack overflow;

state action N: // Error-recovery entry point.

switch (token) f

case Q: goto state X; // i� shift = action[N,Q], X = goto[N,Q]

case R: goto reduce Y ; // i� reduceY = action[N,R]

case S: goto error handler;; // i� error = action[N,S]

case T: YYACCEPT; // i� accept = action[N,T]
...

// The action table determines the default action for N :

default: goto error handler;

or

default: goto reduce Z;

g

The state number is stored in the stack, followed by possibly invoking the lexical analyzer. The

three optional lines store the semantic value of the current token, advance the lexical analyzer, and

do error-recovery bookkeeping. Incrementing the stack pointer completes the push. The case arms

of the switch are determined by the action table computed by the LALR(1) analysis; for each

condition met in the comments, a case arm must be generated. Default actions were developed for

compressing table-driven parsers, and can be similarly employed here for generating the switch's

default [FL88].

4.3 Reduction Actions

One piece of code is generated for each production. Its template is given below.

reduce M: // Production M: P) x1 : : :xn
f User code for production M . g // i� user code exists.

or

yyredval = (stack-n)->semantic; // default semantic action, $$=$1, i� n > 0.

stack -= n; // Pop RHS symbols from stack.

5

stack->semantic = yyredval; // Copy ($$) onto semantic stack.

goto nonterminal P; // Compute transition on production's LHS.

User actions are associated with reductions, and the code corresponding to a given production

is expanded in-place. After the user code, the symbols associated with right-hand side of the

production are popped, followed by copying $$ onto the semantic stack. Finally, there is a jump to

the code that will compute the appropriate state given the left-hand side symbol of this production.

4.4 Nonterminal Transitions

For each nonterminal, code is produced to compute (and jump to) the appropriate state given the

current state. This simple switch statement is given below.

nonterminal J:

switch ((stack-1)->state) f // Top of stack.

case K: goto state L; // i� L = goto[K,J]
...

g

The case arms of the switch statement are taken directly from the goto table that was computed

by the LALR(1) grammar analysis. Because this switch cannot fail, no default entry is needed.

However, making the most common case arm the default is a trivial time and space optimiztion.

4.5 Error Recovery

yacc's error recovery mechanism is rather idiosyncratic. In fact, examining two books, [LMB92]

and [ASU86], and the output generated by yacc yields three di�erent descriptions of the recovery

mechanism. We have tried to be faithful to the output of yacc.

Fortunately, the mechanism has few consequences to the generation of the rest of the hard-

coded parser. The only change to the parser is the maintenance of the variable, yyerrorstatus.

Although relatively short, the code below is very subtle | like the explanation of yacc's error

recovery mechanism. The code is given only for completeness.1

error handler:

if (yyerrorstatus > 2) f

yyerror("syntax error");

g

user error handler:

if (yyerrorstatus == 0) f

if (token == 0) YYABORT; // End of input.

token = yylex();

switch ((stack-1)->state) f

1Our error recovery implementation assumes that at most MAX UINT-3 tokens will ever be shifted between syntactic

errors | given that this number is 4,294,967,293 on a 32-bit machine, we feel this is safe. Even then, the mechanism

is only
awed for the last 3 tokens out of every MAX UINT tokens, and furthermore, the assumption cannot disturb

a correct parse, only error-recovery processing. Making it completely safe would be trivial, but would require a

conditional increment at each shift, which we consider too costly for the bene�t.

6

case 0: goto state action 0;

case 1: goto state action 1;
...

g

g else f

yyerrorstatus = 0;

while (stack != stack start) f

switch ((stack-1)->state) f

case N: goto state M; // i� M = goto[N , error].
...

g

stack--;

g

YYABORT; // Empty stack.

g

The case arms are the only part of the code that depends on the automaton. Any state that has

an outgoing transition on yacc's special error symbol will have a case arm in the second switch

statement.

5 Experimental Results

5.1 Implementation

Our prototype implementation of mule is an adaptation of bison. bison's grammar analysis

remains unchanged. From bison's internal tables, mule directly produces hard-code.

5.2 Generated-Parser Statistics

We have tested mule's generated parsers on two hardware platforms, using di�erent C compilers.

For out initial tests, we used a grammar for subset of C. To isolate parser costs, we have a trivial

lexical analyzer that reads token numbers from a pre-initialized array. Therefore, lexical analysis

costs only a procedure call, a table lookup, and an index increment per token. No semantic actions

are invoked during timings.

We tested bison's, yacc's, and mule's parsers on the following platforms, using both gcc and

the vendor's C compiler.

� DEC AlphaStation. 233MHz.

� SPARC Station 10.

Table 1 summarizes the results of parsing 8,790,000 tokens (879 tokens, 10,000 times) with the

di�erent hardware/compiler combinations. Compiles used the -O
ag and any necessary
ags to

increase the basic block limit of the optimizer | mule creates a really huge yylex function. The

\worst" columns indicate the speedup and expansion of mule's parsers relative to the better of

yacc or bison | in other words, they give the ratios that conservatively indicate mule's behavior.

(bison always produced smaller but slower parsers than yacc.)

7

Machine Compiler Speed (in sec.) Size (in bytes)

bison yacc mule worst bison yacc mule worst

speedup increase

Alpha gcc 14.45 8.90 2.22 4.0 7856 10176 13968 78%

cc 10.82 7.70 2.00 3.8 7728 10000 15952 106%

SPARC gcc 18.48 17.44 5.72 3.0 10270 15135 21103 105%

cc 20.15 18.19 7.20 2.5 9792 14885 22315 128%

Table 1: Results

The results show speedup factors that range from 2.5 to 6.5, and size increases up to 128%.

While a 128% increase in size may seem high, this is an increase of less than 13KB for a medium-

sized grammar.

Tests show that gcc's parser grew by less than 75KB when built with mule. This represented

approximately a �ve-fold size increase. Because it is di�cult to run gcc's parser in isolation, we

do not yet have a speed comparison, but we expect comparable speedups to those for the subset

grammar, unless instruction-cache e�ects hurt the larger gcc parser.

6 Conclusion

We implemented the simplest yacc-compatible hard-coded-parser generator that we could imagine

and it creates very fast parsers from a trivial translation of the input grammar and the LALR(1)

automaton. Despite the simplicity, mule's parsers are 2.5 to 6.5 times faster than yacc's or bison's,

while growing by less than 75KB | a very reasonable tradeo� in many situations.

We believe the complexity of previous work in the area of hard-coding LR parsers unfairly

prejudiced implementors against hard-coding yacc's parsers | on the belief that heavy-duty opti-

mizations were necessary to get reasonable time/speed behavior; we hope that our experinece with

mule will remove this prejudice.

References

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, Massachusetts, 1986.

[FL88] Charles N. Fischer and Richard J. Leblanc, Jr. Crafting a Compiler. Benjamin/Cummings, Menlo
Park, California, 1988.

[HW90] R. N. Horspool and M. Whitney. Even faster LR parsing. Software Practice and Experience,
20(6):515{535, June 1990.

[Joh75] Steven C. Johnson. Yacc | yet another compiler compiler. Computer Science Technical Report
32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O'Reilly & Associates, Inc., 1992.

[Pen86] Thomas J. Pennello. Very fast LR parsing. In Proceedings of the SIGPLAN '86 Symposium on

Compiler Construction, pages 145{151, 1986.

[Pfa90] Peter Pfahler. Optimizing directly executable LR parsers. In Compiler Compilers: Third Interna-

tional Workshop CC'90, pages 179{192, October 1990.

8

