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Abstract

Programs constructed using techniques that allow software or operational faults to be tolerated are
typically written using an imperative computational model. Here, an alternative is described in which
such programs are written using a functional and attribute based model called FTAG (Fault-Tolerant
Attribute Grammars). The basic model is introduced first, followed by a description of mechanisms
that allow a variety of standard fault-tolerance techniques to be realized in a straightforward way.
Techniques that can be accommodated include replication and checkpointing to tolerate operational
faults, and recovery blocks and N-version programming to tolerate software faults. Several examples
are given to illustrate these techniques, including a replicated name server and a fault-tolerant sort
that uses recovery blocks. A formal description of FTAG that precisely specifies the semantics of the
model is also presented. Finally, a software architecture describing how FTAG can be implemented in
a computer system containing multiple processors is given.
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1 Introduction

Fault-tolerant software is software that is constructed to continue providing service despite the existence
of software faults (i.e., program bugs) and/or operational faults (i.e., faults in the underlying computing
platform.) Over the years, a variety of techniques, mechanisms, and structuring paradigms have been
developed for building software of this type. These include such things as recovery blocks [1] and N-
version programming [2] for dealing with software faults, and checkpointing [3], atomic actions [4], and the
replicated state machine approach [5] for dealing with operational faults. All of these simplify the problems
associated with faults by providing the programmer with higher-level models or abstractions.

Despite the inherent differences in these approaches, one common thread is that they all have typically
been conceived and expressed using an imperative computational model. In this paper, we describe FTAG
(Fault-Tolerant Attribute Grammars), an alternative in which fault-tolerant software is written using a
functional and attribute based model. The model is derived from an existing collection of models that use an
attribute grammar formalism [6] for such diverse purposes as functional programming [7, 8], object-oriented
programming [9], and modeling of the software development process [10]. This approach offers several
advantages, including a declarative style, separation of semantic and syntactic definitions, and the simplicity
of a functional foundation. Others have also recognized the attraction of a functional model for this type of
programming [11, 12, 13, 14], although FTAG differs in how it provides support for fault tolerance and in
its use of an attribute grammar formalism.

This paper is organized as follows. An introduction of FTAG is given in section 2, with the basic model
being describedfirst, followed by features like redoing [15] and replication that provide the fundamental basis
for implementing recovery, N-version programming, and similar mechanisms. This is followed in section 3
by a description of how this model can be used for fault-tolerance; several examples are given to illustrate
the approach, including one based on recovery and another that uses replication. In section 4, a formal
definition and operational semantics of FTAG are provided. Section 5 then gives a software architecture for
implementing FTAG on loosely-coupled multi-processor systems, including both storage management and
processor allocation mechanisms. Finally, section 6 discusses the advantages of the approach and related
work, while section 7 contains conclusions and directions for future work.

2 An Overview of the FTAG Computational Model

In this section, we summarize the FTAG computational model introduced in [16]. The model is based on
the HFP (Hierarchical and Functional Process) model [7], which is in turn derived from attribute grammars.
The basics of the model are outlined first, followed by a description of facilities for fault-tolerant software.
The full grammar for FTAG is given as an Appendix.

2.1 The Basic Model

In FTAG, every computation consists of a collection of pure mathematical functions called . Each
module has multiple inputs and outputs. A module with inputs and outputs is
denoted by

We call , the of , where are and
are .

When is simple enough to be performed directly, we call it a and denote it by
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where is a collection of equations by which are calculated from . Otherwise, is
decomposed into submodules. To do this, the way in which is decomposed into submodules ,
and the relationship among inputs and outputs of and are specified as follows:

Here, is a collection of equations that denotes the relationship among the inherited attributes of and the
synthesized attributes of . This explicit definition of is sometimes omitted, in which case the following
convention is used: when an output of the function is transferred to as one of its inputs, say

, we omit the definition and simply put for in . A pair of and are called a
and denoted by hereafter.

Sometimes a module decomposition is specified with a condition controlling when this decomposition
is to be applied, leading to the following general form.

...

The conditions are tested sequentially with the decomposition being applied when is
satisfied. If none of are satisfied, the default decomposition is selected and performed.

Execution of an FTAG program is performed by successively applying the above module decomposition
process until every module is decomposed into primitive modules. The synthesized attributes are then
calculated based on the given equations and returned. Hence, the resulting execution takes the form of a

in which inherited attributes flow down the tree and synthesized attributes up. Note
that, in a system consisting of multiple processors, each module can be allocated to a separate processor
to be executed, assuming that its inherited attributes are available. An allocation scheme that exploits this
characteristic is described further in section 5.

Figure 1 shows a part of how quicksort might be expressed using FTAG, with Figure 2 being the
corresponding computation tree. In Figure 1, is used to denote the first value of the sequence ,
the sequence except the first value, and the concatenation of sequences.

The order in which modules are decomposed is determined solely by attribute dependencies among
submodules, a factor that further enhances its suitability for parallel execution. As an example, consider the
otherwise clause in the qsort module of Figure 1. There are only two dependencies among the submodules
labeled (1),(2),(3) and (4): between (1) and (3) due to , and between (2) and (4) due to .
Thus, in this case, it is guaranteed only that (3) is executed after (1), and (4) after (2); the execution order of
(1) and (2), and (3) and (4) is indeterminate.

Besides this implicit ordering, FTAG has features for explicitly ordering module decomposition. For
example, we can enforce the execution of before by using the sequencing operator ‘;’ and the
grouping construct , as in . Thus, to force (2) to execute after (1) in Figure 1, we could change
the otherwise clause as follows:
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Figure 1: Quicksort in FTAG

Submodules (1) and (2) are now combined into (1;2) and executed sequentially, with the combination being
treated as a single module with input and outputs and . The execution order of (3)
and (4) is still indeterminate due to lack of dependencies.

Another feature for describing explicit ordering is decomposition to the collection of same module with
different inputs, callled , generally described as follows:

is a constant which represents the number of iterations. For each enactment of , is passed as an
input and results are stored and collected in array whose element type is . It is useful for describing a
calculation such that the number of iteration is already given.

2.2 Fault-Tolerance Features

Redoing. is an operation that replaces a portion of the computation tree with a new computation.
Although redoing has many uses, in the context of fault-tolerant software we use it as a mechanism for
replacing a part of the computation that has failed—that is, generated incorrect results or no results at all—
with a new computation. We assume that all failures of interest are manifested by incorrect attribute values
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Figure 2: Quicksort Computation Tree

that can be tested by a conditional. Such an assumption is common for software faults [1], while missing
or incorrect attribute values caused by operational faults such as crashed processors can be translated into a
distinguished value (“bottom”) that is assigned to the appropriate attributes by the underlying system.

As an example of redoing, assume that module is decomposed into and , with a failure
being detected at some point during the execution of . Assume that an analysis determines that the
failure has been introduced during the execution of . Then, the whole computation starting at is
discarded, and and the successive computations and are re-executed. We call this kind of special
decomposition a . After the new computation has completed successfully, it is
regarded as a part of current active computation history.

The above example can be described in FTAG as follows:

In , the condition tests the value of input attribute to verify that a failure has not occurred. If
true, is decomposed into , which performs the actual function. Otherwise, is decomposed
into using the redoing operator in order to replace the previous execution of .

Figure 3 illustrates the effect of a redoing operation on the computation tree corresponding to this
example. The redoing operation starts by deleting the subtree , which contains improper attribute
values, and produces as the rest of the computation tree. A new tree whose root is a new instance
of the module is then created. is grafted to at the appropriate place, with the inputs of
in being passed to the new in . After the redoing operation has completed successfully, the
results of in are passed to in as if they were the correct results of the original computation.
Sometimes there are many instances of in the computation tree. The particular one replaced by the
reexecution is determined by an analysis on the computation tree. In this example, the target of redoing is
the most recent execution of , defined as the first instance on the path from to the root.

Replication. Replicating software and executing it in parallel is another standard approach to writing
software that can tolerate software and/or operational faults [2, 5]. FTAG can be used to realize such
replication in a straightforward and intuitive way. In fact, no syntactic changes are needed, only an extension
of the interpretation to allow the submodules into which a module is to be decomposed to have the same set
of inherited and synthesized attributes. For example,

decomposes M into three identical modules , each of which has the same inherited and synthesized
attributes, and , respectively. This type of decomposition is termed a replicated decomposition, and
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Figure 3: A Computation Tree with Redoing

the are called . The interpretation of replicated decomposition is that each replica is invoked
simultaneously as in a normal decomposition, but with only one of the generated results used as the output
of . Module names need not be identical, which facilitates programs that use N-version programming.

Typically, only one result is selected for use from the collection of replicated modules. This could be
done depending on the specifics of the application by either selecting any non-bottom value or by using a
general collation function.

Stable Object Access. Attribute values in this model are either stored in primary memory or in a stable
object base depending on whether or not they might be needed after a failure [17]. Certain activities such
as redoing are also facilitated if attribute values in the object base that would normally be overwritten are
retained instead. To do this, the model is extended to support and the definition of
attribute value extended to support a complex structure that contains some old values. We call such an object
a versioned object, and the extended model the versioned object model.

Values that represent versioned objects are denoted by explicitly placing a ‘*’ before their name, with
only the most recent version being “visible” within the standard computation model. That is, the most recent
value is used as the attribute value whenever that attribute is referenced. Thus, a versioned object can be
used as follows:

The value of “obj.in” is retrieved from the object base before the computation of the module, while the
new value “obj.out” is stored as the newest version after the computation completes. Note that versioned
objects always appear with modifiers since both before and after values are used whenever such objects are
referenced within a computation.

Versioned objects can also be used in checkpointing and replication. This is discussed further in
section 5.1.

3 Fault-Tolerant Programming using FTAG

In this section, we demonstrate using several examples how various fault-tolerance techniques can be
expressed naturally using FTAG.
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3.1 Recovery using Redoing

Redoing, of course, captures the state rollback aspect used in various fault-tolerance techniques; the first
step prunes the subtree containing the modules that failed, while the second does the appropriate recovery
action. The state rollback is implicit and automatic since the remaining parts of the tree contain all the input
values needed to redo the calculation. To illustrate these points, we now describe how redoing can be used
to implement recovery blocks, a technique used primarily to handle software faults [1], and checkpointing, a
technique used to recover from operational faults [3].

In the recovery block method, multiple implementations are prepared for a module .
Execution of the multiple versions is done serially in such a way that if an acceptance test following fails
due to a failure, the state is rolled back and the next implementation is performed. Such a construct
can be realized using redoing in FTAG as follows:

...

Here, are used to encapsulate the different implementations of , and
are conditionals that serve as the acceptance tests. Figure 4 shows the corresponding

computation tree. The net result is that through are attempted until one passes its accep-

tryM1

M1

tryM2

M2

• • •

M

tryM3

M3

tryMi

Mi

M

C1 C2 C3

Figure 4: Computation Tree for Recovery Blocks

tance test, with failed modules being replaced in succession using redoing decompositions. We emphasize
again that no explicit state saving or restoration is needed here given the functional nature of the model. To
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improve readability, the following syntax can also be used:

...

As a more concrete example, consider using recovery blocks to sort numbers into ascending order, as
shown Figure 5. The first implementation uses quicksort, which is faster, while the second uses linear sort,
which is less complex. Suppose further that quicksort is incorrectly implemented as follows:

Figure 5: Using Recovery Blocks for Sorting

...

...

The output value is incorrect whenever the first element of the sequence is equal to the
reference value . In this case, the acceptance test rejects the erroneous result and uses redoing
to invoke the linear sort. Note that no explicit rollback mechanism is needed here: the values as they existed
before sorting are automatically available where the new subtree is grafted into the original computation
tree.

Checkpointing to recover from operational faults can also be implicitly implemented using the redoing
mechanism, since every state of the computation is captured by a node in the computation tree. Consider the
following program:
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The node in the tree corresponding to captures the status just after the execution of , while
similarly captures the status just after . Hence, can be made a restartable action [18] as follows by
having check its input attribute and redo should it have the value .

To illustrate this use of FTAG further, consider the outline of a long running scientific application shown
in Figure 6. This program calculates a large table of numbers, where the cost of calculating each

Figure 6: An Expensive Calculation without Redoing

Figure 7: Computation modified to use Redoing

is assumed to be non-trivial. With this organization, should an operational failure such as a crash occur
during its calculation, the entire program would need to be reexecuted. Such an expensive proposition can be
avoided by using the redoing capability of FTAG, as shown in Figure 7. In this case, if a failure occurs during
the execution of a particular iteration, execution is rolled back only to the beginning of that iteration. This
is achieved by changing to , which does the calculation and then checks for failure and executes a
redoing decomposition if necessary.

While again no explicit state saving or restoration is needed, this use of redoing does imply that the
attribute values needed to reexecute are stored in the stable object base outlined above. We refer to
these values in the object base as a checkpoint, although it is important to emphasize that only the inherited
attributes need be stored and not the entire state of the module as is often the case when the term is used.
Note also that it would be possible to structure this calculation so that checkpoints are established every
iterations to minimize use of this stable object base rather than every iteration as done here.

3.2 Building a Name Server using Replication

Next, we illustrate the way in which replication can be used in FTAG by describing a name server that uses
replicated decompositions to realize its functionality. In addition to serving as a substantial example of
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FTAG’s replicated decomposition construct, this program illustrates how tolerance of both operational and
software faults can easily be combined into a single program that uses both recovery and replication.

The overall architecture of this name server is shown in Figure 8. NS is the name server’s main module,

Name Server

request responce

insert update

NS

NS NameServer

NameServer

NameServer

versioned object base

request responce

NS

Figure 8: Name Server architecture

which in turn invokes submodules that implement the following operations:
lookup( ): Return the address of .
update( ): Update entry to reflect new address.
delete( ): Delete entry .

To realize the name serve, the versioned objects introduced in section 2.2 have to be used to store the bindings
between names and addresses. This is accomplished as follows:

The value of “bind.in” is retrieved from the object base before the computation of the module do update,
while the new value “bind.out” is stored as the newest version after the computation completes. Figure 9
illustrates this concept.

The program script is shown in Figure 10 and 11. For simplicity, each request is performed sequentially.
in turn invokes ; this non-replicated module returns if an operational failure occurs

during its execution, in which case redoing is used as a recovery mechanism. An acceptance test ( )
is also performed after execution of the or modules to detect software faults; if the test fails,
redoing is used. Here, is redone for conciseness, although in practice, another version of the module
would likely be invoked to avoid the original problem. , which is the module responsible for lookup
operations, using replicated decomposition to execute three replicas of . Before invoking each
replica, retrieves the from the object base and passes it as the second inherited attribute. If
one or two of the replicas fail, the correct result is given; if, however, none of the replicas provides a result,
the value of output is considered to be and redoing occurs in NS as described above. Note that the
attribute is not preceded by ‘*’, meaning that this value is discarded after the computation. The
program scripts for and are analogous.
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Figure 9: Objectbase Access

4 Formal Description

In this section, we make FTAG more precise by providing a formal description of the model and its operational
semantics. We focus first on the basic model, and then discuss fault-tolerance features including redoing and
replication.

4.1 Preparation

The following notation will be used in this description:

1. Classes and Instances: In the following definitions, every data object has a class to which it belongs.
denotes that a data object is a member of a class , where is called an instance of .

2. Powersets: The set of all subsets of a set is called the of and is denoted by . An
element of is denoted by , where .

3. Tuples: A tuple with components is denoted by . When , then
.

4. Domain Restrictions: When a mapping is given, the function whose domain is restricted
to is denoted by . More precisely, . Domain
restriction can be applied on tuples. If , is defined as .

5. Composition of Mappings: For two mappings such that ,
the composed mapping that has all images of any elements and is denoted by . More
precisely, for ,

4.2 Semantics of the Basic Model

Program Description. In FTAG, a program is described as a collection of module definitions and decom-
positions. Each such decomposition has the name of the module and the patterns into which the module is
decomposed.
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Figure 10: Name Server (top level)

Definition 4.1 The class of module definitions is defined by

is a module, including its inherited and synthesized attributes, is a condition, and is a decompo-
sition. The attributes of are denoted by and , respectively. If the decomposition is
unconditional, we consider it as defined in .

Definition 4.2 The class of decomposition patterns is one of the following

is a collection of expressions that define the relationship among attributes of and . It
consists of the name of the defined attribute, a simple function for calculating the attribute, and one or more
attributes that are used as arguments:

is an attribute name, is a predefined function, and are its arguments. The class of
and are omitted when obvious from context.
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Figure 11: Name Server (replicated operations)

ComputationTree. The status of the computation can be represented by a computation tree, which consists
of nodes corresponding to an enactment of module decomposition. In general, tree structure can be defined
by 3-tuples consisting of a root node, a set of nodes, and a mapping function.

Definition 4.3 The class of generic trees is defined by

is a name of the root node, is a set of nodes, and is a partial function that takes a node and a
number indicating the ordering number of children, and returns the th child of . If , then, of course

. If has no children, the value of is not defined; this is described by .
is a generic class of nodes and is treated as a primitive.
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The class of computation trees is a subclass of , which contains mappings from node to modules,
and from nodes to its inherited/synthesized attributes, respectively.

Definition 4.4 The class of computation tree is defined by

and are the class of attribute and module, respectively, and are treated as primitives. is a
function that maps a node to the module name indicated by ; and are functions that map a node to
the set of its inherited and synthesized attributes, respectively.

The progress of a computation is represented by the process of transforming computation trees using
decomposition and attribute calculation. Each step of the transformation can be described formally as a
transform function , where denotes the class of decompositions
shown in Definition 4.2

is defined as follows:

Definition 4.5 For ,

If is a primitive, synthesized attribute values are calculated by the function ; otherwise
should be decomposed into submodules. The decomposition is performed by the function or

, with attributes being calculated by or depending on the structure
of decomposition. For details of these functions, see [17].

Execution Sequence. The program is executed by repeated applications of , starting with an initial
tree containing only a root node. Figure 12 illustrates this process; adds new nodes to the tree, while

determines the values associated with each node.

Exec Exec Exec

Grow CalculateCalculate

n0 n0

Exec Exec

Figure 12: Execution by Series of Tree Transformations

4.3 Semantics of Fault-Tolerance Features

The largest difference when considering fault-tolerance in FTAG is in the growth of a computation tree.
In the standard case when only normal or iterative decompositions are performed, computation trees grow
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monotonically. However, this is no longer true when considering features such as redoing, which alter the
normal pattern of execution. To deal with this, we augment the formal semantics to support such non-standard
execution.

Consider the case of redoing. The actual writing of the checkpoint of inherited attributes has no effect on
the computation since all that must be done is to write the current values to the stable object base. However,
once the computation executes a redoing decomposition that requires rolling back to the checkpoint, the
fragment of the computation tree following the checkpoint must be cut from the computation tree.

M

redo M

M

M

Exec redo M
M M

M M Mdiscarded
fragments

active nodes

st0 st1

st0 st0 st0 st1

Figure 13: Tree Transformation in Redoing

Figure 13 illustrates the tree transformation process for redoing. The fragment is first removed and
replaced by a new node representing the new computation when a redo is encountered. The following
computation starts from the new node and forms a new fragment . If another redoing occurs in , it is
cut from the tree in the same way as .

We can describe this sequence formally by extending the definition of .

Definition 4.6 For ,

Function returns a tree eliminating all nodes under except itself.
Successive checkpoints extend this notion in the natural way. When the computation reaches a check-

point, previous checkpoints that have the same name but have been instantiated from a different node in the
tree are overridden. This means that they cannot be restored as a result of a redoing operation unless the
later checkpoints are deactivated explicitly. Figure 14 illustrates the tree transformations that occur in the
case of successive checkpoints. When the computation reaches , is regarded as a current fragment. If
it reaches another , the trees are replaced, but not . If a failure is later detected in ,
the program should deactivate the second checkpoint using an erase operation. Once this second checkpoint
is cleared, further redoings can be performed in which the first checkpoint is the target.

Replicated decomposition can be expressed in the same way as normal decomposition, except that a
means of selecting a single return value from the replicas is needed. This feature does not affect the semantics,
but rather the method for managing objects. The architecture of the stable object base is discussed below.

5 A Software Architecture for FTAG

In this section, we discuss an architecture for implementing the FTAG computation model in a computer
system consisting of multiple processors and (logically) shared external storage (e.g., disk). Specifically, we
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Figure 14: Tree Transformation for Successive Checkpoints

address the issues of the use of external storage to implement a stable object base for storing attribute values,
and processors and module allocation.

5.1 Workspaces

As described in Section 2.2, the FTAG model includes a stable object base supporting versioned objects to
which attribute values can be written. Here, we consider how such an object base might be implemented
using disk storage, with a special focus on the versioning aspect.

Versioned objects are required for realizing the checkpoint mechanism needed for the redoing mechanism.
Such objects must have the following properties:

1. Whenever a new value is stored, it is checked in as a new version.
2. Whenever redoing occurs, the most recent version is retrieved.
3. Older versions are retrieved using an explicit mechanism.

In order to realize these properties, we define a structure called a as the part of stable storage
in which vital attributes are stored, i.e., the minimum sets of attributes needed for calculating subsequent
values following a redoing operation.

First, we define the sets of modules and as follows:

Definition 5.1 The set of checkpoint modules contains all modules that are denoted as check-
points, i.e. modules that appear in redo M in any part of the program.

Definition 5.2 The set of replicated modules contains all modules that are replicated, i.e.,
modules that are decomposed into submodules that are identical in the numbers and types of inherited
and synthesized attributes.

Note that both types of modules can be determined statically from the program text.
Given this, vital attributes are defined as all inherited attributes of checkpoint modules, and all inherited

and synthesized attributes of replicated modules. Synthesized attributes of replicated modules are included
since they must be available for any selection mechanism that reduces the multiple return values into a single
one.
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These features can be described formally by extending the definition of to include a mapping
from attribute names to the storage where an attribute value is actually stored.

Definition 5.3 The class of computation tree is defined by

is a mapping from attributes to workspaces in which the values are stored. If , is mapped
to volatile storage such as main memory. The notation is used to refer to the set of attributes
stored in any workspace. Hence, the addition of an attribute to implies the allocation of new
workspace for that attribute, while its deletion means destruction of the value and release of the workspace.

Rules for changing when the computation reaches are described as follows:
(Rule 1) If , no workspace is created and is unchanged.
(Rule 2) If , a new workspace is created and all are stored in , then

Figure 15 shows a generic form of checkpoint use, while Figure 16 illustrates the change in the com-
putation tree. In this example, . The first time the computation reaches , a workspace is
created and is stored as the initial version (Step (a)). Computations under are performed using this
workspace until another checkpoint is needed. All computations redone from only need the values of
the inherited attribute of , so redoing can be realized using this mechanism. When another appears
under the subtree of the current module, another workspace is created and is stored (Step (b)).

Figure 15: Example of using checkpoints

As noted above, checkpoints may appear in succession. Assume that is also a checkpoint in Figure 16,
i.e. . Then, these two modules form successive checkpoints and through are created,
with each holding the value of or at that instant. Versioned objects and are realized as shown in
Figure 17.

In the case of replicated decomposition, workspaces are created in the same way. This can be described
using the following rules:

(Rule 3) If , a new workspace is created and both and are
stored in ; workspaces , corresponding to each replica , are then created.
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Figure 17: Workspace for successive checkpoints

Notice that the change of describes only the new storage allocation for the attribute without calculating its
value. Consider the following example:

Figure 18 illustrates the relationship among workspaces used in this program. First, is created corre-
sponding to , followed by the creation of workspaces for each replica through . The value of
in each replica is copied from in , then dependencies from to in are established.

5.2 Processors and Module Allocation

Since execution in FTAG depends only on having the appropriate attributes present, a simple scheme can be
used for allocating decompositions to processors. In particular, a node in the computation tree is assigned to
a processor upon creation, with that processor being responsible for all communication of attribute values
between the node and its children.

We abstract this message-passing mechanism as a , where a port is a pair of synchronous commu-
nication channels. Thus, a value written to a send port is read by another processor from the corresponding
receive port. Each processor has two sets of attributes that represent the send and receive ports, respectively.
Formally,
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Figure 18: Workspaces for replicated modules

is a set of processors , while and are each a set of attributes that are mapped to the
processor’s send and receive ports. A value assigned to a port attribute is sent automatically to the

port on another processor to which the same attribute has been mapped. The assignments of nodes to
processors are described formally by a total function that maps a processor to the set of nodes assigned to
that processor, .

In order to minimize the cost for communication between a processor and secondary storage, we
assume that software and hardware failures affect only the processor on which the failure occurs. With this
assumption, execution cost can be reduced by storing values of vital attributes at other processors rather than
on disks. That is, the stability of a workspace is approximated by having its values stored in the memory
of multiple processors, so that they remain available as long as at least one such processor is functioning
[5]. The probability of losing a value can then be reduced to something arbitarily close to zero by storing
enough copies. Below, we assume that a workspace is implemented by storing two copies, one of which is
the processor executing a module.

The rules for modifying when is created are as follows:
(Rule 1) If , is assigned to the same processor as its parent(say ).

(Rule 2) If , is allocated new processor and another copy .

(Rule 3) If , it is considered a kind of checkpoint then is allocated and , and
each replica are allocated the different processor .

In (Rule 2), is the extra processor used for emulating the stable workspace, so only is involved in
the regular computation. Should redoing from occur, and its descendants in are discarded and the
original is copied from .
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Attribute values are passed from one sender to one receiver in the case of normal decomposition. On the
other hand, a mechanism such as multicast for sending values to more than one receiver, and a multi-way
receive for receiving values from many senders, are required for realizing communication in replicated
decompositions. In this case, for example, multicasts the inherited attribute to processors .
Upon receipt, each processor starts its computation using the value.

This type of multicast mechanism is useful for managing both fail-stop and Byzantine failures[16]. In
the case of fail-stop, all processors that generate results are considered to be working correctly. Thus, when
one, say , finishes its computation, it sends the result , which is used immediately. For Byzantine failures,
the value of must be collected from each replica, with the return value being calculated by the collation
function. Although the specific multicast mechanism may have to vary depending on the type of failure to
be tolerated, from the perspective of the rest of the implementation, the only difference is that a selection
mechanism has to be used in the Byzantine case.

Finally, the port mechanism can also be used to implement the requirement that be assigned to
attributes of modules executing on processors that have failed. Specifically, should no message from a
particular processor be received within a specified amount of time, it is assumed to have failed and is
assigned to the appropriate attributes. This technique is, of course, just the standard use of timeouts for
failure detection.

6 Discussion

Advantages. The functional and attribute-based approach to implementing fault-tolerant software em-
bodied in FTAG has several advantages over traditional imperative approaches. For example, it exhibits
high degrees of referential transparency and composability, which makes the description easier to read and
understand. One reason for this is the locality of the notation; information is only passed between functions
using attributes, and then only between functions that have a parent/child relationship. As a result, it is
easy to determine attribute dependencies, which facilitates parallel execution. Moreover, in FTAG, module
decomposition only represents the structure of the computation and relationships among the attributes, rather
than the way the computation is performed. Since this means that the computation order is determined
implicitly by attribute dependencies, it is easier to understand the effect of the computation.

The functional aspect of FTAG also makes the program easier to analyze and provides opportunity for
optimizations. Consider the following example:

Assume that a failure is detected during the execution of that requires redoing . Since the bad value is
, the failure must have occurred during the execution of module , which generates . Hence, although

the target of redoing is , only and need be redone. Such data dependencies can be determined
statically, so it is possible to keep an internal table listing exactly which modules need be redone for each
module that is used in a redoing decomposition.

Specification of an explicit computation order can also be exploited for optimization purposes in certain
cases. For example, assume that is a checkpoint module in . This ordering means that
will be reexecuted if is ever redone, thereby allowing ’s inherited attributes to be discarded to save
storage space. In contrast, if no ordering were specified here, the inherited attributes of all three modules
would have to be stored since they could potentially be needed for redoing. Of course, a data-flow analysis
of the program could expose this optimization in the implicit case as well, but only at significant cost.
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Finally, FTAG is easy to implement using a multicast communication mechanism as described in section
5.2. The nature of the computation makes it possible to describe the processor allocation strategy outside
of the program script, leaving ample opportunity for optimizing the strategy based on the specifics of the
computation.

Relatedwork. Other researchers have also explored functional approaches to implementing fault tolerance
in various situations. In [13], a functional model is proposed as a means for implicitly implementing graceful
degradation when processors fail in the custom Fault Tolerant Parallel Processor (FTPP) developed at Draper
Labs. A program written using this model is composed of Remote Procedures (RPs), which are functional
modules that are allocated to the various processors during execution. Although functional in their execution,
RPs can be written in any standard language such as C or Ada. Should a processor fail while executing an
RP, that module is reassigned to another processor transparently to the application and reexecuted from the
beginning with its original arguments. The functional nature of the module ensures that the results will be
the same as the original execution.

A functional approach for implicit application-transparent fault tolerance is presented in [14]. The
emphasis in this work is on dealing with operational faults using an intensional model in which an implicit
context is associated with each value computed by the program. This model supports a demand-driven
implementation in which a value is only computed when necessary, which makes it easy to realize fault
tolerance by reissuing a request for a value should the first attempt fail. Again, the functional nature of the
execution guarantees that the result will be the same. The possibility of incorrect values can be dealt with
by issuing the value request multiple times and then using a collation function on the results.

The advantages of referential transparency and composability for fault-tolerant parallel computing are
also discussed in [11]. In that paper, a functional language and dataflow computing model for designing
large-scale parallel computations are described. Redundancy schemes such as recovery blocks and N-version
programming are then used as illustrative examples of how fault tolerance can be programmed using this
approach.

While FTAG is similar to the these approaches in its exploitation of functional programming for fault
tolerance, it also differs in a number of respects. For example, FTAG supports the handling of both software
and operational failures within a single framework, whereas each of the others only handles one or the other.
Also, when compared with [11], FTAG promotes a more dynamic approach to failure handling since recovery
procedures can be created incrementally at runtime, rather than being constrained to a static approach. In
addition, unlike the other approaches, FTAG derives benefits from being based on attribute grammars, as
well as from the functional aspect of the approach.

Another difference is that both [13] and [14] provide fault tolerance implicitly—essentially, every
module is treated as a checkpoint module using our terminology—whereas FTAG provides mechanisms
such as redoing and replicated decomposition that the programmer can use to implement common fault-
tolerance paradigms easily. The former has the advantage of transparency to the application, while tha latter
provides more flexibility and user control. Also note that it would easy to implement an implicit approach
similar to the others in FTAG by making every module a checkpoint module and using a system wrapper
around modules to detect certain types of failures and execute the appropriate redo operation.

7 Conclusions

The FTAG computational model described in this paper provides a unified framework that supports de-
velopment of programs that can tolerate software and/or operational faults. This is achieved by augment-
ing a functional approach to programming based on attribute grammars with support for common fault-
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tolerance paradigms such as recovery and replication. The specific mechanisms—redoing and replicated
decomposition—maintain the linguistic integrity of the notation, and are easily implemented using a stable
object base with versioning and multicast communication. The ability to infer automatically those values
that must be stored in stable storage for recovery purposes is also a significant advantage. In addition to
outlining the approach and examples, we presented a formal description of FTAG, which specifies precisely
the semantics of the approach and how the fault-tolerance features are integrated with normal processing.

As noted in the Introduction, this model is derived from similar attribute based models that have proven
useful is other areas, including object-oriented programming and the description of high-level software
design processes. The experience with the software design process is especially significant, since many
of the characteristics of higher level software development—for example, the possibility of incomplete
or incorrect execution of a development step due to human error—have natural analogues in fault-tolerant
software. We expect that further exploration of the similarities between the two areas will highlightadditional
connections and provide additional possibilities for transitioning techniques.

Other aspects of future work will concentrate in two different areas. One is implementing a programming
system based on the software architecture described in section 5 that will allow execution of programs based
on the FTAG model. Such a realization will be based on either a distributed or multiprocessor architecture.
The other is characterizing other fault-tolerance paradigms using this framework, and investigating the fea-
tures needed to realize each paradigm. For example, multicast was used above to simplify the implementation
of replication both for fail-stop and Byzantine failures. We expect to identify similar abstractions that would
be useful for other paradigms. In both cases, our efforts will include investigating realistic applications to
test the true benefits of this approach.
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