
Supporting Configurable Real-Time
Communication Services

Xiaonan Han Matti A. Hiltunen Richard D. Schlichting

TR 97-10



Supporting Configurable Real-Time Communication Services1

Xiaonan Han Matti A. Hiltunen Richard D. Schlichting

TR 97-10

Abstract

Constructing communication services that provide real-time guarantees is important for many
applications built on distributed systems. While a variety of such services have been designed
and implemented, most are targeted for specific applications and are correspondingly difficult
to adapt to differing requirements in other areas. This paper presents an approach to building
configurable and customized versions of real-time communication services based on software
modules called micro-protocols. Each micro-protocol implements a different semantic property or
property variant, and interacts with other micro-protocols using an event-driven model supported by
a runtime system providing real-time guarantees. The programming model is presented, together
with an implementation design based on the x-kernel model for building network subsystems and
the OSF/RI MK 7.2 operating system. The design of a highly-configurable real-time channel
abstraction built using this approach is also given. Prototype implementations of the runtime
system and channel abstraction are currently underway.
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1 Introduction

Real-time guarantees for computing services such as network communication and task execution are
important in many application areas. For example, safety critical systems usually require hard guar-
antees on system response time to avoid catastrophe, while multimedia applications behave optimally
with at least soft guarantees. Numerous different types of real-time services and systems have been
developed [ASJS96, BFM+96, KDK+89, KG94, Pow91, TNR90]. However, most such systems are
targeted for specific applications, which makes them rigid and unable to accommodate the different
requirements of a variety of application types. This is especially true for real-time communication
services found in distributed systems, where applications often need guarantees related to such proper-
ties as reliable message transmission, atomic delivery, and consistent message ordering in addition to
real-time guarantees.

This paper presents a new approach to constructing distributed real-time communication services
that allows the service guarantees to be customized to the requirements of a wide array of different
applications. The focus is on building flexible middleware services that use the functionality of an
underlying real-time operating system and network to implement higher-level abstractions for distributed
applications. The goal is to construct services that can provide not only real-time guarantees, but
also reliability, message ordering, and other quality of service (QoS) guarantees optimized for each
application and execution environment. This emphasis on integrating attributes and on providing a
high degree of flexibility distinguishes the approach from other real-time and configurable systems that
support a degree of customization [Her94, RBM96, SBS93, SVK93, TMR96].

Our approach is based on implementing different semantic properties and property variants of
a service as separate fine-grain modules called micro-protocols that interact using an event-based
interaction model. A service is constructed by selecting a set of micro-protocols implementing the
desired properties and configuring them together into a composite protocol that is positioned between
the application and the operating system. A runtime system within each composite protocol schedules
execution of micro-protocols to ensure that real-time properties are satisfied, while an admission control
module ensures that composite protocols are only created if the system has enough resources to satisfy
its requirements. An implementation of the model is currently underway using the OSF/RI MK 7.2
real-time operating system [Rey95] on a cluster of Pentium PCs. An earlier version of the system
has been used to develop highly-configurable versions of communication services without real-time
constraints, including group RPC [HS95, BS95], membership [HS97], and atomic multicast [GBB+95].

The rest of the paper is organized as follows. Section 2 describes our model for configurable
real-time services and outlines an implementation of the model designed for OSF/RI MK 7.2 and the
x-kernel [HP91]. We also outline the composite protocol runtime system, and explain how the execution
time of a collection of micro-protocols can be estimated. In section 3, the model is used to construct
a configurable communication channel abstraction supporting customization of real-time, reliability,
and ordering properties. Section 4 outlines related work and contrasts our approach to others. Finally,
section 5 offers some conclusions.

2 Implementing Configurable Real-Time Services

The system model consists of multiple machines connected by a network. As noted, our focus is on
middleware services for distributed real-time systems, especially those related to interprocess commu-
nication. Thus, we model the software at each site as a layer between the application and the operating
system (OS); the application makes requests to the middleware layer (e.g., message transmission) and
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receives information as appropriate (e.g., message reception). The middleware in turn uses the facili-
ties provided by the underlying OS and network software to implement the guarantees desired by the
application.

Our specific design and implementation are oriented around the x-kernel model, in which the
middleware is implemented as part of a graph of protocols (i.e., software modules) that form the
network subsystem. However, the approach is independent of the x-kernel and can be implemented
using any number of suitable substrates. For example, a prototype of the previous non-real-time version
has been done using C++ on the Solaris OS [Hil96].

2.1 Event-Driven Model

Our approach is based on implementing different semantic properties and functional components of a
real-time service as separate modules that interact using an event-driven execution model. The basic
building block of this model is a micro-protocol, a software module that implements a well-defined
property of the desired service. A micro-protocol, in turn, is structured as a collection of event handlers,
which are procedure-like segments of code that are executed when an event occurs. Events can be either
user or system defined, and are used to signify changes of state potentially of interest to the micro-
protocol, e.g., “message arrival from the network” (MsgFromNet). When an event is detected, all
event handlers registered for that event are invoked; events can also be triggered explicitly by micro-
protocols, with the same effect. Execution of event handlers is atomic with respect to concurrency, i.e.,
each handler is executed to completion without interruption.

Event registration, detection, and invocation are implemented by a standard runtime system or
framework that is linked with the micro-protocols to form a composite protocol. The framework also
supports shared data (e.g., messages) that can be accessed by the micro-protocols configured into the
framework. Once created, a composite protocol can be composed in a traditional hierarchical manner
with other protocols to form the application’s protocol graph.

The primary event-handling operations are:

� bid = register(event,handler,order,times):

Specifies that handler is to be executed when event occurs. order is a numeric value specifying
the relative order in which handler should be executed relative to other handlers bound to the
same event. The binding automatically expires when the handler has been executed times times
or can remain in effect until explicitly canceled (times = PERM). register returns a handle to the
binding.

� deregister(bid):

Removes a binding previously established by register.

� trigger(event,args,mode,urgency):

Causes handlers registered for event to be executed with args as arguments. Execution can either
block the invoker until the handlers have completed execution (mode = SYNC) or allow the
caller to continue (mode = ASYNC). urgency is a numeric value specifying the relative urgency
of executing the handlers with respect to other handlers that are already queued for execution
(typically determined by the message deadline and type).
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� delayTrigger(event,args,urgency,delay,times):

Triggers event after delay time units have passed. A value of times greater than one triggers the
event every delay units for the number of times specified, giving periodic execution. An event
for which a delayTrigger operation has been executed is called a timer event.

� stopEvent():

Cancels execution of the collection of event handlers scheduled by the currently executing event
trigger.

Event handlers are expected to be simple and have bounded maximum execution times. This means,
among other thing, that they may not include any infinite loops or use blocking synchronization like
semaphore wait operations, delays, or sleeps. If a micro-protocol requires synchronization, the same
effect can typically be achieved using event operations and one or more handlers. Note that the execution
atomicity of event handlers eliminates the need to protect shared data structures using semaphores.

The event-driven model has a number of appealing features for real-time systems. First, event-
handlers are short and simple, with predictable timing behavior. Thus, given the CPU time for each
event handler and knowledge of which events are triggered by each handler and the framework, we
can easily calculate the CPU time needed by the entire service for a specific situation (see section 2.3).
Second, scheduling can be done at the handler level and each handler executes to completion before
rescheduling. As a result, scheduling is simplified and long priority inversions [TMIM89] are avoided.
Finally, atomic execution of event handlers minimizes the need for synchronization between handlers,
and thus, reduces the well-known problems of synchronization, such as priority inversion.

2.2 Implementing the Model

Our prototype implementation of the real-time event-driven model is designed for the OSF/RI MK
7.2 operating system, which includes real-time support and the CORDS communication subsystem
[TMR96]. CORDS is essentially identical to the x-kernel, but with an additional path abstraction
to support reservation of resources such as buffers and threads. We utilize paths and thread priorities
provided by the system to give services and tasks with tighter deadlines higher priorities. Note, however,
that scheduling within a composite protocol still needs to be addressed to order the execution of event
handlers associated with different events.

The basic design uses one CORDS path for each composite protocol implementing a real-time
service. All threads associated with a single path have the same CORDS priority and thus, would be
executed in arbitrary order by the MK OS scheduler. In many cases, this is not enough. For example, if
two messages arrive from the network to a composite protocol approximately at the same time but one
was delayed longer by the network, the delayed message should often be processed first. Similarly, an
acknowledgment message should often be processed as soon as possible to avoid unnecessary message
retransmissions.

To realize this scheduling of event handlers within a composite protocol, an ordered event handler
queue (EHQ) storing pointers to handlers awaiting execution is maintained. Handlers are added to the
EHQ when an event for which they are registered is triggered, and removed when they are executed.
The order of handlers in the EHQ is determined by the relative urgency of the corresponding event.
Handlers are executed by a dispatcher thread that executes handlers serially.

In some cases, it is useful to have more than one path in a composite protocol, and hence, more
than one EHQ and dispatcher. For example, consider a bidirectional real-time communication channel
where the channel is used to send video in one direction and simple commands in the other. In this
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situation, the QoS attributes associated with message deadlines and jitter are very different for the two
directions. These varying requirements can easily be implemented in this scheme by having separate
paths within the composite protocol for each direction. Event handlers associated with the different
traffic types within a composite protocol are assigned at configuration time to the paths corresponding
to the traffic types. Note that although a composite protocol may have more than one path, the global
data structures are still shared by all handlers. Note also that execution of handlers is still atomic despite
potentially multiple dispatcher threads since CORDS has non-preemptive scheduling.

Figure 1 illustrates this design. In the figure, solid arrows represent threads of execution, specifically
the dispatcher thread associated with each EHQ. Protocols above and below the composite protocol
interact with it through a procedure call interface—the x-kernel push and pop operations—and thus, the
threads from these components operate within the composite protocol as well. The dashed arrows in
the figure represent handlers being inserted into the EHQs as a result of trigger operations.

trigger(MsgFromNet,...)

.  .  .

dispatcher 1
EHQ 1

EHQ ndispatcher n

trigger(MsgFromUser,...)

Figure 1: Framework

In addition to the EHQs, each composite protocol contains an event/handler map (EHM) that
maintains information about which handlers are registered for each event. Handlers for a given event
are stored in this structure according to their relative ordering requirements. The register and deregister
operations update the EHM in the obvious way.

The implementation of the trigger operation depends on the mode supplied as an argument in the
call (see Figure 2). A non-blocking trigger simply inserts the handlers registered for this event into
the EHQ. A blocking trigger, however, is more complex since the handlers registered for the event
must be executed prior to resuming the triggering handler. In our design, the thread executing the
trigger operation assumes the role of the dispatcher until all the handlers for this particular event
have completed. This condition is detected by creating a counter that is initialized to the number of
new handlers inserted into the EHQ and decrementing it each time a handler is executed. When this
counter reaches zero, the execution of the triggering handler is resumed by the dispatcher executing a
return operation. Note that more than one handler may be blocked concurrently at a trigger operation
associated with a given EHQ. To guarantee that the return operation resumes the correct handler in
this case, handlers must be ordered in the EHQ so that the last handler to block is the first to resume
operation (LIFO). This can be achieved simply by ensuring that the urgency of the triggered handlers
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trigger(event, mode, args) f
handlers = EHM(event);
addArgs(handlers, args); /* add args to handler info blocks */
if (mode == ASYNC) insert(handlers);
else f Ch = new counter(number of handlers);

associate each handler with a reference to Ch;
insert(handlers);
call dispatcher(); g

g
dispatcher() f

while(true) f
yield(); P(Sn); h:HandlerInfo = head(EHQ);
call h->func(h->args);
if (h->Ch != NULL and ��(h->Ch) == 0) /* last SYNC triggered handler is done*/

return();
g

g
insert(handlers) f

insert handlers to path’s EHQ ordered by urgency;
Sn += number of handlers;

g
delayTrigger(event, args, delay, times) f

handlers = EHM(event);
addArgs(handlers, args);
TimerRecord info; info.handlers = handlers;
info.delay = delay; info.times = times;
evSchedule(timeout,info,delay);

g
void timeout(TimerRecord info) f

if (info.times == PERM or ��info.times > 0)
evSchedule(timeout,info,info.delay);

set my thread priority to channel priority; yield();
insert(info.handlers);

g

Figure 2: Event-handling pseudo code

is always greater or equal to the urgency of the handler that executed the trigger operation. Finally, the
delayTrigger operation is implemented using the timer mechanisms provided by CORDS to realize the
appropriate delay, as illustrated in Figure 2.

Due to the non-preemptive scheduling of CORDS, we also have to ensure that the dispatcher gives
higher priority threads a chance to execute to avoid extended priority inversion. This is represented
in Figure 2 by a call to a yield operation prior to execution of each event handler. This results in the
worst case duration of a priority inversion being the maximum across all handler execution times. The
details of yield are omitted for simplicity, but the operation involves releasing a lock that controls the
execution of protocols in CORDS.

Several other issues must also be addressed. One is preventing the execution of dispatcher threads
whose EHQs are empty to avoid needless consumption of CPU time. This is achieved using a semaphore
Sn whose value corresponds to the number of handlers in the EHQ at any given time. Another is ensuring
that execution of a high priority thread is not blocked by a low priority event handler if handlers from
different paths are registered for the same event. This problem is avoided in our design by automatically
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assigning such an event handler to the higher priority path at configuration time. A third is implementing
stopEvent so that canceling an event occurrence is an efficient operation. This is done by linking together
handlers that are added to the EHQ as a result of a single trigger operation, which allows all the handlers
associated with a given event occurrence to be removed easily if stopEvent is invoked.

Finally, note that the maximum execution time of each event handling operation is bounded. These
bounds can be calculated since the maximum sizes of the EHQ and other data structures are determined
by the set of micro-protocols included in each configuration and application characteristics such as
message rate.

2.3 Estimating Execution Time

Managing the CPU to maintain real-time guarantees naturally requires knowledge about the execution
times of different services competing for the CPU. The configurability of the event-driven model would
appear to complicate this issue since the number of different configurations of a given service can
be large and each configuration has its own execution time. However, in reality, relatively simple
calculations based on the execution time of each event handler can be used to determine the execution
time of any valid configuration of micro-protocols. The approach for doing this is outlined in subsequent
paragraphs. We assume that a composite protocol is inactive until it either receives a message (or a call)
from protocols below or above it in the protocol graph, or until a timer event occurs.

First, consider messages from other protocols. Arrival of such a message causes predefined events
MsgFromApp and MsgFromNet to be triggered. Given a specified set of micro-protocols, it is possible
to determine which event handlers are executed as a result of these events, and similarly, which events
these handlers trigger. This process is continued until no more events are triggered. We then sum up
the execution times of the resulting set of event handlers to obtain the time required for processing a
message.

Next, consider estimating the execution time for each occurrence of a timer event. The specifics
here depend on how timers are used within the system. In many distributed protocols, timers are used
mostly to implement timeouts that cause, for example, retransmission of a message. In these cases, the
timer events are directly related to message processing and the CPU time required can simply be added
to the CPU time needed for message processing. In time-driven systems, however, timers are used to
initiate execution at certain moments of time independent of messages or calls from outside the system.
In these cases, the CPU time required for the timer event can be calculated the same way as for message
processing, i.e., by determining the set of event handlers to be executed and summing up the total CPU
requirement.

This approach does have restrictions, however. In particular, there must be no cycles in the chain
of events triggered by event handlers. That is, if handler H is registered for event A, then A must not
be triggered by H nor by any other handler that is executed as a result of events that H directly or
indirectly triggers. If this is not the case, the above calculation—and potentially system execution—is
non-terminating.

2.4 Discussion

As noted in the introduction, the event-driven model presented above is based on an earlier version
for constructing distributed services without real-time constraints [Bha96, HS93, Hil96]. The current
version extends and refines the original model to accommodate the additional requirements that arise
in real-time distributed systems. For example, in the original model handlers are executed logically
in parallel with no relative priority ordering between them, which can lead to undesirable behavior
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such as unnecessary message retransmission [Bha96]. Furthermore, the logically concurrent model
of handler execution has been modified to the atomic sequential execution model that requires less
synchronization. Finally, the implementation of the model has been completely redesigned to allow
real-time considerations to be addressed.

3 A Configurable Real-Time Channel

As an example, we now describe the implementation of a highly-configurable real-time channel using
our approach. A channel is an abstraction for communicating between two or more application-level
processes on different sites in a distributed system,and a real-time channel is one that provides timeliness
guarantees. We first outline properties of real-time channels that can be used as the basis for a highly-
configurable service, and then present a design using the event-driven model. An implementation of
the design is underway.

3.1 Channel Shapes

Different types of channels can be defined based on whether the traffic is unidirectional (UD) or
bidirectional (BD), and how many processes the channel connects and in what manner. For the latter, a
point-to-point channel (PP) connects two processes, a multi-target (MT) channel connects one source
to many targets, and a multi-source channel (MS) connects multiple sources to a single target. MT and
MS channels are equivalent if the channels are bidirectional, so we use BDM to refer to either. Finally,
a multi-source, multi-target channel (MST) connects multiple sources to multiple targets. A special
case of an MST channel is a group multicast (GM) channel, where the sources and targets are identical.
The different channel shapes are illustrated in Figure 3.

UDPP

UDMS

UDMST BDMST

GM

UDMT

BDPP

BDM

Figure 3: Channel shapes

Each channel shape has application areas for which it is the most suitable choice. For example, UDPP
is good for multimedia transmission, BDPP for implementing video phones, UDMS for transmitting
sensor input from replicated sensors to a controller, and GM for video conferencing and distributed
multiplayer games.

3.2 Channel Properties

A large number of properties can be defined for real-time channels, but for brevity, we describe only
a representative set here. In particular, we consider latency—i.e., the maximum delivery delay, which
affects whether a transmitted message meets a specified deadline or not, reliability—i.e., whether
each message sent on a channel reaches its destination(s), and ordering properties between messages.
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Other properties not considered here include bounded jitter, atomicity, stability [PBS89], security, and
properties related to changes in the set of processes using the channel, such as virtual synchrony [BSS91]
and safety [MMSA+96].

In addition to the above, real-time services often have a specification defining the importance of the
service meeting its constraints, usually specified using the phrases “hard real-time” or “soft real-time.”
We define a similar property for channels quantitatively using two probabilities,PD and PR. The first,
called the deadline probability, is the required probability that a given message reaches its destination
by the specified deadline. Various techniques (e.g., congestion control and retransmissions) can be used
to implement the required PD, although the maximum latency and the characteristics of the underlying
system naturally constrain the range of feasible values. Similarly, the second probability, called the
reliability probability, is the required probability that a given message sent on a channel eventually
reaches its destination, either before or after its deadline. Note that the two metrics are related in the
sense that establishing a given deadline probability necessarily fixes a minimum reliability level.

Different applications have different requirements for PD and PR. For example, multimedia
applications can often tolerate the loss of a few packets or missed deadlines, so PD and PR can be
relatively low—on the order of 0.9 to 0.99 for audio and a minimum of 0.999 for video [MHCN96].
On the other hand, distributed financial systems such as automatic teller machines would likely require
a value of PR very close to 1.0, but could tolerate a somewhat smaller value of PD.

Message ordering properties define constraints on the relative order in which messages are delivered
to the application at the target sites. An unordered channel is the weakest and imposes no constraints,
while a FIFO channel delivers messages from any given process to the application in the same order
as they were sent. In a causally ordered channel, if message mi (potentially) causes a process to send
messagemj, then any site that delivers bothmi andmj deliversmi beforemj. An application receiving
message mi before sending mj is typically used as the basis for causality. Finally, in a totally ordered
channel, all sites receiving any two messages mi and mj deliver them to the application in the same
order.

Numerous other ordering properties could also be defined, including timestamp-based temporal
order [Ver94], semantic order [MPS89], and synchronous order [MG95]. Note also that these definitions
are orthogonal to latency and reliability. This means, for example, that the only guarantee for FIFO
channels with PD < 1:0 is that any messages delivered are in order, i.e., there may be gaps in the
message delivery sequence [AS95].

The set of properties that can be provided by a channel is intricately related to its shape. For
example, with a UDPP channel, the only ordering guarantee that can be defined is FIFO, while total
order can only be defined for multi-target channels. Conversely, the need for certain channel properties
can dictate the shape required for an application. From the communication point of view, an application
could replace any channel with a collection of simple UDPP channels. However, in this case, the
application would have to manage the potentially numerous channels and implement the properties
found in more complex channels itself.

3.3 Implementing Real-Time Channels

3.3.1 System Components

Figure 4 shows the major logical components in the system and their interactions. Each channel is
implemented as a composite protocol consisting of selected micro-protocols and uses system resources
allocated as CORDS paths. In our design, resource allocation has been divided into the channel
control module (CCM), which is specific to channels, and the admission control module (ACM), which
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manages resources across multiple types of services. The CCM translates channel arguments into
general resource requirements. In particular, it translates the channel property requirements into a set
of micro-protocols and paths that satisfies these requirements, and calculates the CPU requirements
given the application traffic model. The ACM is a process that maintains information about available
resources, and based on this information, either grants or denies requested resources. If the request
is granted, the ACM also assigns path priorities. A channel may also interact with the ACM after
being created; for example, it may request additional resources or be instructed to release resources or
terminate should a higher-priority service need resources. Note that the ACMs on different sites may
interact, for example, to allocate the network bandwidth.

other ACMs

Admission

Control

push/pop

grant/deny
Channel Control 

Application 

C
ha

nn
el change request

change command

push/pop

UDP/IP/Ethernet

C
ha

nn
el

create request

communication with

Figure 4: System components and component interactions

3.3.2 Micro-Protocol Suite

The core micro-protocol on which all others build is BasicChannel, which implements the abstraction of
a simple channel with no reliability or ordering guarantees other than those provided by the underlying
network and OS. This functionality can be augmented using different retransmission and ordering micro-
protocols. There are currently two retransmission micro-protocols. The first increases the probability
of timely delivery by transmitting a message a specified number of times with small intervals between
transmissions. The second uses positive acknowledgments, and is thus more applicable for transmitting
non-real-time messages or messages for which the deadline has already been missed.

Any one of three ordering micro-protocols can also be configured into the composite protocol to
enforce FIFO, causal, or total ordering, respectively. The ordering micro-protocols are designed so
that a message will be delivered out of order if waiting any longer would result in missing the delivery
deadline [AS95]. This forced unordered delivery is implemented as an event handler, so the service can
easily be configured without this behavior if ordering is more important than the delivery deadline for
a particular channel.

A number of different events are used in our composite protocol. Two are the system events
MsgFromNet and MsgFromApp, which are triggered by the framework when a message arrives from
the network or application, respectively. There are also eight user-defined events, which are triggered by
micro-protocols to signal completion of a task or otherwise communicate with other micro-protocols.
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Finally, six timer events are used to implement message retransmissions and the forced out of order
delivery mentioned above.

micro-protocol BasicChannel(�:real,DropLate:bool) /*�: estimated processing time of a message */ f

event handler msg from net(msg)f
if (msg.type == DATA) trigger(DataMsgFromNet,msg);
else trigger(MetaMsgFromNet,msg);

g
event handler data msg from net(msg)f

msg.ready = DeliverOK;
if (msg.type == RTDATA) trigger(RtDataMsgFromNet,msg);
else trigger(NonRtDataMsgFromNet,msg);

g
event handler rt data msg from net(msg)f

if (msg.deadline < currentTime +� and DropLate) f stopEvent(); return(); g /* drop late message */
else setReadyBits(msg,BasicChannel,UP);

g
event handler msg from app(msg)f

msg.ready = SendOK; setReadyBits(msg,BasicChannel,DOWN);
g
event handler rt msg to net(msg)f

push(msg); trigger(RtMsgSentToNet,msg);
g
event handler rt msg to app(msg)f

if (msg passed deadline and DropLate)f stopEvent(); return(); g /*drop late message */
pop(msg);
if (delivered[msg.source] < msg.id)f

delivered[msg.source] = msg.id; deliveredTime[msg.source] = currentTime; g
trigger(RtMsgDeliveredToApp,msg);

g
procedure setReadyBits(msg,micro-protocol id,direction)f

msg.ready[micro-protocol id] = true;
if (msg.ready true for each micro-protocol)

if (direction == UP) trigger(RtMsgToApp,msg);
else trigger(RtMsgToNet,msg);

g
initial f

delivered = 0; SendOK[BasicChannel] = false; DeliverOK[BasicChannel] = false;
register(MsgFromNet,msg from net,5); register(RtMsgToNet,rt msg to net,5);
register(MsgFromApp,msg from app,2); register(RtMsgToApp,rt msg to app,2);
register(RtDataMsgFromNet,rt data msg from net,2);
register(DataMsgFromNet,data msg from net,5); g

g

Figure 5: BasicChannel micro-protocol

The BasicChannel micro-protocol is shown in Figure 5. This micro-protocol implements the
basic function of passing a real-time message through the channel composite protocol, either from the
application to a lower-level protocol or vice versa. Several aspects of this micro-protocol are worth
highlighting. One is how interactions with other micro-protocols in the composite protocol are handled,
and in particular, how micro-protocols can influence passage of a message. This is done primarily
by using specialized events such as RtDataMsgFromNet that are relevant only for the micro-protocols
concerned with this type of message.
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A second issue is determining when all micro-protocols are ready for a given message to exit the
composite protocol. In our design, the global vectors SendOK and DeliverOK indicate whether a
micro-protocol might potentially wish to delay a message. A matching vector in each message is then
used to record whether a micro-protocol agrees that the message can exit. The SetReadyBits procedure
is invoked by a micro-protocol for this purpose; once the last micro-protocol has given its approval, this
procedure initiates the transmission of the message either up or down the protocol graph.

Finally, note that any missing event-handling arguments take on their default values. Of importance
here is that, when the urgency parameter is omitted, the event handlers inherit the current urgency. In
this case, we assume the framework sets the urgency of the events MsgFromNet and MsgFromApp
based on message deadlines. Furthermore, the default value for the mode parameter of trigger is
ASYNC, while the default value for the time parameter of register is PERM.

The given set of six micro-protocols can be configured to provide a large number of semantically
different channels. Simply considering the different configurations of micro-protocols, we get 16
different combinations ranging from just the BasicChannel to one with both retransmission micro-
protocols and one of three ordering micro-protocols. All these combinations are legal for GM channels.
However, as mentioned above, all properties are not feasible for all channel shapes, so the number
of combinations is less for other shapes; for example, there are five possible combinations for UDPP
channels. Nonetheless, given the eight channel shapes that have been defined, dozens of different
configuration are possible. The behavior of these channels can be customized further by specifying the
desired message latency, PD , PR, and other arguments that further fine-tune their behavior. Thus, even
this relatively small set of micro-protocols can be used to build channels with properties suitable for a
variety of different applications.

3.4 Implementing Real-Time Properties

Real-time properties are different from ordering and reliability properties in the sense that they cannot
simply be implemented as new micro-protocols. Rather, they must be realized by controlling the
execution of the entire system, including the channel composite protocols and any other components
competing for resources. The main aspects of this control are admission control, which determines
which tasks are allowed to execute, and scheduling, which determines the order in which different tasks
get to use the CPU.

The details of admission control are different for each real-time service type. The following discus-
sion is specific to the channel abstraction, although many of the same principles will undoubtedly apply
to other service types. In this paper, we only address the allocation of memory and network bandwidth
to different channels and the scheduling of CPU time. We do not consider network scheduling, but
assume that by keeping the network load under control through network allocation, the Ethernet network
will behave predictably [BMK88]. In particular, we assume that we know, for a given probability level
Pn, the maximum network transmission time Tn such that the probability of a message reaching its
destination in less than or equal to Tn is Pn.

Admission control is divided into a capability test that determines if enough resources exist for
the new channel, and a schedulability test that determines whether a feasible schedule that allows
messages to meet their deadlines can be constructed. A new channel is established only if both tests are
satisfied. Before these tests can be developed, however, the appropriate traffic models must be defined
to characterize assumptions made about application message traffic.
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3.4.1 Traffic Model

Assume that the traffic on a channel is given by a function A, such that A[�; � + t] denotes arrivals in
the time interval [�; � + t]. Then, the traffic constraints of this channel can be given by a function A�,
such that A[�; � + t] � A�

(t). The basis for our traffic model is the (�; �) model from [WKZL96],
where � is the burstiness factor, � is the average traffic rate, and A�

(t) = � + � � t. With this model,
the size of the traffic backlog at a server never exceeds � given that the server works at rate � [Cru91].
The server in our case is a channel composite protocol, � is the message rate R (messages/second), and
� is the burst size B (number of messages). Thus, the message traffic constraint is A�

(t) = B + R � t.
While a necessary starting point, this model only describes the traffic originating from the application

processes sending on a given channel. The traffic that a channel composite protocol actually receives
from the network can be very different, however, because of variations in network transmission delay
and extra messages generated by the composite protocol, such as acknowledgments and retransmissions.
These factors mean that the model must be modified for the traffic received from the network. For
example, if A�

s(t) = B + R � t at the sending site and the maximum network delay is Tn, then
A�

r
(t) = B0 + R � t at the receiving site, where B0 = B + Tn � R [Cru91]. Similarly, retransmissions

increase both the message rate and the burst size. Finally, for multisource channels (including GM
channels), the traffic model at the receiving site is the aggregation of the traffic models of the source
sites.

3.4.2 Capability Tests

The three primary resources to be considered are CPU time, memory space, and network bandwidth.
For the CPU capability test on a given site, we assume that a fixed fraction of the total CPU time is
allocated for composite protocols, with the remainder used by the OS and the application. Given a
request to create a channel C, then, the test is performed in two steps. First, the CPU usage for the
composite protocol implementing C is calculated as outlined in section 2.3 based on the application and
network message rates from the traffic model and the message-generation behavior of the composite
protocol. Second, this value is added to the sum of the usage values for the currently existing channels
to determine if adding C would exceed the CPU allocation. If it would, then the request is denied;
otherwise, the request is granted. The network bandwidth test is similar. In this case, the bandwidth
requirements for each channel are calculated based on the message rate, the maximum message size,
and information about any extra messages generated by the composite protocol.

Both the CPU and bandwidth tests are complicated somewhat by the retransmissions used to
increase reliability of non-real-time messages or messages that have already missed their deadline.
These micro-protocols are based on positive or negative acknowledgment schemes, which means that if
a reliability of 1.0 is specified, the number of retransmissions cannot be bounded a priori. This problem
is eliminated in our design by giving retransmissions a low priority so that they use the CPU only when
no higher priority work is available. Additionally, a small fixed upper bound is placed on the number
of messages transmitted each time the retransmission micro-protocol is activated. This ensures that
retransmissions use at most a small fixed fraction of the CPU time and network bandwidth over any
interval.

For the memory capability test, only the memory space required for storing messages needs to be
considered since the size of static data structures can easily be estimated. Calculating this value requires
taking two specific items into account. The first is the schedulability test (below), which dictates how
long a message may have to wait until it can be transmitted. The other is maximum retransmission
time, which determines how long a message must be kept for possible retransmissions before its storage
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can be reclaimed. In the worst case—which occurs when the specified reliability requirement is 1.0—a
message may have to be kept forever, implying that any fixed amount of memory may be insufficient,
However, a probabilistic estimate of expected memory usage can be calculated even in this case given
the estimated failure rate of the network and a desired level of assurance that the composite protocol
will not exhaust its memory.

3.4.3 Schedulability Test

When a channel creation request is made, a schedulability test is needed to determine if execution
deadlines can be met, even if the CPU, bandwidth, and memory tests indicate sufficient resources.
In our case, a schedulability test is done on each path in the composite protocol implementing the
channel, with the channel only being created if all paths pass the test. For simplicity, we only consider
schedulability tests for CPU time; approaches to network scheduling can be found elsewhere, such as
[MMM96].

For each message, the application specifies a deadline d. Note, however, that this deadline can
be considered the sum of three values, d = ds + Tn + dr, where ds is the maximum allowed delay
on the sending site for the message to traverse the composite protocol down to the network, dr is the
corresponding time at the receiving site, and Tn is the maximum network transmission time as given
above. We assume that Tn is fixed, so the schedulability test derives the values of ds and dr. This is
done using the response times for a message. In particular, let rs denote the worst case response time
for a message to traverse the composite protocol at the sending site and rr the corresponding time at the
receiving site (see below). Then, the schedulability test determines whether values of ds and dr exist
such that rs � ds � 1=R and rr � dr � 1=R, where R is the message rate. If not, the channel creation
request is denied.

The worst case response times rs and rr are calculated using the algorithm described in [LWF94].
First, the existing paths on a site are sorted based on their priority, where path Pi has the ith highest
priority. Given this set of paths, the CPU response time rk for any channel Pk is then calculated using
the formula:

rk =

Pk

i=1
Bi �Ei +�

1�
Pk

i=1Ri �Ei

(1)

Here, Bi, Ri, and Ei are the burst size, traffic rate, and maximum CPU time for processing a message
in path Pi, respectively. The factor � is the maximum priority inversion time, which occurs in CORDS
when a lower priority event handler continues to be executed even though a higher priority path becomes
available. Thus, � = maxj>p ej, where ej is the maximum execution time of any single event handler
in pathPj. Note that this formula applies only to paths with only one traffic model for arriving messages;
the formula becomes more complex when a path has more than one traffic model.

This formula is used in conjunction with the D order procedure [KSF94] to determine a priority for
the new path that is allocated as a result of the channel creation request. In essence, this step calculates
the highest possible priority for the path that still allows all deadlines to be met. First, the new path
is assigned the highest priority and the response time of all other paths is calculated using the above
formula. If their deadlines can still be satisfied, then the priority of the new path is taken to be the
current value. Otherwise, the priority of the new path is decreased and the process repeated. In addition
to establishing the priority, this procedure also determines the minimum worst case response time.

After calculating the worst-case response times rs and rr, ds and dr are assigned to the new path so
that ds + Tn + dr < d, rs � ds � 1=R, and rr � dr � 1=R are satisfied. As noted above, if no such
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assignment exists, then the path cannot be created and thus, the corresponding channel creation request
is denied. Otherwise, various heuristics can be used to choose reasonable values for ds and dr, e.g., to
be in proportion to rs and rr. The set of micro-protocols in the composite protocol affects the decision
as well. For example, if total or causal ordering are included, then a message may be delayed awaiting
the arrival of other messages. In this case, dr should be larger than rr.

4 Related Work

A number of systems support configurability and customization of communication services in dis-
tributed systems, including Adaptive [SBS93], ANSA [Her94], Horus [RBM96], and the x-kernel
[HP91]. However, only Adaptive and the configurable control system in [SVK93] address issues re-
lated to real time. Adaptive introduces an approach to building protocols that employs a collection of
reusable ‘building-block’ protocol mechanisms that can be composed automatically based on functional
specifications. The objects are tightly coupled in the sense that interactions between objects are fixed
a priori. Furthermore, although Adaptive targets multimedia applications, its runtime system appears
to be designed simply to maximize performance rather than ensuring deadlines as with most real-time
systems.

A reconfigurable real-time software system is introduced in [SVK93]. The target application
domain is sensor-based control systems, rather than real-time communication as is the case here. The
port-based object model is suitable for combining existing software components, but lacks the degree
of flexibility and fine-grain control found in our approach. As such, it would be difficult to use this
model to construct the same type of configurable services.

A large number of real-time systems have been designed and implemented, including Chimera
[SVK93], Delta-4 [PSB+88, Pow91], HARTS [KS91], Mars [KDK+89], MK [Rey95, TMR96], RT-
Mach [TNR90], and TTP [KG94]. While suitable for their target application areas, the lack of support
for configurability and customization in such systems typically limits their applicability to new areas.
Two exceptions are [ASJS96] and [TMR96], which have adopted principles from the x-kernel to add
coarse-grain modularity and a limited degree of configurability to certain real-time communication
services.

Real-time channel abstractions similar to the one described in section 3 have been developed
elsewhere as well. In some cases,these channels address real-time communication at the network level;
for example, a type of real-time channel that is established across multiple point-to-point network links
is introduced in [KS91, KSF94]. Similarly, Tenet provides real-time channels over heterogeneous inter-
networks, as well as a real-time network layer protocol RTIP and two real-time transport layer protocols
RMTP and CMTP [BFM+96]. The latest Tenet suite also provides multicast channels and resource
sharing between related channels. An atomic real-time multicast protocol ensuring total ordering of
messages is introduced in [ASJS96]. This protocol uses a logical token ring, and integrates multicast
and membership services, but without explicitly introducing a real-time channel abstraction.

5 Conclusions

This paper addresses the problem of providing customized real-time communication services for dif-
ferent types of applications. We presented a new event-driven interaction model that allows different
abstract service properties and their variants to be implemented as independent modules called micro-
protocols. A set of micro-protocols is then selected based on the desired properties and configured
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together into a composite protocol implementing a custom version of the service. We introduced
the interaction model and outlined an implementation design based on the x-kernel model and the
path abstraction in CORDS. The model was then applied to construct a real-time channel abstraction
supporting multiple application interaction patterns, and numerous combinations of properties. As
demonstrated by the example, this model supports a high level of customization without sacrificing
real-time guarantees.

Prototype implementations of a runtime framework supporting the event-driven model and the
channel abstraction are currently underway on a testbed of four Pentium PCs running OSF/RI MK 7.2.
In addition to the implementation, future work will include further refinement of the admission control
tests for the event-driven model, designing and implementing algorithms for distributed admission
control, and experiments with other real-time services.
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