Alias Analysis of Executable Code *

Saumya Debray Robert Muth Matthew Weippert
Department of Computer Science
University of Arizona
Tucson, AZ 85721, U.SA.
{debray, muth, weippert}@s.arizona. edu

Technical Report 97-13

July 1997

Abstract

Recent years have seen increasing interest in systems that reason about and manipulate executable code. Such
systems can generally benefit from information about aliasing. Unfortunately, most existing alias analysesare formu-
lated in terms of high-level language features, and are unable to cope with features, such as pointer arithmetic, that
pervade executable programs. This paper describesa simple algorithm that can be used to obtain aliasing information
for executablecode. In order to be practical, the algorithm is careful to keep its memory requirements low, sacrificing
precision where necessary to achieve this goal. Experimental resultsindicate that it is neverthelessable to provide a
reasonable amount of information about memory references across a variety of benchmark programs.

*This work was supported in part by the National Science Foundation under grant CCR-9502826

1 Introduction

Recent years have seen increasing interest in reasoning about and manipulating executablefiles [5, 14, 19, 24, 26, 29,
30, 32]. When working with an executable file, we typically have information about the entire program—including,
potentialy, library functions—that is usualy not available at compile time. Because of this, code manipulation and
optimization at thislevel offers benefits that are difficult or impossible to obtain using traditional compilers. Aswith
the compilation of source-level programs, code transformations on executable code can benefit greatly from pointer
alias information. For example, to obtain the full benefits of a superscalar architecture such as the DEC Alpha, link-
time optimizers such as Spike[5], alto[9], and OM [29] need to carry out instruction scheduling again after link-time
optimizations. Without pointer aias information, however, the scheduler must be conservative in its treatment of all
loads and stores, and this severely limitsthe amount of code reordering that is possible. As another example, it may be
possibleto scavenge registers a link-time, e.g., by examining the register usage of library functions, but the ability to
use such scavenged registers effectively islikely to be limited in the absence of pointer alias information.

There is an extensive body of work on pointer alias analysis of various kinds (see Section 5). In amost al cases,
these are high level analyses, carried out on representations of source programsin terms of source language constructs,
and typically disregarding “nasty” features such as type casts, pointer arithmetic, and out-of-bounds array accesses.
Such analyses turn out, unfortunately, to be of limited utility a the machine code level, because at this level al we
have arethe “nasty” features. The contents of registers and memory words are untyped bit-strings, so theissue of type
casts isin some sense moot: everything is potentially an address. Memory accesses typically involve some address
arithmetic to compute a base address into aregister, followed by the use of a displacement off the base addressto carry
out the actual memory reference. Address arithmetic may aso arise due to particular language features, e.g., the use
of “tag bits” in dynamically typed languages to indicate the type of the value pointed at. Dereferencing operationsin
the executable code for such programs will involve nontrivial arithmetic involving the tag bits that is invisible—and
irrelevant—at the source level (at the level of executable programs, we can’t tell what source language a particular
piece of code was derived from, and different components of a program might have been written in different source
languages, so we must be ableto deal withall such addressarithmeticin areasonable way). If the number of arguments
to afunction islarge enough, some of the arguments may have to be passed on the stack. In such acase, the arguments
passed on the stack will typically reside at thetop of the caller’sstack frame, and thecallee will “reach into” thecaller’s
frame to access them: thisis nothing but an out-of-boundsarray reference. Finally, executable programs may include
library functions, in hand-written assembly code, that violate familiar and comfortable source-level assumptions, e.g.,
that execution does not jump out of the middleof one function and into the middle of another (thishappens, for example,
in some Fortran library routines). To illustrate some of the problemsthat arise, consider the fragment of C code shown
inFigure1, together withthe corresponding assembly code.’ The point to noteisthe extensive use of address arithmetic
to access memory, even in thisvery simple program fragment. For example, in order to determine whether instructions
(3) and (4) might write to the same memory location, we need to be able to reason about the contents of registersr 16
and r 17, which are defined primarily through arithmetic operations. As this example illustrates, pointer arithmetic
cannot be ignored during alias analysis at the machine code level.

Inthispaper, we describealow-level, flow-sensitive, context-insensitiveinterprocedural pointer diasanaysisago-
rithm, designed and implemented in the context of theal t o link time optimizer [9], that can handl e significant pointer
arithmetic and features, such as out-of-bound references, that are ignored by most existing alias analysis algorithms.

For simplicity in the discussion that follows, we assume a more or less canonical RISC instruction set. Memory
isaccessed only through explicit load and storeinstructions, which havetheform| oad reg,, k&(reg,) andstore
reg,, k(reg,),wherek isaconstant, and have the effect of reading from, or writing to, the location whose address
isk + contents_of (reg,). To moddl arithmeticwe assumetheinstructionsadd sreq, srea, destandmul t sreq,

1 The assembly code shown correspondsto that obtained using gcc - Oon a DEC Alpha workstation, with some edits to enhance readability.
On the Alpha, argumentsto functions are typically passed in registers 16 ...21, and register 30 is used as the stack pointer.

Source Code Executable Code

int g(int *x, int *y) # argl in rl6, arg2 in r17
{ add r30, -32, r30 # allocate stack frame (1)
store r26, 0(r30) # save return address (2
*x = 1; store 1, 0(rl6) (3)
*y = 0; store 0, 0(r17) 4
}
int f(int x, int vy) # argl inrl6, arg2 in rl7
{ add r30, -48, r30 # allocate stack frane (6)
store r26, 0(r30) # save return address ()
store rl16, 20(r30) # save rl6 in x's stack slot (8
store rl1l7, 16(r30) # save rl7 in y's stack slot (9
g(&y, &); add r30, 16, rl16 #rl6 = & (20)
add r30, 20, r17 #rl7 1= & (1)
bsr r26, ¢ # r26 :=return addr; goto g (12

Figure 1: A fragment of a C program and the corresponding assembly code

sreq, dest, where dest is adestination register and src; and srco are source registers; to simplify the discussion we
abuse notation and allow either sre; or sre, to be an integer constant, denoting an immediate operand. These instruc-
tions compute, respectively, the sum and product of src; and src, into dest (many other operations can be expressed in
terms of these, e.g., subtraction and regi ster-to-register moves can be modelled in terms of addition: wedo not consider
these separately). In additionto these we assume the usual complement of tests, conditional jumps, and direct and indi-
rect unconditiona jumps:. the only effect of these instructionsisto determine the control flow graph of the program, so
we do not consider them explicitly inthecontext of diasanaysis. We a so ignore operations on floating point registers,
since it seems unlikely that such operationswould be used for address computations.

2 Local AliasAnalysis

For reasoning about memory references within a basic block, we can use a technique called instruction inspection,
commonly used in compile-time instruction schedulers, where two memory references are taken to be non-conflicting
if either (¢) they use distinct offsets from the same base register; or (i7) one uses aregister known to point to the stack
and the other uses a register known to point to the global dataarea. This can be generalized to determine whether two
address expressions e; and e, within the same block might refer to the same location, based on the following simple
observation:

Proposition 2.1 Supposethat a basic block B contains sequences of operations (equivalent to): ,,

Iy :add ri, c¢1, 7o;Is:add ry, co, 73 ..., I;:add r,, cx, T and

I -add », ¢, vh;I5:add ry, b, 14 ..., I, :add r,,, o,
where k, m > 0, such that (i) /; usesthe definitionof r; in [;_;, and I} usesthe definition of % in I} _,; (i7) either
both 7, and I use the same definition of -y intheblock B, or neither use any definitionof , in B; and (é7) Zf:o e F+
Z’“ ¢;. Then, the value of register » immediately after instruction 7, is different fromthat of register » immediately

=0 “¢*

after instruction /..

Unfortunately, this simple approach does not work if information about address arithmetic needs to be propagated
across basic block boundaries. In the next section we describe a globa analysisthat can be used to handle this.

3 Global AliasAnalysis: Mod-k Residues

3.1 TheBasicldea

An diasanaysiswill in general associate each register with a set of possible addresses at each program point, so we
need to abstract sets of addresses to descriptions, or “abstract address sets.” These need to be easy to compute and
compactly representabl e, with operations such as union, i ntersection, checking containment, etc., that are cheap enough
to be practica for the analysis of large programs. A simple way to satisfy these criteriais to consider only some fixed
number—say, m—of thelow order bitsof an address. That is, addresses are represented by their mod-% residues, where
k = 2™. The set of al mod-k residuesisZ; = {0,...,k — 1}. An abstract address set can then be represented
as a bit vector of length k; since m—and, therefore, & = 2™ —isfixed, set operations such as union, intersection,
checking containment, etc., can be carried out in O(1) bit-vector operations. This representation can cope with address
arithmetic, e.g., asillustrated in Figure 1, since such arithmetic trand atesin a straightforward way to mod-% arithmetic
(see, for example, [16]). Finally, sincex mod k& # (x £ §) mod & for 0 < & < 2™, the representation can distinguish
between addresses involving distinct “small” displacements (i.e., less than 2) from a base register.

It turnsout that mod-% residuesare not, by themsel ves, adequate for our purposes. The problemisthat in many cases
we won't be able to predict the actual value of aregister r (e.g., the stack pointer) at a program point, which means
we won't be able to say anything about a displacement & fromr , i.e., the address corresponding to 4(r) , either. To
deal with thisproblem we extend abstract address sets to address descriptors, which take an additional component that
refers to an instruction:

Definition 3.1 Anaddressdescriptor isapair (I, M), where I iseither aninstructionor one of thedistinguishedvalues
{NONE, ANY}, and M isaset of mod-k residues. Given an address descriptor A = (I, M), theinstruction I issaid to
be the defining instruction of A, while M iscaled theresidue set of A. n

Theintuitionisthat given an address descriptor (7, M), M denotesa set of mod-# residues relative to whatever vaue
iscomputed by instruction 7. A value of NONE indicates that the corresponding residue set represents mod-% residues
of absolute addresses, while avalue of ANY indicates that the address descriptor denotes all possible addresses. More
formally, suppose that we are given an operational semantics for the instruction set under consideration (such a seman-
ticsis conceptually simple, if somewhat tedious, to specify for the simple instruction set considered here: we omit a
formal specification due to space constraints, and rely instead on the informal description of the instructions given at
the end of Section 1). Given aprogram P and an instruction 7 in P, let valp(I) denote the set of values w such that,
for someinput to P, thereisan execution path from the entry point of P to theinstruction 7 that causes I to compute
w intoitsdestination register (val p(7) = # if I does not compute avalueinto aregister, or if control never reaches 7).
Extend thisto the special values NONE and ANY as follows: for any program P, valp (NONE) = {0}, and valp (ANY)
istheset of al values. Then, for an analysisusing mod-# residues, the set of addresses denoted by an address descriptor
A= (I, X)in P—thatis, the “concretization” of A in the context of P—is:

concp({I, X)) ={w+ik+z|wevalp(l),zr € X,i € ZT}.

The relative precision of different address descriptors can be characterized viathe binary relation <:

Definition 3.2 An address descriptor (75, X2) ismore precise than adescriptor {71, X1), written (11, X1) < (I3, X5),
if andonly if (¢) [y = ANY or Xy = Zg;or (it) Xo =0;or (iid) L =L and Xo C Xy. m

It is straightforward to show that < isreflexive and transitive, i.e., a preorder. It can be extended to a partia order in
the usual way: definetherelation~ as A; ~ A, if andonly if A; < A, and A, < A;—itiseasy to show that this
isan equivalence relation—and consider the quotient of < with respect to ~. The set of address descriptors forms a
lattice with respect to this partia order. In the remainder of this discussion, we abuse notation and write < to refer to
the resulting partia order. In particular, the equivalence class containing (I, Z;,) for all 7, aswell as (aNY, M) for all
M, denotes atotal lack of information, and is written as L ; the equivalence class containing (7, () for al I, denotes
the empty set of addresses and iswritten as T. Our analysis associates an address descriptor with each register at each
program point of interest.? If aregister r has an associated address descriptor (I, M) a a program point, we will
sometimes abuse terminology and refer to instruction I as the defining instruction for r at that point.

Example 3.1 Suppose that we use mod-32 residues, and consider the following pair of instructionsfrom Figure 1:

store 1, 0(rl6) 3
store 0, 0O(rl7) 4

Assuming that the only call sitefor g() isthatinf (), we can useinstruction (6) as a defining instruction for r 30,
and thenceforr 16 and r 17—how thisis donefollowsfrom the way individua instructionsare handled, as discussed
in Section 3.2.1—the address descriptors corresponding to the address expressions occurring in instructions (3) and (4)
are asfollows:

Instruction Address Expression Address Descriptor
(3) 0(r16) ((6),{16}) (from instruction (10))
4 0(r17) ((6),{20}) (frominstruction (11))

Using these address descriptors, we can reason as discussed in Section 3.3 and conclude that instructions (3) and (4)
write to distinct memory locations. O

3.2 TheAnalysisAlgorithm
321 Effectsof Individual Instructions

As mentioned earlier, the defining instruction component of an address descriptor allows usto refer to mod-% residues
relativeto “whatever valueis computed by the defining instruction.” When examining an instruction 7 with destination
register r , if we can't say anything about the valueof r after instruction /, theninstead of setting the address descriptor
forr to L, weuse ! asthedefining instruction for r and associate the address descriptor (7, {0}) withr at the point
immediately after /. To simplify the discussion, we assume that an immediate operand ¢ yields an address descriptor
(NONE, {¢ mod k}) inan analysis based on mod-# residues. Individud instructionsare analyzed as follows:

| oad », addr : Our anaysis currently doesn’t keep track of the contents of memory locations, except for read-
only sections of the text and data ssgments.® Thus, if addr corresponds to a read-only memory location with

2 Strictly speaking, the analysis should map each register at each program point to a set of address descriptors. For pragmatic reasons—see Sec-
tion 3.2.2 for details—we use a widening operation [7] to ensure that at each program point, each register is mapped to a singleton set of address
descriptors. For simplicity, we do not distinguish between such a set and the single address descriptor it contains.

3 Our implementation uses the contents of these read-only sections to obtain global addresses: these include global variables aswell as addresses
of jump tablesand functionscalled indirectly through function pointers.

contentsval, then the address descriptor for » is(NONE, {val mod %}). Otherwise, we can say nothing about the
contents of ~ after theload instruction, so the resulting address descriptor is (7, {0}).

store r, addr : Sinceastoreoperation does not affect the contents of any register, thisinstruction does not have
any effect on any address descriptors.

add sre,, srcp, dest : Let the address descriptorsfor sre, and sre, immediately beforeinstruction 7 be A, =
(Iq, Xq) and Ay = (Ip, X3) respectively. There are two possibilities:

—If Ay 2 L, Ay 2 L,and I, = NONE (the situation where I, = NONE is symmetric), let A’ = (I, X'},
where X’ = {(z4+s) mod k | 2, € X4, 2, € X3 }. Theaddress descriptor for destis(7, {0})if A" ~ 1,
andis A’ otherwise.

— Otherwise, we can’t say anything about the result of this operation, so the address descriptor for dest after
T'istakentobe (I,{0}).

The correctness of thefirst case follows straightforwardly from the rules for mod-% arithmetic [16]; the second
case is obviously safe, but merits some discussion: if A, ~ L, A, ~ L1, o0r I, # I, it'seasy to see that we
can't say anything about the result of the operation; if 7, = I, = I, for some Iy, it'stempting to think that the
resulting address descriptor could be given as (I, X'), where X' = {(z, + xs) mod k | 2, € X4, 2 € Xb},
but thisis not the case. The reason isthat in this case, the sets of values denoted by A, and A, are:

concp({lo, Xa)) = {ws + ik + 24 | wq € valp(ly), 2, € X4,i € Z7}; and
concp ({Io, Xp)) = {wp + ik + xp | wp € valp(ly), xp € Xp,i € ZT}

so the address descriptor A’ for dest after thisinstruction should be such that

concp(A') = {wq +wy + i1k + 24 + ik + 2y | wa, wp € valp(ly), 24 € Xo, 2o € Xy, 1,0 € L1}
={wy +wp + ik +xg+ 2 | wa, wy € valp(ly),zq € Xo, 2o € Xp,i € ZH}.

However, {1y, X'y clearly does not give this, because it does not account for the fact that the w € valp(ly)
component is aso added into the result of theadd instruction:

concp({lo, X)) = {w+ ik + x4 +zp | w € valp(ly), 24 € Xg, 20 € Xp,i € ZT .

mul t sre,, srep, dest : Let theaddress descriptorsfor src, and src, immediately beforeinstruction / be A, =
(Ia, Xq) and Ay = (Ip, X3) respectively. There are three possibilities:

—If Aq # L, Ay % 1,and both I, and I, are NONE, let X, = {(z4 x @) mod k | 2, € X4, 2y € X3}, and
A’ = (NONE, X.). The address descriptor for destis (7, {0}) if A’ ~ L, and is A’ otherwise.

— Otherwise, if A, ¢ L1, Ay 2 1,and I, = NONE (the case where [, = NONE is symmetric), let X, =
{(xgxxp) mod k | 2, € X4, 2y € Zy,},and A’ = (NONE, X.). The addressdescriptor for destis(/, {0})
if A”~ 1,andis A’ otherwise.

— Otherwise, we can’'t say much about the result of the multiplication, so the address descriptor for dest after
instruction I is (I, {0}).

Again, the correctness of thefirst case follows easily from the rules for mod-# arithmetic; the second case can
be thought of as “widening” A, to (NONE, Z), which is obviously safe, and then applying the first case; the
reasoning for the third case is analogous to that for the add instruction above.

In typical RISC code, the most commonly encountered address expression by far involves a fixed displacement off a
base register, which corresponds to the add instruction discussed above. As such it is especially important that this
case be handled efficiently. It turns out that given an address descriptor (7, X') for reg,, with X represented as a bit

vector, the bit vector X’ in the descriptor (I, X'} for reg. can be obtained simply by “rotating up” the bit-vector for
X by ¢ bits, and thisis easy to implement efficiently. Asan example, supposethat X = {1,5,6} in amod-8 residue
anaysis, and ¢ = 3, then X’ = {4,8 9} mod 8 = {4,0, 1}. If we represent these sets as bit vectors with the smallest
element on theright, then X =0110 0010; rotating up (i.e., to the left) by 3 bits gives us the vector 0001 0011,
which is precisely the bit vector for X”.

3.2.2 Propagating Address Descriptors

Conceptually, if we consider al possible execution paths through a program, each register at each program point will
correspond to aset of values; abstracting fromthis, onewould expect an analysisto map each register to aset of address
descriptorsat each program point. Giventhehandling of individua instructionsas described in the previoussection, the
analysisis now a conceptualy straightforward forward dataflow analysis where we compute the meet-over-all-paths
solution,* with union as the meet operator [1].

Itturnsout that if each register, at each program point, ismapped to aset of address descriptors, thememory require-
ments for the analysis can become excessive for large programs. This is due partly because fully linked executables
tend to be considerably larger than source language modules, and partly because reasoning about address arithmeticis
usually less precise than, say, reasoning about aiasing at the source level. Asapragmatic measure, therefore, awiden-
ing operation [7] is used to ensure that at each program point, each register is mapped to a singleton set of address
descriptors—or, equivalently, a single address descriptor. As mentioned in Section 3.1, the set of address descriptors
forms a lattice with respect to the precision ordering <I. The widening operation 7 is defined to be simply the meet
operation with respect to <. In effect, what thisdoesisthat if aprogram point B hastwo predecessors B, and B, such
that the address descriptorsfor aregister r a By and B, are Ay = (Iy, Xo) and 4, = (I, X;) respectively, where
neither Ag nor A; are T, and Iy # I, then the address descriptor for » at B is Ag 57 A1 = L.

This results in a reasonably memory-efficient analysis: for each basic block we need two address descriptors per
register, one for the IN set, at the entry to the block, and one for the ouT set, at the exit. Thus, for a given choice of %,
the analysis requires 2 RN (k + w) bits of memory for a program with V basic blocks on a machine with R registers,
where w isthe number of bits per machine word.?

3.3 Reasoning about Alias Relationships

Giventwoaddressdescriptors A, = (11, M) and A, = (I, M») at two pointsinaprogram, under what conditionscan
we concludethat they definitely do not refer to the same address? If /; # 7> we cannot say much about any rel ationship
that may hold between 4; and A, and so have to assume that they may refer to the same location. However, it is not
sufficienttorequirethat I; = I and M, N M, = (§, sincetheval ue computed by aparticul ar instructionmay bedifferent
when that instruction is executed at different times. The following proposition gives a simple sufficient condition for
determining that two address expressions denote digjoint sets of addresses:

Proposition 3.1 Addressdescriptors A; = (I, M;) at programpoint p; and As = (I, M») at programpoint p» denote
digjoint sets of addresses if (¢) I dominatesboth p; and p»; (i7) either p; dominates p,, or p, dominates p; ; and (4i7)
My N My = 0.

Proof Conditions(7) and (¢¢) ensurethat both the program pointsp; and p, see the same value computed by instruction
I. Condition (7i¢) then ensures that relative to this value, the set of addresses referred to at pq is digoint from that
referredtoat po. O

4Since our current implementation is not context-sensitive in its treatment of inter-procedural information flow, a meet-over-all-paths solution
suffices; a context-sensitive treatment would have required a meet-over-all-valid-paths solution.

5This can bereducedto RN (k + w) bits, asin our implementation, by storing only ouT sets, sincethe IN set of ablock can be computed fairly
easily from the ouT sets of its predecessors.

v

BL [add r30,-272,r30|
[18 instrs]
B2
[42 instrs]
B3 B4 [23 instrs]
[18 instrs] [104 instrs]
B9
\/ . store ..., 80(r30)
B5 add r21,32,r21 |(3) | load ..., 0(r21) |(5)
. add r21,32,r21
. [56 instrs]
[2 instrs]
\y
B6
add r30,136,r21 B10
[8 instrs]
[6 instrs]
B11

[10 instrs]

Figure 2: Flowgraph for Example 3.2 [Program: i | peg; function: | peg.i dct i fast ()]

Example 3.2 Asan example of the application of thisanaysisto a red program, Figure 2 shows the flow graph of
the function j peg.i dct _i f ast (), from the SPEC benchmark program i j peg, which implements a fast integer
inverse discrete cosine transform. To reduce clutter, only a few relevant instructionsare shown explicitly: the number
inbrackets at thelower left hand corner of each basic block indicatesthetotal number of instructionsinthat basic block.
Register r 30 isthestack pointer, whiler 21 isused to wak throughaloca array of structureswith astride of 32 bytes.

Using the current implementation of our analysis, which uses mod-64 residues, the address descriptor for register
r 21 immediately after instruction (2) inblock B6iscomputed as{(1), {8}), where(1) istheinstructioninblock B1 that
definesthevalueof r 30. Each iteration of theloop B7-B8-B9-B10incrementsr 21 by 32, so the address descriptor for
r21 onentry toblock B9is{(1), {8,40}); however, register r 30 isnot changed in the loop, so its address descriptor
inB9is((1),{0}). Sincetherequirements of Proposition 3.1 are trivially satisfied within block B9, we can conclude
fromthisthat thestoreinstruction (4), namely,st ore ..., 80(r 30),referstoadifferentlocationthaninstruction
(5),namely,l oad ..., 0O(r21). O

4 Experimental Results

We evaluated our analysis on the SPEC-95 benchmarks as well as some non-SPEC applications. agr ep, a pattern
matching utility; appbt and appsp, computationa fluid dynamics codes originally from NASA; | at ex, apopular
document formatting tool; and nucl ei ¢2, anumerical benchmark that finds the 3-dimensional structure of anucleic
acid molecule. The input programs were compiled with the DEC C compiler V5.2-023invokedascc -4 -W, -r

-W,-d -W, -z -nonshar ed (for the C programs), and the DEC Fortran compiler version 3.8 invoked asf 77
-4 -W,-r -W,-d -W, -z -non_shar ed (for the Fortran programs), resultingin statically linked executa-
bles. Thetimingswere obtained on aDEC Alphaworkstation, witha300 MHz Alpha21164 processor with512 Mbytes
of main memory, running Digital Unix 4.0. Table 1 shows the precision of the analysis, while Table 2 shows itsthe
time and space requirements. The numbers presented correspond to mod-% residues with k = 64 (this choice was de-

PROGRAM | TOTAL ONE | FEW | TotAL KNowN | UNKNOWN |
applu 38073 | 11083 [28.44%] | 5075 [13.02%] | 16158 [41.46%] | 22814 [5854%]
aps 46641 | 12344 [2647%] | 4930 [10.57%] | 17274 [37.04%] | 29366 [62.96%]
compress 6375 | 2070 [3247%] | 235 [369%] | 2305 [36.16%] | 4070 [6384%]
fpppp 39777 | 12431 [3125%] | 3726 [9.37%] | 16157 [40.62%] | 23619 [59.38%]
gcc 137389 | 44021 [32.04%] | 6698 [4.88%] | 50719 [36.92%] | 86669 [63.08%]
g0 31506 | 7472 [23.65%] | 5310 [16.81%] | 12782 [40.45%] | 18814 [59.55%]
hydro2d 37855 | 9668 [2554%] | 4711 [12.45%] | 14379 [37.98%] | 23475 [62.01%]
ijpeg 22179 | 8473 [38.20%] | 1685 [7.60%] | 10158 [45.80%] | 12021 [54.20%]
i 12466 | 3910 [3L44%] | 307 [246%] | 4226 [33.90%] | 8240 [66.10%]
m88ksm | 17516 | 5271 [30.09%] | 651 [3.72%] | 5922 [33.81%] | 11504 [66.19%]
mgrid 35696 | 9150 [25.63%] | 3840 [10.76%] | 12990 |[36.39%] | 22705 [63.61%]
perl 41030 | 14777 [3601%] | 1054 [257%] | 15831 [3857%] | 25208 [61.42%]
su2cor 38052 | 10434 [27.42%] | 4515 [11.87%] | 14949 [39.29%] | 23103 [60.71%]
swim 34187 | 9454 [27.65%] | 4035 [11.80%] | 13489 |[39.46%] | 20698 [60.54%]
tomcatv 33829 | 9356 [27.66%] | 3905 [11.54%] | 13261 [39.20%] | 20568 [60.80%]
turbad 37930 | 9857 [2599%] | 4187 [1104%] | 14044 [37.03%] | 23885 [62.97%]
vortex 50021 | 19310 [32.72%] | 1295 [2.19%] | 20605 [34.91%] | 38413 [65.08%]
waves 44047 | 12113 [2750%] | 7553 [17.15%] | 19666 [44.65%] | 24381 [55.35%]
(a) SPEC-95 benchmarks
| PROGRAM | TOTAL ONE | FEW | TotAaL KNOowN | UNKNOWN |
agrep 11104 | 3581 [32.25%] | 865 [7.79%] | 4446 [40.04%] | 6652 [59.91%]
appht 14582 | 5353 [36.71%] | 3280 [22.49%] | 8633 [59.20%] | 5948 [40.79%]
appsp 10575 | 3520 [33.29%] | 1886 [17.84%] | 5406 [5L12%] | 5169 [48.88%]
latex 28765 | 8673 [30.15%] | 2008 [6.98%] | 10681 [37.13%] | 18083 |[62.87%]
nudleic2 | 25196 | 14738 [5849%] | 307 [1.22%] | 15045 [50.71%] | 10151 [40.29%]

(b) Non-SPEC applications

Key: TOTAL : Tota no. of load/storeinstructions[static counts]
ONE : No. of load/storeinstructionswhose mod-# residue set has cardinality 1.
FEw : No. of load/storeinstructionswhose mod-# residue set has cardindity n, 1 < n < k.
TOoTAL KNOWN : ONE+FEW.

UNKNOWN : TOTAL — TOTAL KNOWN.

Table 1: Precision of Analysis (load/store instructions)

PROGRAM | BASIC BLOCKS | INSTRUCTIONS | ANALYSIS TIME (Sec) | MEMORY USED (Mbytes) |
applu 24939 117247 20.28 9.13
apsi 27334 135270 21.55 10.01
compress 4425 18489 2.93 1.62
fpppp 24778 118183 18.68 9.07
gce 79037 321986 64.65 28.94
go 15734 74361 12.48 5.76
hydro2d 26048 115957 20.24 9.54
ijpeg 10928 57447 8.96 4.00
li 7856 31572 451 2.88
m88ksim 10012 44489 5.48 3.67
mgrid 25025 109260 18.98 9.16
perl 22270 99789 13.86 8.16
su2cor 24827 115547 19.21 9.09
swim 23491 104674 17.66 8.60
tomcatv 23264 103406 17.73 8.52
turb3d 25687 114888 20.51 941
vortex 28240 129092 11.26 10.34
waveb 26309 132299 21.50 9.63

(a) SPEC-95 benchmarks

PROGRAM | BAsiC BLOCKS | INSTRUCTIONS | ANALYSIS TIME (sec) | MEMORY USED (Mbytes) |

agrep 6744 32450 5.65 2.47
appbt 5935 39981 4.96 2.17
appsp 4427 27289 3.48 1.62
latex 14350 66011 8.56 5.26
nucleic2 4090 37078 2.38 150

(b) Non-SPEC applications

Table 2: Cost of Analysis

termined in part by thefact that the set of mod-% residuesfor thischoice of & correspondsto abit vector that fits exactly
in one 64-bit machine word), combined with the local analysis described in Section 2.

Precision: Traditionally, the precision of dias analysis agorithmsis often presented in terms of the average size of
points-to sets or dias sets. In our context, however, there are no points-to or aias sets. a more meaningful measure,
perhaps, isthe(relative) number of memory references—i.e., load and storeinstructions—forwhich theanaysisisable
to provideinformation that would not have been available otherwise. Thisinformationis presented in Table 1. It can
be seen that in the programs tested, the analysisis able to provide information for roughly 35%—-60% of the memory
reference instructions. Preliminary investigationsindicate that much of thelossin precision occurs due to two reasons:
first, because we don't keep track of the contents of memory, information about a register will be lost if it is saved to
memory and subsequently restored; and second, the widening operation described in Section 3.2.2 causes information
tobelostif aregister can have different defining instructionsat different predecessors of ajoin point in the control flow

graph.

Cost: Table 2 givesthetime and space costs of our analysis. Columns 2 and 3 give the size of each benchmark, mea-
sured, respectively, in the total number of basic blocks and instructionsin the program, measured after the elimination

PROGRAM | TOTAL LOADS (x10°) (ToT) | DELETABLE (x10°) (DEL) | DEL/TOT (%) |
appbt 210.75 141 54
appsp 108.32 2.29 21
fpppp 41828.25 17111.94 40.9
m88ksim 15209.48 197.12 13
nucleic2 94.63 474 5.0
su2cor 7405.70 212.51 29
vortex 22989.38 531.60 2.3
waveb 7728.41 446.05 5.8

Table 3: Utility of Analysis: Deletion of unnecessary | oad instructions

of dead and unreachable code. Column 4 then givesthe total analysis timein seconds, while column 5 gives the total
memory requirementsof theanalysisin Mbytes. The anaysistimesrange from about 2 secondsto 20 seconds, withthe
gcc program an outlier with atotal analysistime of alittle over aminute. These numbers are somewhat higher than
we would like, but the reason for thisisthat every instruction within a basic block is examined whenever that basic
block is processed. As Figure 3 indicates, the time taken to analyze a program in practice varies essentialy linearly
as the number of instructionsin the program. The memory requirement of the analysis typically varies from about 1.5
Mbytes to 10 Mbytes, with gcc having a high requirement of about 29 Mbytes. Because of the widening operation
described in Section 3.2.2, the memory requirements of theanalysisare linear in thenumber of basic blocksin theinput
program: we feel that thisis essentia if the analysisisto be usable for large programs.

Utility: The only optimization for which we have had the time to evaluate the utility of our adias analysis at this
timeinvolvesthe elimination of unnecessary | oad instructions. Preliminary resultsare shown in Table 3, which gives
dynamic counts of the number of load instructionsthat can beremoved. Since, at optimizationlevel - O4, global register
allocation had aready been carried out by the compiler, we were pleasantly surprised that our analysiscould still detect
asignificant number of | oad instructionsthat could potentially be eliminated. Our system currently removes many of
these| oads, and we are working on other optimizationsthat will free up additiona registers that can then be used for
thispurpose. We a so plan to incorporatethe results of alias anaysisinto our instruction scheduler as well as anumber
other optimizations, and expect to have more extensive experimental results for the utility of thisinformation shortly.

5 Reéated Work

While anumber of systems have been described for link-time code optimization [5, 14, 15, 26, 29, 30, 32], to the best
of our knowledge none of these carry out any alias analysis on the executabl e files they process.

There isan extensive body of work on pointer aliasanalysisof variouskinds (see, for example, [2, 3, 4, 6, 8, 10, 11,
12,13, 17, 18, 20, 21, 22, 23, 25, 27, 28, 31, 33, 34]). Thework most closdly related to oursis that of Wilsonand Lam
[34], who describe alow-level pointer aliasanalysisfor C programs. Their work attemptsto deal with “nasty” features
of real programsand can handlesimpl e poi nter increments and decrements, but i sunabl eto cope withthe more complex
address arithmetic common in executable code (see Example 3.2). Also, it restrictsitself to C language features, and
so cannot handle arithmetic arising from idiosyncracies of other languages, e.g., manipulation of pointers with “tag
bits,” that may be encountered in executable code. Their agorithmis context-sensitive a the inter-procedural level,
however, while our current implementation is context-insensitive (conceptualy, it would not be too difficult to obtain
a context-sensitive version of our agorithm, but we have not had time to implement thisyet). The remaining analyses
cited are all high level analyses that typically disregard type casts, pointer arithmetic, out-of-bounds array accesses,
etc. Asargued earlier, such analyses are of limited utility at the machine code level.

Also related isthe work on dependence analysisin the scientific computing literature (see, for example, [35, 36]).

10

70

60 1

50 4

40

30+

Analysis Time (secs)

20 4 o 7

101 g

50 100 150 200 250 300
Program Size (no. of instructions x 1000)

Figure 3: Variation of analysistime with input size

Whilethe goals of thiswork are conceptually similar to ours—namely, disambiguating array references whoseindices
can involvearithmetic expressions—thea gorithmsused for dependence analysisare very different from that described
here. Since dependence analysisistypically formulated as a source level intra-procedural anaysis, the analysis prob-
lems tend to be relatively small in size. Because of this, dependence analyses are able to use relatively more sophis-
ticated, but also more expensive, algorithmsthan ours. We do not know of any attempts to apply such agorithmsfor
whole-programanalysis, and itisnot obviousto usthat theal gorithmsinvolved woul d scal e up to problems of thissize.

6 Conclusions

Recent years have seen increasing interest in reasoning about and manipulating executabl e files. Such manipulations
can benefit greatly from information about aiasing. Unfortunately, there is a fundamenta mismatch between the fea-
tures present in executable programs and the features handled by existing pointer dias analyses. such analyses are
typically formulated in terms of source-level constructs, and do not handl e features such as pointer arithmetic and out-
of-bound array references, whereas these are precisaly the features encountered in executable programs. This paper
describes a simple algorithm that can handle these features, and which can be used for alias analysis of executable
programs. In order to be practical, the algorithmis careful to keep its memory requirements low, sacrificing precision
where necessary to achieve thisgoa. Experimental results indicate that it is nevertheless able to provide nontrivial
information about roughly 35%—60% of the memory references across avariety of benchmark programs.

References

[1] A.V.Aho, R. Sethi and J. D. Ullman, Compilers— Principles, Techniques and Tools, Addison-Wesl ey, 1986.

[2] M. Burke, P. Carini, J. D. Choi, and M. Hind, “Flow-insensitiveinterprocedural aias analysisin the presence of
pointers’, in Languages and Compilersfor Parallel Computing: Proceedings of the 7th International Workshop,
eds. K. Pingdli, U. Bannerjee, D. Gelernter, A. Nicolauand D. Padua, Aug. 1994. Springer-Verlag LNCSvol. 892,
pp. 234-250.

[3] D.R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of Pointersand Structures’, Proc. SGPLAN ' 90 Confer-
ence on Programming Language Design and | mplementation, June 1990, pp. 296-310.

[4] J-D. Choi, M. Burke, and P. Carini, “Efficient Flow-Sensitive Interprocedural Computation of Pointer-Induced
Aliases and Side Effects’, Proc. 20th ACM Symposium on Principles of Programming Languages, Jan. 1993,
pp. 232-245.

[5] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Spike: An Optimizer for Alpha/NT Executables’, Proc.
USENIX Windows NT Workshop, Aug. 1997.

11

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

K. D. Cooper and K. Kennedy, “Fast Interprocedural Alias Anaysis’, Proc. 16th ACM Symposiumon Principles
of Programming Languages, Jan. 1989, pp. 49-59.

P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Apporoximation of Fixpoints’, Proc. Fourth ACM Symposium on Principles of Programming
Languages, 1977, pp. 238-252.

D. Coutant, “Retargetable High-Level Alias Analysis’, Proc. 13th ACM Symposium on Principles of Program-
ming Languages, Jan. 1986, pp. 110-118.

K.DeBosschereand S. K. Debray, “al t o : A Link-TimeOptimizer for the DEC Alpha’, Technical Report 96-15,
Dept. of Computer Science, The University of Arizona, June 1996.

A. Deutsch, “On determining lifetime and aliasing of dynamically allocated datain higher-order functiona spec-
ifications’, Proc. 17th ACm Symposium on Principles of Programming Languages, Jan. 1990, pp. 157-168.

A. Deutsch, “Interprocedural May-Alias Analysisfor Pointers: Beyond k-limiting”, Proc. SSGPLAN’ 94 Confer-
ence on Programming Language Design and | mplementation, June 1994, pp. 230-241.

A. Diwan, K. S, McKinley and J. E. B. Moss, “Type-Based Alias Analysis’, Manuscript, Dept. of Computer Sci-
ence, University of Massachusetts, Amherst, 1996.

M. Emami, R. Ghiyaand L. J. Hendren, “Context-Sensitive Interprocedura Points-to Analysisin the Presence
of Function Pointers’, Proc. S GPLAN ' 94 Conference on Programming Language Design and I mplementation,
June 1994, pp. 242-256.

M. F. Fernandez, “Simple and Effective Link-Time Optimization of Module-3 Programs’, Proc. SGPLAN ’95
Conference on Programming Language Design and I mplementation, June 1995, pp. 103-115.

D. W. Goodwin, “Interprocedural Dataflow Analysisin an Executable Optimizer”, Proc. SGPLAN ' 97 Confer-
ence on Programming Language Design and | mplementation, June 1997, pp. 122-133.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesl ey, 1989.

S. Horwitz, P. Pfeiffer, and T. Reps, “ Dependence Analysisfor Pointer Variables’, Proc. S GPLAN ' 89 Conference
on Programming Language Design and Implementation, June 1989, pp. 28-40.

J. Hummel, L. J. Hendren, and A. Nicolau, “A General Data Dependence Test for Dynamic, Pointer-Based Data
Structures’, Proc. S GPLAN ' 94 Conference on Programming Language Design and | mplementation, June 1994,
pp. 218-229.

M. S. Johnsonand T. C. Miller, “Effectiveness of aMachine-Level Global Optimizer”, Proc. SGPLAN ' 86 Sym-
posium on Compiler Construction, June 1986, pp. 99-108.

N. D. Jones and S. S. Muchnick, “Flow analysis and optimization of LISP-like structures’, in Program Flow
Analysis, eds. S. S. Muchnick and N. D. Jones, Prentice Hall, 1981, pp. 102-131.

N. D. Jonesand S. S. Muchnick, “A flexible approach to interprocedurd dataflow anaysisand programswith re-
cursivedatastructures’, Proc. 9th ACM Symposiumon Principlesof Programming Languages, Jan. 1982, pp. 66—
74

W. Landi and B. G. Ryder, “Pointer-induced Aliasing: A Problem Classification”, Proc. 18th ACM Symposium
on Principles of Programming Languages, Jan. 1991, pp. 93-103.

12

[23] W.Landi andB. G. Ryder, “A Safe Approximate Algorithmfor Interprocedural Pointer Aliasing”, Proc. SSGPLAN
'92 Conference on Programming Language Design and | mplementation, June 1992, pp. 235-248.

[24] J R.Larusand E. Schnarr, “EEL: Machine-independent Executable Editing”, Proc. S GPLAN 95 Conference on
Programming Language Design and Implementation, June 1995, pp. 291-300.

[25] J R. Larusand P. N. Hilfinger, “Detecting Conflicts Between Structure Accesses’, Proc. SSIGPLAN ' 88 Confer-
ence on Programming Language Design and | mplementation, June 1988, pp. 21-34.

[26] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. N. Bershad, and J. B. Chen, “Instrumentation
and Optimization of Win32/Intel Executables’, 1997 USENIX Windows NT Workshop (to appear).

[27] E. Ruf, “Context-Insensitive Alias Analysis Reconsidered”, Proc. SSGPLAN 95 Conference on Programming
Language Design and Implementation, June 1995, pp. 13-22.

[28] M. Shapiro and S. Horwitz, “Fast and Accurate Flow-Insensitive Points-To Analysis’, Proc. 24th. ACM Sympo-
sium on Principles of Programming Languages, Jan. 1997, pp. 1-14.

[29] A. Srivastavaand D. W. Wall, “A Practical System for Intermodule Code Optimization at Link-Time", Journal
of Programming Languages, pp. 1-18, March 1993.

[30] A. Srivastavaand D. W. Wall, “Link-time Optimization of Address Calculation on a 64-bit Architecture’, Proc.
S GPLAN ' 94 Conference Programming Language Design and Implementation, June 1994, pp. 49-60.

[31] B. Steensgaard, “Points-to Analysisin Almost Linear Time”, Proc. 23th. ACM Symposium on Principles of Pro-
gramming Languages, Jan. 1996, pp. 3241

[32] D.W. Wall, “Global Register Allocationat Link Time”, Proc. SGPLAN ' 86 Symposium on Compiler Construc-
tion, July 1986, pp. 264-275.

[33] W. E. Weihl, “Interprocedural data flow anaysisin the presence of pointers, procedure variables, and label vari-
ables’, Proc. ACM Symposium on Principles of Programming Languages, Jan. 1980, pp. 83-94.

[34] R.P.Wilsonand M. S. Lam, “Efficient Context-SensitivePointer Analysisfor C Programs’, Proc. SSGPLAN ' 95
Conference on Programming Language Design and I mplementation, June 1995, pp. 1-12.

[35] M. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge, Mass., 1989.

[36] H. Zimaand B. Chapman, Supercompilers for Parallel and Vector Computers, ACM Press, New York, 1991.

13

